当前位置:文档之家› 苯并噻吩95-15-8

苯并噻吩95-15-8

苯并噻吩95-15-8
苯并噻吩95-15-8

苯中噻吩含量的色谱测定方法

苯中噻吩含量的色谱测定方法Quick determination method to the degree of polymerization of poly vinyl acetate 马秀东 Ma Xiudong (山西三维集团股份有限公司,山西洪洞,041603) (Shanxi Sanwei Group Co.,Ltd Hongtong, Shanxi Province Zip code:041603) 摘要:本文通过使用配有火焰光度检测器的毛细管柱气相色谱仪,测定精苯中噻吩含量。 关键词:苯噻吩毛细管柱气相色谱仪火焰光度检测器 Abstract: Key words: 1、前言 苯是染料、塑料、合成橡胶、合成树脂、合成纤维、合成药物和农药等的重要原料,也是涂料、橡胶、胶水等的溶剂,也可以作为燃料。工业上主要通过石油裂解和煤焦油的轻油部分提取和分馏得到。以苯为原料生产苯胺和苯乙烯时,苯中噻吩的含量要求不高于0.4ppm和0.1ppm,它苯胺的产率和苯乙烯的催化剂有着非常大的影响。 苯中噻吩含量的测定国家标准(GB/T 14327)采用的是分光光度法,该方法的检测范围是为0.001-0.005g/100mL,远远不能满足苯胺和苯乙烯要求的检测限的要求,另外该方法的测定时间一般需1.5小时,耗时较长,失去了对生产的及时指导意义。 作者简介:马秀东,男,1973年7月生,助理工程师。1996年毕业于雁北师范学院化学系。现就职于山西三维集团丁二醇分厂。 。 2、平均聚合度常规检测方法: 常规平均聚合度的测定方法依照GB7351--87中有关条款进行。 1、原理: 高聚物溶液的粘度与高聚物分子的平均聚合度有一定关系,此关系可用计算式表示,因此可通过高聚物溶液粘度的测定推算其平均聚合度。 2、分析步骤 (1)溶样: 取树脂溶液20g左右,于500ml烧杯中,加甲醇50ml在55~60℃水浴上搅拌,放置15分钟,

脱噻吩精制焦化苯工艺的研究进展(可编辑修改word版)

脱噻吩精制焦化苯工艺的研究进展 谭小耀王祥生 (大连理工大学工业催化剂研究所,大连,116012) 提要概述了从焦化苯中脱除噻吩的工艺方法,比较了它们的优缺 点,并提出了今后的研究方向。 关键词焦化苯,噻吩,脱硫 苯是重要的化工原料,具有十分广泛的工业用途,其主要的来源之 一是煤高温裂解后得到的焦化苯。由于化学工业对苯质量的要求很高, 制取深度净化甚至不含噻吩的合成苯具有越来越重大的意义。我国的焦 化苯资源极为丰富,约占我国苯总产量的 40 %~50 %,但由于含有各种 杂质,特别是硫化物,如 0.2 %~1.6 %(质量分数,下同)的噻吩,0.3 %~0.4 %的二硫化碳等,从而限制了它的进一步深加工利用,它不能直 接用于化工合成,必须预先进行脱硫精制,主要是噻吩的脱除。 根据苯和噻吩的物理化学性质的差异(如表 1 所示),通常可以用萃 取精馏法、冷冻结晶法、吸附分离法等物理方法和催化加氢法、硫酸精 制法以及选择氧化法等化学方法脱除焦化苯中的噻吩。本文就这些焦化 苯精制工艺以及近期的发展状况作一综述。 表 1 苯和噻吩的物理化学性质 1精制方法 1.1吸附分离法 吸附分离法是利用苯与噻吩的分子大小和分子极性的差异来分离脱除焦化苯 中的噻吩。60 年代以来人们对吸附法脱噻吩进行了较多的研究,主要是探索具有 较大吸附容量和高吸附选择性的吸附剂,其中研究较多的是八面沸石分子筛。然而,尽管通常的八面沸石分子筛从烷烃中选择吸附噻吩的容量可达15 %以上,但它对 苯和噻吩却没有吸附选择性,因此不能直接用来脱除苯中的噻吩。相应的,经过 一定的离子交换改性后的X 型和Y 型分子筛,由于加入了某些离子后改进了吸附 剂的孔径大小及分布、表面性质、电场分布、酸碱性、表面自由力以及极性等,因而具有了一定的选择性,如CaX、NiX、CoX 等,其中尤以NiCaX[1]分子筛的吸 附容量最大,当Ni 含量为4.09 %时,其动态吸附量达0.54 mg/g 吸附剂。改性Y 分子筛也具有较优良的选择性吸附能力,其中用于改性的金属离子主要有稀土离子、Cu2+、Ag+、Ni+等,且其选择吸附能力依

