当前位置:文档之家› 锂电池电量管理IC

锂电池电量管理IC

锂电池电量管理IC
锂电池电量管理IC

通用四通道锂电池电量显示管理IC

概述:

TF1186是一款专门针对于单节锂离子(聚合物)电池而设计的通用型电池电量显示管理IC,具有4级显示级别,静态功耗非常低,非常适合于电池充电包,后备电源,移动电源等需要有电池电量显示的应用场合。该芯片特别增加了电池充饱信号输入功能,以兼容大多数锂电充电管理IC,达到精确显示电池充饱状态的特色。由于电池在充电与放电状态时的电量显示曲线有所不同,IC通过检测充电与放电引脚电平信号,自动识别调用充电与放电显示曲线,达到智能显示的目的。TF1186采用14管脚SOP封装。

典型应用:

■ 电池包,后备电源,应急充电等锂电池供电系统

■ 手机,无绳电话

■ 便携式设备

■ 监测和报警综合应用

■ 微控制系统 特点:

■ 低静态功耗

■ 充饱信号输入功能,可与其它充电管理IC兼容

■ 充电输入功能引脚

■ 电量显示功能引脚

■ 通过外部电阻可调节电池分压比,达到微调显示阈值的目的

■ 充电与放电阈值电压不同,以修正线路压降损耗

■ 充电时动态闪烁显示功能,更直观

■ 工作温度范围:-40℃ to 85℃

■ SOP-14封装

■ PB-FREE

管脚排列:

引脚功能描述:

序号 功能描述

1 25% 电量显示LED

2 50% 电量显示LED

3 75% 电量显示LED

4 100% 电量显示LED

5 电池充满信号输入端,高电平表示充满

6 电池电压输入端,可接分压电阻微调电压值(请参考应用电路图参数)

7 接地端子

8 未应用

9 未应用

10 IC电源输入端,同时是IC内部基准引脚,建义需接3.3V稳压电源(请参考应用电路图参数)

11 未应用

12 未应用

13 电量测试端,通过一个轻触开关接地,在没有充电信号的情况下,低电平时显示电池电量,在有充电信号的情况下此引脚功能失效,此引脚需接至少1uF陶瓷电容到地,以减少干扰

14 充电信号输入端,高电平时闪烁显示电池充电情怳,直到电池充饱

典型应用电路图:

外部器件选择(推荐):

供电电源部分 VDD除了给IC提供电能外还是IC内部基准电压源,建义用3.3V LDO提供,精度至少保证在+/-2%,推荐用我司TF6206-3.3 ,VDD引脚需滤波以保证正常工作时没有异常杂讯干扰,滤波建义用4.7uF电解电容并联0.1uF SMD陶瓷电容。

LED驱动部分 如果用蓝色的LED,由于压降比较大,请适当降低限流电阻值,建义330欧姆。红色或绿色请适当增加LED限流电阻值,保证LED电流为3-5mA 。

信号输入部分 PIN5,PIN7信号输入引脚为保证外部信号电平不超过VDD(3.3V),需要采用电阻分压的方式(参考电路图)以兼容IC电平接口。

按键部分 需连接1uF或更大的SMD封装陶瓷电容以减少干扰。

电池部分 需连接0.1uF的SMD封装陶瓷电容以抗干扰,锂电池需接电阻分压,建义阻值:上偏240K,下偏100K,精度+/-1%。

直流电特性:

项目 条件 Min Typ.Max 单位

电源VDD 2.0 5.5 V 输入高电平电压 VDD=5V 2 V 输入低电平电压 VDD=5V 0.8 V

LED引脚驱动 VDD=5.5V 35.3 mA

极限参数:

电源电压 ………………………………………………………… Vss-0.3V to Vss+5.5V 输入引脚电压 …………………………………………………… Vss-0.3V to VDD+0.3V 存储温度 ………………………………………………………… -50℃ to 125℃

