当前位置:文档之家› 排列组合之分堆问题

排列组合之分堆问题

排列组合之分堆问题
排列组合之分堆问题

排列组合之分堆问题(教师)

引例 将6本不同的书按下列分法,各有多少种不同的分法?

⑴分给学生甲3 本,学生乙2本,学生丙1本;

⑵分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本;

⑶分给甲、乙、丙3人,每人2本;

⑷分成3堆,一堆3 本,一堆2 本,一堆1 本;

⑸分成3堆,每堆2 本;

⑹分给甲、乙、丙3人,其中一人4本,另两人每人1本;

⑺分成3堆,其中一堆4本,另两堆每堆1本.

分析:①分书过程中要分清:是均匀的还是非均匀的;是有序的还是无序的.

②特别是均匀的分法中要注意算法中的重复问题.

解:⑴是指定人应得数量的非均匀问题:①学生甲从6本中取3 本有36C 种取法,②学生

乙从余下的3本中取2本有23C 种取法,③学生丙从余下的1本中取1本有11C 种取法. 所以方法数

为321631C C C =60;

⑵是没有指定人应得数量的非均匀问题:①从6本中取3 本作为一堆有36C 种取法,②从

余下的3本中取2本作为一堆有23C 种取法,③从余下的1本中取1本作为一堆有11C 种取法,④将

三堆依次分给甲乙丙三人有33P 种分法. 所以方法数为33112336P C C C ?=360;

⑶是指定人应得数量的均匀问题:①学生甲从6本中取2本有26C 种取法,②学生乙从余下

的4本中取2本有24C 种取法,③学生丙从余下的2本中取2本有22C 种取法. 所以方法数为

222642C C C =90;

⑷是分堆的非均匀问题:①从6本中取3 本作为一堆有36C 种取法,②从余下的3本中取2

本作为一堆有23C 种取法,③从余下的1本中取1本作为一堆有11C 种取法. 所以方法数为

321631C C C =60;

⑸是分堆的均匀问题:相当于①学生甲从6本中取2本有26C 种取法,②学生乙从余下的4

本中取2本有24C 种取法,③学生丙从余下的2本中取2本有22C 种取法.方法数为222642C C C =90.然

后再取消甲乙丙的分配顺序,故方法数为22236423

C C C A ÷=15;

⑹是部分均匀地分给人的问题:方法数为

4113

6213

2

2

C C C P

A

?

=90;

⑺是部分均匀地分堆的问题:方法数为

411

621

2

2

C C C

A

=15.

以上问题归纳为:

分组(堆)问题有六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分.是排列、组合及其应用基本问题.在历年的各地高考试题中都有体现.

例1 ( 2006年重庆卷理8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()

(A)30种(B)90种(C)180种(D)270种

分析:这是一个有序局部等分问题. 根据题意应先将5名实习教师按(2~2~1)分为三组,然后再将这三组依次安排到高一年级的3个班实习.

解:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5

名教师分成三组,一组1人,另两组都是2人,有

122

542

2

2

15

C C C

A

??

=种方法,再将3组依次分到

3个班有3

36

A=种分法. 根据分步计数原理,共有15690

?=种不同的分配方案,故选B.

点评:没有明确安排各班学校的教师分配数量时,要先将教师分成堆(组)再将各堆依次分配到班学校,简称为“先分组,后到位”;对于局部均匀的分堆(组),先依次选取出来再去掉均匀堆(组)选出的顺序,即除以均匀堆(组)数的全排列.

例2(2007陕西理科第16题)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有210种.(用数字作答)

分析:根据题意应先将3名支教老师按(1~1~1)分为三组或按(2~1)分为两组,然后再将这组依次安排到学校.

解:①将3名支教老师按(1~1~1)分为三组有

111

321

3

3

1

C C C

A

=种分法,再将三组依次分到

学校有3

6120

A=种中分法,根据分步计数原理,共有1×120=120种不同的分配方案;

②将3名支教老师按(2~1)分为两组有21

313

C C=种分法,再将两组依次分到学校有

2 630

A=中分法,根据分步计数原理,共有3×30=90种不同的分配方案.

再由分类计数原理,共有120+90=210种不同的分配方案. 故填210.