【开题报告】苯并噻吩类有机半导体材料结构单元的合成

开题报告 高分子材料与工程 苯并噻吩类有机半导体材料结构单元的合成 一、选题的背景和意义 近年来,有机光电器件以其成本低廉、大面积和可弯曲而被广泛关注,尤其是液晶和有机光电器件等可用于移动电子器件的显示部分。相对于传统的无机半导体材料和碳纳米管,有机材料具有易于通过分子裁剪调控材料性能,器件制备温度低,和柔性基底相容,可用于大面积显示领域等突出优势。尽管目前部分有机半导体材料其光电性能已达到实用化程度,但仍然存在着许多挑战。要想真正实现工业化应用,发展新的性能更好的有机半导体材料仍然是本领域的重要研究内容。 目前报道的有机半导体材料主要是基于芳香苯环和含硫、硒、氮等杂原子的五元芳香杂环形成的大共轭结构体系。通常利用更大的结构单元如萘、蒽、并二噻吩、并三噻吩、苯并噻吩等来合成新型的有机半导体材料。这些芳香环单元以不同的结合形式形成了结构不同、性质各异的半导体材料。其中,苯并噻吩是一类重要的合成结构单元,利用其噻吩环的活性可以合成很多重要的有机半导体材料。然而,当噻吩环的α-位和β-被占用时,苯并噻吩便很难进行修饰。如果在其苯环上引入双甲基,便可以进行多种修饰,用其合成更多的性能优异的有机半导体材料。然而,目前有关二甲基苯并噻吩的合成很少报道,且难以获得,因而限制了其在有机半导体材料合成及光电器件方面的应用。 利用简单的步骤合成二甲基苯并噻吩,将有利于合成更多性能优异的有机半导体材料,从而推动其在有机光电器件方面的应用。 二、研究目标与主要内容(含论文提纲) 研究目标:利用简单的四步反应合成二甲基苯并噻吩。 研究内容:邻二甲苯在低温下双溴化,然后通过比较便宜的2-甲基-2-羟基-3-丁炔进行Sonogashira交联偶合反应,得到带炔醇键的化合物,再在强碱作用下回流脱去端基得到炔化合物,进一步插硫关环得到二甲基苯并噻吩。 三、拟采取的研究方法、研究手段及技术路线、实验方案等