工作温度 ………………………………………………………… -40℃ to 85℃

(注)超出极限参数指定的范围会对芯片造成严重伤害,甚至损坏。

订购信息:

型号 封装形式 包装形式 工作温度范围 TF1186 SOP-14 管装 -40℃到85℃

(完整版)了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。 锂离子电池充电周期 锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。 线性解决方案与开关模式解决方案对比 将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰 (EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。 一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选

简易锂电池保护IC 测试电路的设计

简易锂电池保护IC测试电路的设计 作者:中国地质大学蔡欢欢 由于锂电池的体积密度、能量密 度高,并有高达4.2V的单节电池 电压,因此在手机、PDA和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B 的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS 提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

锂电池保护IC

由于锂电池的体积密度、能量密度高,并有高达4.2V的单节电池电压,因此在手机、PDA 和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

充电管理芯片BQ2057及其应用

先进的锂电池线性充电管理芯片BQ2057及其应用 2007年03月07日星期三 11:09 摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器 BQ2057 1.引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物 (Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。

5A锂电池保护IC(XB8588)

XB8588D ____________________________________________________________________________________________________________________________ XySemi Inc - 1 - https://www.doczj.com/doc/b315614282.html, REV0.5 One Cell Lithium-ion/Polymer Battery Protection IC GENERAL DESCRIPTION The XB8588 series product is a high integration solution for lithium-ion/polymer battery protection. XB8588 contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits. XB8588 is put into an TSSOP8 package and only one external component makes it an ideal solution in limited space of battery pack. XB8588 has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage. The device is not only targeted for digital cellular phones, but also for any other Li-Ion and Li-Poly battery-powered information appliances requiring long-term battery life. FEATURES · Protection of Charger Reverse Connection · Protection of Battery Cell Reverse Connection · Integrate Advanced Power MOSFET with Equivalent of 40m ? R DS(ON) · TSSOP8 Package · Only One External Capacitor Required · Over-temperature Protection · Overcharge Current Protection · Two-step Overcurrent Detection: -Overdischarge Current -Load Short Circuiting · Charger Detection Function · 0V Battery Charging Function - Delay Times are generated inside · High-accuracy Voltage Detection · Low Current Consumption - Operation Mode: 2.8μA typ. - Power-down Mode: 0.1μA max. · RoHS Compliant and Lead (Pb) Free APPLICATIONS ? One-Cell Lithium-ion Battery Pack ? Lithium-Polymer Battery Pack Figure 1. Typical Application Circuit