点评:分类讨论问题是考试的热点. 本题是将分类与分组问题巧妙的融合在了一起,同时达到考察分类计数原理和分步计数原理的目的.

例3 (2007宁夏理科第16题)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种.(用数字作答)分析:5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,说明必有某一个工厂安排了两个班,其余的3个工厂各有一个班,由于到一个工厂的两个班的“地位”是等同的(无序),不能出现谁先进入谁后进入的局面,也就是说这两个班要同时进入(无序)到这个工厂才可以. 因此应该先分组后到班.

解:由题意,先将5个班分为四组(2~1~1~1)有

2111

5321

3

3

10

C C C C

A

=种分法;再将这四

组依次分配到4个工厂有4

424

A=种分配方法. 根据分步计数原理,共有10×24=240种不同的进行社会实践分配方案. 故填240.

一般地,对于分组(堆)的问题模型,其解题思路及步骤为:①明确每个人的分配数量时,依次选取即可;没有明确安排位置的分配数量时,要先分堆(组)再将各堆依次安排到对应位置,简称为“先分组,后到位”;②非均匀的分堆(组),依次选取出来即可;③均匀的分堆(组),先依次选取出来再去掉选出的顺序,即除以堆(组)数的全排列;④局部均匀的分堆(组),先依次选取出来再去掉均匀堆(组)选出的顺序,即除以均匀堆(组)数的全排列.

排列组合之分堆问题

引例将6本不同的书按下列分法,各有多少种不同的分法?

⑴分给学生甲3 本,学生乙2本,学生丙1本;

⑵分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本;

⑶分给甲、乙、丙3人,每人2本;

⑷分成3堆,一堆3 本,一堆2 本,一堆1 本;

⑸分成3堆,每堆2 本;

⑹分给甲、乙、丙3人,其中一人4本,另两人每人1本;

⑺分成3堆,其中一堆4本,另两堆每堆1本.

分组(堆)问题有六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分.是排列、组合及其应用基本问题.在历年的各地高考试题中都有体现.

例1(2006年重庆卷理8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()

(A)30种(B)90种(C)180种(D)270种

例2(2007陕西理科第16题)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有210种.(用数字作答)

例3(2007宁夏理科第16题)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种.(用数字作答)一般地,对于分组(堆)的问题模型,其解题思路及步骤为:①明确每个人的分配数量时,依次选取即可;没有明确安排位置的分配数量时,要先分堆(组)再将各堆依次安排到对应位置,简称为“先分组,后到位”;②非均匀的分堆(组),依次选取出来即可;③均匀的分堆(组),先依次选取出来再去掉选出的顺序,即除以堆(组)数的全排列;④局部均匀的分堆(组),先依次选取出来再去掉均匀堆(组)选出的顺序,即除以均匀堆(组)数的全排列。

公务员数量关系题型

公务员数量关系题型 排列组合的基本计数原理有两个,加法原理和乘法原理。下面让我们逐一进行解释: 加法原理即分类时采用的计数方法。也就是说,当完成一件事情,分成几类情况时, 把每一类的情况数计算或枚举出来,那么总的情况数,就是所有类的情况数相加。 乘法原理即分步时采用的计数方法。也就是说,当完成一件事情,分成先后几步时, 把每一步的情况数计算或枚举出来,那么总的情况数,就是所有步的情况数相加乘。 那么,何为分类,何为分步?让我们来举例说明。 如果从北京到上海,那么坐飞机可以,坐高铁可以,坐汽车可以,自驾也行,此时称 为分类;如果坐飞机有3个航班合适,坐高铁有4趟高铁合适,坐汽车有2趟都行,自驾 游也有1种路线,那么从北京到上海,所有的方法数就是3+4+2+1=10种方法。 如果从北京到上海,上海到广州,广州再回北京,整个的行程按顺序分成了3个步骤,此时即为分步;如果从北京到上海有3种方法,上海到广州到4条路线,广州再回北京也 有2种方案,那么整个行程,所有的方法数就是3×4×2=24种方法。 我们发现分类与分步,一定是不同的、有区别的,它们的区别就在于:能否独立完成 此事。 第一个例子中,想从北京到上海,飞机、高铁、汽车、自驾,这4类方案,都可以完 成这个行程,即分类当中的每一类,都可以独立完成整个事情。 第二个例子中,北京到上海,上海到广州,广州再回北京,这是完成整个行程的3步,单独拿出任何一步来,比如上海到广州,这1步,并不意味着整个行程就完成了,即分步 当中的任何一步,都不能独立完成此事。 下面来看一个例题,加深对于分类分步的理解: 例题: 某人乘车从家直接到艺术中心有3条路线可选;从家到体育场有4条路线可选,从体 育场到艺术中心有2条路线可选,则他从家到艺术中心共有几种不同的路线? 通过阅读题目,我们可以发现,题目所求的从家到艺术中心,可以分成两类情况:要 么直接到;要么从体育场中转换乘间接到。第一类直接到,有3条路线可选;第二类间接到,需要分成2小步,第一步从家到体育场,第二步从体育场到艺术中心,根据分步相乘,第 二类一共有4×2=8条路线。故一共的路线数=3+8=11种。 一、直线异地多次相遇 甲、乙两人分别从A、B两地同时出发,相向而行,则其相遇过程如下:

排列组合中的区域涂色问题

排列组合中区域涂色问题 排列组合中的区域涂色问题技巧性强,方法灵活多变,一直是选修2-3中的教学难点问题。本文对部分常见区域涂色问题的解题规律做一下探讨。 区域涂色问题,应当从使用多少种颜色入手,分类讨论。再每一类中(若有必要),再根据两个不相邻区域是否同色分小类讨论。最后再根据分类加法计数原理求出所有方法种数。 例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜 分析:当使用4中颜色涂色时,方法种数为4 5A ;当使用3中颜色时,分两类:①④同色或者②④同色,方法种数为3 52A 。可以这样给学生解释:①④同色,相当于①④合并成了一个区域,这样的话原本的四个区域变成了3个区域,故涂色方法种数为35A 。根据分类分类加法原理,所有涂色方法总数为4355 2A A +。 例2、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意,可分为3种颜色或4中颜色两类。 ①当先用三种颜色时,区域2与4必须同色,区域3与5必须同色,(相当于5个区 域合并成了4个区域)故有3 4A 种; ②当用四种颜色时,若区域2与4同色,则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有24 4A 种。最后,由加法原理可知满足题意的着色方法共有34A +244A =24+2?24=72

例3、用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: ①涂四中颜色:四格涂不同的颜色,方法种数为45A ; ②涂三种颜色:有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色, 涂法种数为 12 542C A ; ③涂两种颜色:两组对角小方格分别涂相同的颜色,涂法种数为2 5A , 因此,所求的涂法种数为 2122 55452260A C A A ++= 例4、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据分类加法原理得涂色方法总数为544A =120 例5、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少? 分析:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法? ① ② ③ ④ ⑤ ⑥

行测知识点数量关系汇总【精品】.pdf

数量关系 一、数量思维 1.选项关联:不是填空题 注意观察选项之间的倍数关系。 2.代入排除: 应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。 3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式 整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。 4.特值思想: 数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。 数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。 图形特值:比如特殊的长方形——正方形。 5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇; ②乘除运算:一偶就是偶,双奇才是奇。 二、基础代数公式和方法 1.基础代数公式: 完全平方:(a ±b)2 =a 2 ±2ab +b 2 平方差: a 2 -b 2=(a +b )×(a -b ) 完全立方:(a ±b)3 =a 3 ±3a 2 b +3ab 2 ±b 3 立方和差: a 3 ±b 3 =(a ±b)(a 2 ab +b 2 ) 阶乘: a m ×a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n × b n 2.常用方法: 公式法(记住常用的公式) 因子法(整除特性结合) 放缩法(用于判定计算的整数部分) n 1-n 32=1n!)(?????

构造法 特值法 三、等差数列 1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d 求和公式:s n = =na 1+ n(n-1)d 项数公式:n = +1 等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i 3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 四、等比数列 1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1q n -1 求和公式:s n = (q ≠1) 等比公式:G 2=ab (若a 、G 、b 成等比数列) 2.若m+n =p+q ,则:a m ×a n =a p ×a q 3.a m -a n =(m-n)d =q (m-n) 五、周期问题 一周7天,5个工作日。一年平均365天(52周+1天),闰年366天(52周+2天)。 心竺提醒:闰年:四年一闰,百年不闰,四百年再闰。平年365天,365÷7=52…1 大月31天,小月30天,平月(2月)28或29天。 2 12) (1n a a n +?d a a n 1 -q q a n -11 ·1) -(n m a a

行测数量关系知识点排列组合的“隔板法”

在各类行测所涉及的考试中,排列组合是每年基本会涉及的一个知识点,而这类知识点是需要有一定数学的思维去思考确实有一定的难度,但是好在考法中涉及的知识点中,本篇中公网校所介绍的内容-隔板法是属于排列组合的一种常用方法。 例题1:将20个大小形同的小球放入3个不同的盒子中,并且每个盒子要求要有一个球,有几种方法? 在这类题目中,20个大小球完全相同,即满足的要素相同;盒子不同即分配的对象不同。 1、隔板法的基本模型 当n个完全相同元素放入不同的m中,每个m至少要一个元素n,有几种方法? 注意满足两个要求:1.元素n相同2.对象m不同,且分配完3.每个对象至少要一个。 2、解题思路 类似题目满足有n相同分给不同的m,且必须分完。这类题目即将n个元素排成一排,利用板子进行分配,其中需要分给m个对象,则相当于将n个元素分成m份,需要板子m-1块分配,并且将板子插入在n元素行程的空位任何选n-1空位来放m-1板子。即 C(n-1 m-1). 以上例题有:将20给球放在一排,中有19个空位选2个位置进行插板子则有C19 2=171. 3、常见题型 例题2:现在有30份《人民日报》需要分给3个不同的部门,且要求每个部门至少要拿

一份报纸,最终分配完有几种结果? 【中公参考解析】相当于将30份报纸分成3堆,需要用2个板子进行分配,则有C29 2==1711 21819??例题3:现在有30份《人民日报》需要分给3个不同的部门,且要求A 部门至少要拿一份报纸,B 部门至少要2份,C 部门至少要3份。最终分配完有几种结果? 【中公参考解析】A 部门满足基本一份的模型,B 部门以及C 部门要求较多一些,则想着转化成至少至少要一份,则优先给B 部门1份,C 部门2份。20-3=17,现在题目转化成17报纸给3个不同部门,则有C16 2==1201 21516??例题4:现在有30份《人民日报》需要分给3个不同的部门,部门没有要求至少一份报纸。分配完有几种结果? 【中公参考解析】没有要一份,则转化成要一份的思想:提前向3个部门各借一份则总数多3份为23,即23份报纸给3个不同部门集中情况:C22 2==2311 22122??关注中公网校微信eduoffcncom ,政策问题实时答,考试信息不漏看

最新排列组合经典:涂色问题资料

高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 一.区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1。用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色 方法种数。 例2、四种不同的颜色涂在如图所示的6 个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44 A ; (2 )③与⑤同色、④与⑥同色,则有44 A ; (3)②与⑤同色、③与⑥同色,则有44 A ; (4)③与⑤同色、② 与④同色,则有 44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为54 4A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3 4A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与4不同色,有4 4A 种,故用四种颜色时共有2 44 A 种。由加法原理可知满足题意的着色方法共有 34 A +24 4A =24+2?24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出 两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: (1) 四格涂不同的颜色,方法种数为45A ; (2) 有且仅两个区域相同的颜色, (3) 即只 有一组对角小方格涂相 同的颜色,涂法种数为 12542C A ; 5) 两组对角小方格分别涂相同的颜色,涂法种数为 25A , ① ② ③ ④ ⑤ ⑥

数量关系中排列组合问题的七大解题策略

中公教育研究与辅导专家邹继阳 排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。 一、排列和组合的概念 排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。 二、七大解题策略 1.特殊优先法 特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有() (A) 280种(B)240种(C)180种(D)96种 正确答案:【B】 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。 2.科学分类法 问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。 例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。 A.84 B.98 C.112 D.140 正确答案【D】 解析:按要求:甲、乙不能同时参加分成以下几类: a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;