锂电池线性充电管理芯片LTC4065及其应用

锂电池线性充电管理芯片LTC4065及其应用 摘要锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。本文介绍了基于LTC4065芯片的线性充电管理方案,仅需要非常少的外围元件配合,就可以实现低成本、超小尺寸的单节锂电池充电管理。 关键词锂电池充电管理LTC4065 SG2003 随着移动计算技术和无线通信技术的发展,微型移动终端设备在移动数据采集、传输、处理及个人信息服务等领域得到越来越多的应用。锂电池因其体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。锂电池的特性以及应用环境的需求,对微型移动终端设备充电方案的设计提出了更高的要求。因此在充电方案的设计中需要综合考虑成本、体积、噪声、效率等因素。 LTC4065是一款用于单节锂电池的完整恒定电流/恒定电压线性充电管理芯片,可提供高达750 mA且准确度为5%的可设置的充电电流,并支持直接使用USB端口对单节锂电池进行充电。同时其热反馈功能可调节充电电流,以便在大功率工作或高环境温度条件下对芯片温度加以限制,确保安全工作。由于采用了内部MOSFET架构,因此无需使用外部检测电阻器或隔离二极管。很少的外部元件数目加上其2 mm×2 mm DFN封装,使得LTC4065尤其适合无线PDA、蜂窝电话、无线传感器终端等应用。功能齐全的LTC4065还包括自动再充电、低电池电量充电调节、软启动等丰富功能。 1 LTC4065的引脚功能 LTC4065采用了热处理能力较强的6引脚小外形封装(DFN),且实现产品无铅化,底部采用裸露衬垫,直接焊接至PCB以实现电接触和额定散热性能。引脚排列如图1所示。 各引脚功能如下: 引脚1,GND,接地端。 引脚2,CHRG,漏极开路充电状态输出。充电状态指示引脚具有三种状态:下拉、2 Hz 脉动和高阻抗状态。该输出可以被用作一个逻辑接口或一个LED驱动器。对电池进行充电时,有一个内部N沟道MOSFET将GHRG引脚拉至低电平。当充电电流降至全标度电流的10%时,CHRG引脚被强制为高阻抗状态。如果电池电压处于2.9 V以下的持续时间达到充电时间的1/4,则认为电池失效,而且CHRG引脚将以2 Hz的频率脉动。 引脚3,BA T,充电电流输出。该引脚向电池供应充电电流,并将最终浮动电压调节至4.2 V。该引脚上的一个内部精确电阻分压器负责设定此浮动电压,并在停机模式时断接。 引脚4,VCC,正输入电源。该引脚向充电器供电。VCC的变化范围是3.75~5.5 V。该引脚应通过一个最小1μF的电容器进行旁路。当VCC处于BA T引脚电压的32 mV以内时,LTC4065进入停机模式,从而使IBA T降至约1μA。 引脚5,EN,使能输入引脚。把该引脚拉至手动停机门限(一般为O.82 V)以上,将把LTC4065置于停机模式。在停机模式中,LTC4065的电源电流低于20μA。使能为缺省状态,但不用时应将该引脚连至GND。 引脚6,PROG,充电电流设置和充电电流监视引脚。充电电流是通过连接一个精度为1%的接地电阻器RPROG来设置的。 2 工作原理 LTC4065主要是为实现对单节电池充电而设计的线性电池充电管理芯片。该芯片利用其内部功率MOSFET对电池进行恒流和恒压充电。充电电流可利用外部电阻编程设定,最大

锂电保护IC行业应用

聚焦科技锂电保护IC系统开发应用 图一:开发依据图 通过依据图可开发不同行业不同应用方案: 特种电池管理系统: 低温锂电池/ 宽温锂电/ 钛酸锂电池/ 防爆锂电池 工业电池管理系统: 锂离子电池/ 磷酸铁锂电池/ 18650锂电池/ 聚合物锂电池

动力/储能管理系统: 12V锂电池/ 24V锂电池/ 36V锂电池/ 48V锂电池一对一定制化管理系统: 特种锂电池/ 机器人电池/ AGV锂电池/医疗锂电池 以下内容为可开发锂电保护系统具体行业和应用:一.特种锂离子电池和工业电池保护系统 1.极寒电池方案 电芯型号:18650/3.7V/2000mAh 电池规格:18650/4S1P/14.8V/2000mAh 标称电压:14.8V 标称容量:2000mAh 充电电压:16.8V 充电电流:≤1A 放电电流:1A 瞬间放电电流:2A 放电截止电压:10V 成品内阻:≤250mΩ 电池重量:385g

产品尺寸:101×76×28(Max) 充电温度:0~45℃ 放电温度:-40~60 ℃ 存储温度:-20~20 ℃ 电池外壳:Al6061铝合金 锂电保护:短路保护,过充保护,过放保护,过流保护。 应用领域:无线综测设备 产品特点 低温工作:采用军品级低温电芯,确保在-40度低温下工作;可靠连接:采用方形航空连接器,快捷,安全,可靠; 电池组循环寿命高,符合低碳、节能、环保价值理念; 2.(21.6V 8800mAh 轨道检测仪低温锂电池) 电芯型号:18650/3.7V/2200mAh 电池规格:18650-6S4P/21.6V/8800mAh 标称电压:21.6V 标称容量:8800mAh 充电电压:25.2V 充电电流:≤4.4A 放电电流:8A 瞬间放电电流:12A 放电截止电压:15V

锂电池保护芯片原理

锂电池保护原理 锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。 成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护。 01锂电池保护板组成

1、控制ic, 2、开关管,另外还加一些微容和微阻而组成。控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管的作用就是开关作用,由控制ic开控制。锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流。 02保护板的工作原理 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续,VCR 必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时,VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

一款锂电池充电管理芯片的研究与设计

一款锂电池充电管理芯片的研究与设计 林超 【摘要】:锂离子电池是目前便携式电子产品中使用最为广泛的可充电电池。而且随着电池容量的不断提高,锂离子电池将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。由于锂离子电池本身电学特性的原因,几乎每一块锂离子电池都需要一个充电管理芯片来提供充放电保护以延长其使用寿命。本文设计并实现一款成本较低、应用广泛,性能优良的锂电池充电管理芯片。采用全定制设计思想,完成了从底层电路开始到整个芯片电路的正向设计,实现了过放电保护、过充电保护、短路保护、过温保护以及涓流充电、恒流充电、恒压充电等控制功能。芯片内部用来驱动充电晶体管的MOS管耐压高达30V以上,在不外加扩展电路的情况下,可设计成多节串联电池的充电电路。低压线性稳压器集成在芯片内部,提高了集成度,使芯片具有较小的面积,降低了成本。芯片的外围电路既可以设计成线性控制也可采用PFM控制,应用电路简单。 此外,改变芯片应用电路的外围电阻就可以调节芯片的恒流充电电流、预充电(涓流充电)截止电压、恒压充电电压和电池充满判断电流。这使得芯片具有很强的适用性,能够应用在很多不同的场合。芯片采用CSMC0.5um DPTM Mixed Signal工艺,使用Cadence工具完成电路设计、仿真、版图设计和验证。仿真结果表明,在电池温度端检测电压大于4.51 V时,充电终止,表明此时电池没有接入;当电池温度检测端电压大于0.05V且小于0.5V 时,充电电流为24mV/Rs;当电池温度检测端电压大于0.5V且小于4.51V时,芯片系统正常工作,此时涓流充电电流为24mv/Rs,预充电结束判断电压为0.61V,恒流充电电流为240mv/Rs,恒压充电判断电压为1.21V,充饱判断电流为24mV/Rs,这些参数均符合设计指标,并且电池充电曲线也符合设计预期。仿真成功后进行版图设计和验证,最终导出GDS文件去foundry流片。 【关键词】:锂电池锂电池充电管理芯片三阶段充电法锂电池充放电保护过温保护【学位授予单位】:西安电子科技大学 【学位级别】:硕士 【学位授予年份】:2012 【分类号】:TM912 【目录】: ?摘要3-4 ?ABSTRACT4-8 ?第一章绪论8-14 ? 1.1 课题研究背景及意义8-10 ? 1.2 锂电池充电管理芯片的研究现状及发展趋势10-11 ? 1.3 本文的主要工作及内容安排11-14 ?第二章锂电池充电管理芯片设计基础14-24 ? 2.1 锂电池工作原理14-15 ? 2.2 锂电池的电学性能及其充电保护要求15-17

S 和DW A主流锂电池保护板原理图说明

S8261和DW01-8205A主流锂电池保护板原理图说明 锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1)?封装 2)?过充电压 3)?过充释放电压 4)?过放电压 5)?过放释放电压 6)?耐压 (2) MOSFET主要参数 1) N沟、P沟 2)?内阻 3)?封装(TSSOP8 <简称薄片>?、SOP8<简称厚片>、SOT23-6等) 4)?耐电流 5)?耐电压 6)?内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以DW01?配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在至之间时,DW01?的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01?的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01?的电压,故均处于导通状态,即两个

电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01?内部将 通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01?将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P?与P-间接上充电电压后,DW01?经B-检测到充电电压后便立即停止过放电状态,重新在第1 脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到时,DW01?将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P?与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于时,DW01?停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、