排列组合经典:涂色问题

排列组合经典:涂色问题

高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 一.区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1。用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号 与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色 方法种数。 例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44 A ; (2)③与⑤同色、④与⑥同色,则有44 A ; (3)②与⑤同色、③与⑥同色,则有44 A ; (4)③与⑤同色、② 与④同色,则有 44 A ;(5)②与④同色、③与⑥同色,则有4 4A ; 所以根据加法原理得涂色方法总数为544A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3 4 A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有 44 A 种;若区域3与5同色,则区域2与4不同色,有4 4A 种,故用四种颜色时共有2 44 A 种。由加法原理可知满足题意的着色方法共有 34 A +24 4A =24+2?24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出 两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: (1) 四格涂不同的颜色,方法种数为45A ; (2) 有且仅两个区域相同的颜色, (3) 即只 有一组对角小方格涂相 同的颜色,涂法种数为 12542C A ; 5) 两组对角小方格分别涂相同的颜色,涂法种数为 25A , ② ① ③ ④ 2 4 3 1 5 ① ②③ ④ ⑤ ⑥ 1 2 3 4

数量关系:排列组合基本方法之优限法

2020年的第一场“大联考”——事业单位联考即将到来,一些考生在考前也许会焦灼:快考试了,备考还有效果吗?答案是:当然有!只要你有方法有策略的学习,一定会有所收获。今天中公教育辅导专家就给大家整理了职测中排列组合的基本方法——优限法。排列组合不仅在事业单位数量关系中考察到,在C 类职测的策略制定中也有所涉及,务必要引起重视。 一、知识铺垫 在排列组合中,对有限制条件的元素或者位置采取优先安排的操作叫做优限法。即优先考虑有限制条件的元素,再去考虑没有限制条件的元素。 例如甲、乙、丙、丁四人参加演讲比赛,甲不在前两出场,其他人没要求,则出场的方法有多少种?此时很明显甲出场方式有限制,那么我们就让甲优先出场,只能从后两个位置中 二、例题 【例题1】学校准备从5名同学中安排3人分别担任亚运会3个不同项目比赛的志愿者,其中张某不能担任射击比赛的志愿者,则不同的安排方法共有()。 A.60种 B.24种 C.48种 D.36种 【答案】C 【中公解析】共有三个项目,射击项目比赛对志愿者有限制要求,其他两类比赛没有,元素有限制要求用优限法。故优先选择射击运动志愿者,共有除小张4种选择,其他两个项

【例题2】用0、1、1、1、2、2、3、4这八个数字,可以组成多少个无重复的八位数? A.2940 B.5880 C.4410 D.3528 【答案】A 【例题3】一生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有: A.24种 B.36种 C.48种 D.72种 【答案】B 以上是排列组合基本方法中的优限法,各位考生也要好好练习,总结规律,以便考试遇到能够从容应对。不再傻傻分不清楚。

解决排列组合中涂色问题的常见方法及策略

解决排列组合中涂色问题的常见方法及策略 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜 色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求 出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ;l (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色, 有44A 种,故用四种颜色时共有24 4A 种。由加法原理可知满足题意的着色方法② ① ③ ④ 2 4 3 1 5 ① ②③ ④ ⑤ ⑥

以真题为例详解国考数量关系排列组合题型

以真题为例详解国考数量关系排列组合题型 排列组合问题在国家公务员考试行政能力测验数量关系专项中经常出现,近几年难度不断加大,题型及其解法也灵活多变。因此很多考生在面对这类问题时,感觉思路混乱,理不清头绪,也不知道如何备考。中公专家通过多年的公考培训实践证明,备考的有效方法是将题型与解法归类,识别模式,熟练应用。同时,还要抓住一些基本策略和方法技巧,排列组合问题便能迎刃而解。下面中公专家给大家介绍几种题型及相应的解题方法策略,希望能助广大考生一臂之力。 一、含有特殊元素或位置的题目,我们可以采用特殊优先法-------所排列或组合的元素或位置有限制,可以优先安排这些特殊的元素或位置,将问题转化为无限制问题,降低题目难度。 例题1:1名老师和6名学生排成一排,要求老师不能站在两端,那么有多少种不同的排法? A.720 B.3600 C.4320 D.7200 【答案】B。解析:本题中特殊元素是老师,特殊位置是两端(即排头和排尾),优先考虑老师的位置。 方法一:考虑特殊元素 这里特殊元素是“老师”,可优先考虑老师,老师在中间5个位置选一个有5种选法,其余的6名同学在6个位置全排列有=720种排法,故共有5×720=3600种。 方法二:考虑特殊位置 这里特殊位置是“排头和排尾”,那优先考虑这两个位置。排头的排法有6种(6个同学任选其一),排尾的排法有5种,剩下五个位置的排法有=120种,故共有 6×5×120=3600种。 二、有些组合排列问题从正面考虑,情况比较复杂,对立面又相对简单,对于这样的题目可以用对立转化法,可直接将问题转化为他的对立面。 例题2:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法? A.240 B.310 C.720 D.1080