锂电池充电管理芯片BQ24025

锂电池充电管理芯片BQ24025 一、特性 ●体积小,MLP封装 ●可以采用AC电源适配器或者USB电源充电,并能够自主选择 ●USB电源充电下,可以选择100mA、500mA两种充电电流 ●低压差比 ●内部集成定时器 ●低功耗情况下自动进入睡眠模式 ●工作时允许结温:—40~125℃,存储温度:—60~150℃ ●应用范围:PDA、MP3 player、数码相机、网络产品、智能电话等 二、引脚功能 AC:AC适配器电源输入端 USB:USB电源输入端 STAT1、STAT2:充电状态 VSS:电源、信号地 ISET1:设置AC适配器供电时的 充电电流;设置AC充电 或USB充电时的中止电 流 ISET2:设置USB充电时的充电 电流 /CE:充电使能(高电平禁止充 电,低电平允许充电,下 降沿充值所有定时器及定 时器出错状态 TS:温度检测输入 OUT:充电电流输出 三、电气参数 输入电压范围:—0.3~7.0V

功耗:40℃以下1.5W , AC 输入电压范围:最低:4.5V ,最高:6.5V USB 输入电压范围:最低:4.35,最高:6.5V AC 输入电流Icc :典型值1.2mA ,最大值2.0mA 输出电压:4.2V AC 充电时输出电流:最小50mA ,最大1000mA USB 充电时输出电流:100mA 时最小80mA ,最大100mA ;500mA 时最小400mA ,最大500mA 控制信号低电平:≤0.4V 控制信号高电平:≥1.4V 四、BQ24025工作模式及相关参数设置 ● 充电电源选择:AC 适配器提供的电源优先 ● 温度保护 采用温敏电阻检测蓄电池的温度,将得到的电压信号输入到TS 引脚。芯片内部有两个比较电压V (LTF )(典型值2.5V )和V (HTF )(典型值0.5V ),当TS 引脚的电压在这两个电压值之间时,可以正常充电,一旦超出这个范围立即通过内部的功率FET 停止充电并暂停充电定时器(不复位),当温度回到正常范围时恢复充电。采用一个103AT 系列的温敏电阻时,温度保护范围是0~45℃,用户可以通过增加两个电阻来修改温度保护范围。如下图所示,其中I TS =102uA ,

锂电池保护板常用IC、MOS场效应管

锂电池保护板常用IC、MOS场效应管,详细清单如下: S-8261AANMD-G2NT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261AAJMD-G2JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABJMD-G3JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABPMD-G3PT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABRMD-G3RT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABMMD-G3MT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ACEMD-G4ET2G 封装:SOT-23-6 品牌:SEIKO 备注:磷酸铁锂保护板 S-8261AAOMD-G2OT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8241ACLMC-GCLT2G 封装:SOT-23-5 品牌:SEIKO 备注:单节 S-8242AAA-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAD-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAF-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAY-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAK-M6T3GZ 封装:SOT-23-7 品牌:SEIKO 备注:双节 S-8232AAFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节 S-8232ABFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节 S-8232AUFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节 S-8253AAAFT-TB-G 封装:TSSOP-8 品牌:SEIKO 备注:2-3节 S-8253AAD-T8T1GZ 封装:TSSOP-8 品牌:SEIKO 备注:2-3节 S-8254AAAFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AABFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AAFFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AAGFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AAJFT-TB-G 封装:TSSOP-17 品牌:SEIKO 备注:三-四节 S-8254AANFT-TB-G 封装:TSSOP-18 品牌:SEIKO 备注:三-四节 S-8254AAKFT-TB-G 封装:TSSOP-19 品牌:SEIKO 备注:三-四节 R5400N101FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5400N110FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5400N150FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5400N149FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5402N101KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N110KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N149KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N128EC-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5460N207AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N207AA 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N208AA 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N208AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N212AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N214AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N214AC 封装:SOT-23-6 品牌:RICOH 备注:双节 R1211N002D-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC升压 R1224N102H-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压 R1224N332F-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压 MM1414CVBE 封装:TSSOP-20 品牌:MITSUMI 备注:三-四节 MM3076XNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节 MM3177FNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节 VA7021P/C 封装:SOT-23-6 品牌:中星微备注:单节,中星微代理,中国最低价格DW01+ 封装:SOT-23-6 品牌:富晶备注:单节 FS312 封装:SOT-23-6 品牌:富晶备注:单节 CS213 封装:SOT-23-6 品牌:新德备注:单节 STC5NF20V 封装:TSSOP-8 品牌:ST 备注:配套MOS管 FTD2017M 封装:TSSOP-8 品牌:三洋备注:配套MOS管 ECH8601M 封装:SNT-8A 品牌:三洋备注:配套MOS管 UPA1870BGR 封装:TSSOP-8 品牌:NEC 备注:配套MOS管 FS8205A 封装:TSSOP-8 品牌:富晶备注:配套MOS管 SM8205ACTC 封装:SOT-23-6 品牌:茂达备注:配套MOS管 SM8205AOC 封装:TSSOP-8 品牌:茂达备注:配套MOS管 AO8810 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO8820 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO8822 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO8830 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO9926B 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 SDC6073 封装:MSOP-8 品牌:SDC光大备注:单节,二合一的保护IC

DW02D(锂电池保护IC)

DW02D (文件编号:S&CIC0921) 二合一锂电池保护IC 一、概述 DW02D 产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。DW02D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。 DW02D 具有非常小的SOT23-6的封装并且只需要一个外部元器件,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。 DW02D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。 该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。 二、特点 内部集成等效70mΩ的先进的功率MOSFET ; SOT23-6封装; 只需要一个外部电容; 过充电流保护; 3段过流保护:过放电流1、过放电流2(可选)、负载短路电流; 充电器检测功能; 延时时间内部设定; 高精度电压检测; 低静态耗电流:正常工作5.0uA (典型值);休眠状态不超过0.1uA ; 兼容ROHS 和无铅标准。

封装形式 管脚号管脚名称管脚描述 VC C GN D VD D NC BA T T T EST 1234 5 6 1VCC 内部电路供电端2GND 接地端,接电池芯负极3VDD 正电源供电端4 NC 悬空 5BATT 电池组的负极,内部FET 开关连接到GND 6 TEST 测试端

正常工作模式 如果没有检测到任何异常情况,充电和放电过程都将自由转换。这种情况称为正常工作模式。过充电压情况 在正常条件下的充电过程中,当电池电压高于过充检测电压(VCU),并持续时间达到过充电压检测延迟时间(tCU)或更长,DW02D 将控制MOSFET 以停止充电。这种情况称为过充电压情况。以下两种情况下,过充电压情况将被释放: 1、当电池电压低于过充解除电压(VCL),DW02D 控制充电的FET 导通,回到正常工作模式下。 2、当连接一个负载并且开始放电,DW02D 控制充电的FET 导通回到正常工作模式下。解除机制如下:接上负载后放电电流立刻流过充电FET 内部寄生二极管开始放电,BATT-电压升到0.7V ,DW02D 检测到这个电压后,当电池电压等于或低于过充检测电压(VCU),DW02D 立刻恢复到正常工作模式,另外,在接上负载放电时,如果BATT-电压等于或低于过流1检测电压,芯片也不会恢复到正常状态。 注:当电池被充电到超过过充检测电压(VCU)并且电池电压没有降到过充检测电压(VCU)以下,即使加上一个可以导致过流的重载,过流1和过流2都不会工作,除非电池电压跌到过充检测电压(VCU)以下。但是实际上电池是有内阻的,当电池接上一个重载,电池的电压会立即跌落,这时过流1和过流2就会动作。短路保护与电池电压无关。