排列组合问题之分组分配问题(两个五个方面)(1)

排列组合问题之分组分配问题 (一)(五个方面) 一、非均匀分组(分步组合法) “非均匀分组”是指将所有元素分成元素个数彼此不相等的组。 例1、7人参加义务劳动,按下列方法分组有多少种不同的分法 ①分成3组,分别为1人、2人、4人; ②选出5个人分成2组,一组2人,另一组3人。 解:①先选出1人,有17C 种,再由剩下的6人选出2人,有2 6C 种,最后由剩下的4人为一 组,有44C 种。由分步计数原理得分组方法共有1 2 4 764105C C C =(种)。 % ②可选分同步。先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有3 5C 种,分组方法共有23 75210C C =(种)。也可先选后分。先选出5人,再分为两组,由分步计数原理得分组方法共有523 753210C C C =(种)。 二、均匀分组(去除重复法) “均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。 ㈠全部均匀分组(去除重复法) 例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法 解:可选分同步。先选3人为一组,有37C 种;再选3人为另一组,有3 4C 种。又有2组都 是3人,每22 A 种分法只能算一种,所以不同的分法共有33 74 2 2 70C C A =(种)。 也可先选后分。不同的分法共有33663 7 2 2 70C C C A ?=(种)。 ㈡部分均匀分组(去除重复法) 、 例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法 解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、4 4C 种,又有3堆都是2个 元素,每3 3A 种分法只能算一种,所以不同的分组方法共有 222 4 108643 3 3150C C C C A ?=(种)。 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是 均匀的,都有m m A 种顺序不同的分法只能算一种分法。】 三、编号分组 ㈠非均匀编号分组(分步先组合后排列法) 例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法 解:分组方法共有232 752420C C A =(种)。

巧解数量关系之排列组合题

巧解数量关系之排列组合题 数量关系题目是我们部队文职考试中的一个重要得分点,那么如何把握住这类题目呢?今天图图就数量关系题目中的排列组合类题目给大家做一个分享。在进行作答数量关系中的排列组合题目的时候,需要考大家掌握一个分类分步的思想。也就说先分类再分步是主要思路。分类往往根据有限制的元素来进行,考生在练习题时用这样的思路去思考,相信能够很快掌握。 一、分类分步的解题原理 何为分类分步,简单来说,我要从长沙去北京,完成这样一件事情三类方法:一是坐火车过去,有3趟不同的火车;二是坐汽车过去,有2趟不同的汽车;三是坐飞机过去,有4趟不同的航班,那么我从长沙到北京就一共有3+2+4=9种不同的方法。三类方法每一类都能单独完成从长沙到北京这件事情,所以把每一类的方法数相加,这是分类相加的原理。如果我需要从长沙先到武汉,然后到北京,假设从长沙到武汉有4种方法,从武汉到北京有3种方法,那么总方法数就有4×3=12种。这是分步相乘的原理。其特点是每一步都不能缺少。 二、真题演练 分类分步是相辅相成的,做题的时候一般是先考虑分类再考虑分步。比如说这样一道题:【例1】由1-9组成没有重复数字的三位数共有多少个? A.432 B.504 C.639 D. 720 解析:三维数可以分成个、十、百三步去完成,首先完成个位,可以放任意的数字,一共有9种方法;然后完成十位,因为不能和个位一样,所以去掉个位之后还剩下8个数字,共有8种方法;最后填百位,不能和十位以及个位相同,一共有7种方法。根据分步相乘的原理,总方法数为9×8×7=504种。选择B。 这道题相对来说比较简单,但是再加工一下就变得比较复杂了,如下题: 【例2】由0-9十个数字组成的没有重复数字的三位偶数共有多少个? A. 392 B.432 C.450 D.630 解析:分析一下这道题,题目要求是三位数,那么0这个数字就不能放在百位上了,也就是说百位共有9种方法,而十位可以任意的放置,共有10种方法,个位必须是偶数,只有0、2、4、6 、8这5种方法。但我们不能说有9×10×5 =450 种方法。因为条件要求没有重复数字。按照分类分步的想法,可以分成这两类: ①个位为0,那么此时十位有9中方法,百位有8种方法,分步相乘,共有9×8=72种。

数量关系技巧:排列与组合之加乘原理

数量关系技巧:排列与组合之加乘原理 中公教育研究与辅导专家周璇 排列组合是我们常用的计数工具,在使用这两个计数工具之前,我们首先要弄清加乘原理,相信大家之前都听过一句口诀:分类相加,分步相乘。但是有很多同学在计算的时候经常会混淆两个概念,从而使计算结果出现问题,那中公教育专家接下来就和大家一起来研究如何区分分类与分步。计算过程中是分类还是分步取决于这种方式是否能够直接完成目的:如果能够直接完成目的,记作分类;如果不能直接完成目的,记作分步。那我们接下来通过例题来辨析这两个概念。 【例1】某超市促销,实付满60元的顾客都能获得赠品,赠品包括5种扇子、6种挂件和4种抽纸,可从中选择一个,那么赠品共有多少种选择? A.9 B.11 C.15 D.20 【中公解析】根据题干描述,此题需要完成每位符合条件的顾客获得一件赠品这件事。赠品一共有三种:扇子,挂件和抽纸。这三种赠品数量互不相同,应该相加还是相乘呢?我们从这三种赠品中进行选择,无论是哪一个赠品都可以直接完成顾客获得一件赠品的目的,因此这三种情况为分类,应当分类相加。第一类扇子有5种选择,第二类挂件有6种选择,第三类抽纸有4种选择,那么赠品一共有5+6+4=15种选择,故选择C选项。 【例2】小周记住了自己身份证号码的前14位,但他肯定,后面4个数字全是奇数,最后一个数字是1,且后4个数字中相邻数字不相同,那么小周的身份证号码有()种可能。 A.24 B.27 C.48 D.64 【中公解析】根据题干描述,此题需要完成确定小周后四位身份证号这件事。题目要求这四位数字必须全为奇数且相邻数字不相同。我们可以从1,3,5,7,9这五位奇数当中进行选择。由于第四位已经确定为1,那么只需要确定剩余三位数字即可。这三个数据,每一位数据都有不同的选择,应当相加还是相乘呢?如果只选择第一位或只选择第二位或者只选择第三位,都不能直接完成确定小周后四位身份证号这件事,这三位数字必须全部确定完才可以,因此是分步,应当分步相加。由于第四位数已经确定,那么第三位数据所给条件较多,从第三位开始分析:第一步,确定第三位数据,可以从除了1以外的剩下四个奇数当中进行选择;第二步,确定第二位数据,可以从除了第三位奇数以外的剩下四个奇数中进行选择;

解决排列组合中涂色问题的常见方法及策略

解决排列组合中涂色问题的常见方法及策略 江苏省阜宁中学 刘 佐 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种 颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理 求出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3A 种; ① ②③ ④ ⑤ ⑥

解决排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C ,然后排首位共有14C 最后排其它位置共有34A ,由分步计数原理得113434288C C A = C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

数量关系个常见问题公式

一.页码问题 对多少页出现多少1或2的公式 如果是X千里找几,公式是1000+X00*3如果是X百里找几,就是100+X0*2,X 有多少个0就*多少。依次类推!请注意,要找的数一定要小于X,如果大于X就不要加1000或者100一类的了, 比如,7000页中有多少3就是1000+700*3=3100(个) 20000页中有多少6就是2000*4=8000(个) 友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题 N个人彼此握手,则总握手数 S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2=N×(N-1)/2 例题: 某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有()人 A、16 B、17 C、18 D、19 【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。按照排列组合假设总数为X人则Cx取3=152但是在计算X时却是相当的麻烦。我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际的握手次数是x×(x-3)÷2=152计算的x=19人三,钟表重合公式 钟表几分重合,公式为:x/5=(x+a)/60a时钟前面的格数 四,时钟成角度的问题 设X时时,夹角为30X,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。 1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式) 变式与应用 2.【30X-5.5Y】=A或360-【30X-5.5Y】=A(已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用) 某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b)。 证明:设A、B两地相距S,则 往返总路程2S,往返总共花费时间s/a+s/b 故v=2s/(s/a+s/b)=2ab/(a+b) 六,空心方阵的总数 空心方阵的总数=(最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4 =最外层的每一边的人数^2-(最外层每边人数-2*层数)^2 =每层的边数相加×4-4×层数 空心方阵最外层每边人数=总人数/4/层数+层数 方阵的基本特点:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;