SD8001 4.2V 800mA 线性锂电池充电管理IC

SD8001SD8001SD8001SD8001SD8001SD8001SD8001SD8001线性锂离子电池充电器 描述 是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其SOT 封装与较少的外部元件数目使得成为便携式应用的理想选择。可以适合USB 电源和适配器电源工作。 由于采用了内部PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于4.2V ,而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值1/10时,将自动终止充电循环。当输入电压(交流适配器或USB 电源)被拿掉时,自动进入一个低电流状态,将电池漏电流降至2uA 以下。也可将置于停机模式,以而将供电电流降至45uA 。的其他特点包括充电电流监控器、欠压闭锁、自动再充电和一个用于指示充电结束和输入电压接入的状态引脚。 特点 ·高达800mA 的可编程充电电流; ·无需MOSFET、检测电阻器或隔离二极管; ·用于单节锂离子电池、采用SOT23-5封装的完 整线性充电器; ·恒定电流/恒定电压操作,并具有可在无过热危 险的情况下实现充电速率最大化的热调节功能; ·直接从USB 端口给单节锂离子电池充电; ·精度达到±1%的4.2V 预设充电电压; ·用于电池电量检测的充电电流监控器输出; ·自动再充电; ·充电状态输出引脚; ·C/10充电终止; ·待机模式下的供电电流为45uA; ·2.9V涓流充电器件版本; ·软启动限制了浪涌电流; ·采用5引脚SOT-23封装。 应用 ·蜂窝电话、PDA、MP3播放器; ·充电座; ·蓝牙应用。 典型应用典型应用 600mA 单节锂离子电池充电器 完整的充电循环(750mAh 电池) 绝对最大额定值 ·输入电源电压(V CC ):-0.3V~10V ·PROG:-0.3V~V CC +0.3V ·BAT:-0.3V~7V ·:-0.3V~10V ·BAT 短路持续时间:连续 ·BAT 引脚电流:800mA ·PROG 引脚电流:800uA ·最大结温:125℃ ·工作环境温度范围:-40℃~85℃ ·贮存温度范围:-65℃~125℃ ·引脚温度(焊接时间10秒):260℃ SD8001 1

锂电池充电保护IC原理

锂电池充电保护IC原理 锂离子电池因能量密度高,使得难以确保电池的安全性。具体而言,在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而导致有发火或破裂的危机。反之,在过度放电状态下,电解液因分解导致电池特性劣化及耐久性劣化(即充电次数降低)。 锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性的劣化。锂离子电池的保护电路是由保护IC、及两颗Power-MOSFET所构成。其中保护IC为监视电池电压;当有过度充电及放电状态时,则切换以外挂的Power-MOSFET来保护电池,保护IC的功能为: (1)过度充电保护、(2)过度放电保护、(3)过电流/短路保护。以下就这三项功能的保护动作加以说明 (1) 过度充电: 当锂电池发生过度充电时,电池内电解质会被分解,使得温度上升并产生气体,使得压力上升而可能引起自燃或爆裂的危机,锂电池保护IC用意就是要防止过充电的情形发生。 过度充电保护IC原理: 当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状况,此时保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)及激活过充电保护,将Power MOS由ON'OFF,进而截止充电。另外,过充电检出,因噪声所产生的误动作也是必须要注意的,以免判定为过充保护,因此需要延迟时间的设定,而delay time也不能短于噪声的时间。 (2) 过度放电: 在过度放电的情形下,电解液因分解而导致电池特性劣化,并造成充电次数的降低,锂电池保护IC用以保护其过放电的状况发生, 达成保护动作。 过度放电保护IC原理:为了防止锂电池过度放电之状态,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假设设定为2.3V),将激活过放电保护,将Power MOS由ON'OFF,进而截止放电,达成保护以避免电池过放电现象发生, 并将电池保持在低静态电流的状态(standby mode),此时耗电为0.1uA

相关主题
文本预览
相关文档 最新文档