排列组合中分组(分堆)与分配问题

太奇MBA 数学助教 李瑞玲 一.分组(分堆)与分配问题 将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。 将n 个不同元素按照某些条件分成k 组,称为分组问题。分组问题有不平均分组,平均分组,部分平均分组三情况。 分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。对于后者必须先分组后排列。一.基本的分组问题 例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本 (部分平均分组问题) 分析:(1)分组和顺序无关,是组合问题。分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。现把六本不同的书标上 6,5,4,3,2,1六个号码,先看一下这种情况: (1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4) (5,6)(3,4)(1,2) 由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种

情况下这六种分法是同一种分法,于是可知重复了6次。以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组 的顺序,即除以3 3 P ,于是最后知分法为156 90 332 22426==P C C C . (2)先分组,分组方法是603 32516=C C C ,那么还要不要除以33P ???(很 关键的问题) 由于每组的书的本数是不一样的,因此不会出现相同的分法,即 共有60332516=C C C 。 (3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需 要好好考虑) 现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)5 6 (1,2,3,4)6 5 2)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下 5 (1,2,3,4)6 6(1,2,3,4)5 3)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下 5 6(1,2,3,4) 6 5(1,2,3,4) 由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为

行测数量关系易错点之排列组合

行测数量关系易错点之排列组合 2018年国考已近结束,很多考生对于行测当中数量关系反映比较吃力,究其原因主要还是没有掌握行测当中这类问题的解题技巧,基础不够扎实。其中排列组合问题属于各地省考必考高频考点,故在这里结合两道真题,希望对各位备考的小伙伴们有所帮助,尤其是对于这一块一直心存畏惧的广大考生。 1、分步计算原理 解题方法:严格按照分布逻辑,通常我们采用分布相乘的原理。 【例题】某宾馆有6个空房间,3间在一楼,3间在二楼。现有4名客人要入住,每人都住单间,都优先选择一楼房间。问宾馆共有多少种安排方式? A.24 B.36 C.48 D.72 【解析】考查计数问题,属于典型排列组合问题。 根据题意,有先安排一楼的,再安排二楼的,必须分为两个步骤,缺一不可。 所以采用分布原理即可。先安排一楼共有A(4,3),即从4个人选出3个人安排到一楼,那人是不一样的,互换位置结果是不一样的,所以用排列而不是组合。一楼安排完安排二楼,那只剩下一个人,选择二楼一个房间即可,即共有三种方式。 所以,总的结果数为A(4,3)*3=4*3*2*3=72。 2、平均分组问题 解题方法:平均分组当中,不同元素均分问题,直接按照公式计算即可。 【例题】将10名运动员平均分成两组进行对抗赛,问有多少种不同的分法?( ) A.120 B.126 C.240 D252 【解析】考查计数问题,属于典型的排列组合问题。比较特殊地方在于平均分组。 10个人分两组,采用公式先选后除。 C(10,5)*C(5,5)/A(2,2)=126,故选择B选项。 这里的难点在于除这一步,分母是组数的阶乘。具体原理我会在下一个题目对比说明。 3、平均分配问题 解题方法:严格按照分布原理即可,考察队组合数本质的理解。 【例题】某公司销售部拟派3名销售主管和6名销售人员前往3座城市进行市场调研,

排列组合中涂色问题

解决排列组合中涂色问题的常见方法及策略 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种 颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理 求出不同的涂色方法种数。 例2、(2003卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; ① ②③ ④ ⑤ ⑥

相关主题
文本预览
相关文档 最新文档