石油苯中痕量噻吩检测技术

石油苯中痕量噻吩的检测技术 李添魁 (化验分析监测中心) 1 前言 苯是染料、塑料、合成橡胶、合成树脂、合成纤维、合成药物和农药等的重要原料, 也是涂料、橡胶、胶粘剂等的溶剂,要求噻酚含量必须很低,如以苯为原料生产苯胺和苯乙烯时,要求苯中噻吩的含量不超过0.4ppm、0.7ppm,否则对苯胺的产率和苯乙烯的催化剂有非常大的影响,有些高端客户对于噻吩指标有较高要求,其含量不得大于0.10 mg/kg,因此准确、快速分析苯中痕量噻吩对控制产品质量起着至关重要的作用。石油苯在2011年10月前产品标准执行GB/T 3405-1989,无噻吩分析指标,自2011年10月之后启用GB/T 3405-2011,新旧产品标准主要区别是增加了一些杂质类组分的分析,尤其在总硫含量的基础上增加了噻吩项目的分析,石油苯-545要求噻吩含量不超过0.6ppm。 在GB/T 3405-2011中规定了石油苯中噻吩测定使用分光光度法(ASTM D 1685)和气相色谱法(ASTM D4735)(PFPD或FPD),且分析方法直接引用ASTM标准,无相应的国内标准或中译版,我厂正在开展石油苯产品质量攻关活动,急需建立石油苯中噻吩检测方法,如何根据自己的实际情况选择适宜的符合要求的分析方法,显得十分重要。下面对苯中痕量噻吩的几种分析方法进行比较分析,以筛选出符合产品标准并适合我厂的分析方法。 2 分光光度法(ASTM D1685) 分光光度法测定原理是苯中噻吩与吲哚醌发生反应,生成可溶于硫酸的蓝色的靛吩咛,进行分光光度法测定,测定范围在0.1-250ppm,因操作繁琐,操作时易引入干扰,条件要求高,在实际操作中能达到的稳定的检测下限为1ppm。测定全过程约需要2 h,检测时间长,实验过程繁琐,并且实验需要使用大量浓硫酸萃取,测定所用的无噻吩苯也需要人工用浓硫酸洗苯,操作危险,同时产生大量废酸污染,不建议采用。 3 气相色谱法 ASTM是一个非盈利性质的国际组织,提供一个拓展和出版非官方意见的标准的论坛。在精炼苯-535中含有1ppm的噻吩,在精炼苯-545中含有0.6ppm的噻吩,ASTM已经出版了两个标准测试方法,ASTM D4735和ASTM D7011,采用配置了硫选择性检测器的气相色谱分析精炼苯中的痕量噻吩。ASTM D4735指定使用火焰光度检测器(PFD)或者脉冲式火焰光度检测器(PFPD),而ASTM D7011允许使用任意一种硫选择性检测器,只要其性能满足规定要求和质控判据。而PFPD是唯一被两个方法都批准使用的硫选择性检测器,但因ASTM D7011方法发布较晚,未被石油苯新标准(GB/T 3405-2011)采用。, 3.1 ASTM D 4735(GC-FPD法+GC-PFPD法) 3.1.1 GC-FPD法 FPD 是一种高选择性、高灵敏度的质量型破坏型检测器,对含S、P化合物具有高选择性和高灵敏度,也称硫磷检测器(见图1)。主要用于痕量硫、磷化合物的检测等。GC-FPD 分析原理是石油苯经色谱柱分离后的噻吩组分进入FPD检测器,在FPD富氢的火焰中燃烧时不同程度地变为碎片或原子,其中的硫形成为激发态的硫二聚物(S*),当其由激发态返回基态时,发射出特征波长的光谱(350-430nm),发光强度与硫化物浓度的平方成正比,通过光电倍增管(PMT)把光信号转换为电信号,得到色谱图,测量噻吩色谱峰的大小可定量分析噻吩含量。典型仪器有美国agilent7890气相色谱仪(配FPD检测器)、日本岛津GC2010气相色谱仪(配FPD检测器)等。

新型汽油脱硫技术的对比

新型汽油脱硫技术的对比 摘要:文章针对两种汽油脱硫新技术:RSDS-Ⅱ选择性加氢脱硫技术和S-Zorb 吸附脱硫技术,从反应机理、技术特点、设备特点各方面逐一对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。 关键词:汽油脱硫对比 1、前言 随着人们环保意识的不断增强,降低汽车尾气污染,改善空气质量,已经成为世界范围内的共识。各国对发动机燃料的组成进行了日趋严格的限制,以降低有害物质的排放。降低汽油中的硫含量将有效的减少汽车尾气中有害物质的排放。2017年10月执行的国V汽油标准要求成品汽油中的硫含量须小于10μg/g。 我国汽油组分将长期以催化裂化汽油为主,其份额占到80%左右。汽油质量升级主要是提高催化裂化汽油的质量,控制汽油中的硫、烯烃、芳烃含量和辛烷值等主要指标,与相应的国际标准接轨。而且我国绝大多数的催化裂化装置为重油和渣油催化裂化,和普通催化裂化相比,汽油中的硫含量更高,汽油脱硫难度更大,开发清洁燃料技术成为当前炼油行业技术创新的重点。 中国炼油企业多年来狠抓科技创新,积极推进以生产清洁燃料为主要目标,针对催化汽油脱硫技术引进和开发了两种新型工艺:(1)一次性买断引进美国康菲公司开发的S-sorb汽油吸附脱硫技术,2007年在燕山分公司建成国内第一套120万吨/年工业化装置;(2)由中石化石油化工科学研究院、洛阳石化工程公司、长岭分公司合作开发的RSDS-Ⅱ汽油选择性加氢脱硫技术,2008年在长岭分公司30万吨/年选择性加氢装置成功进行工业化试验。本文对这两种新工艺的反应机理、技术特点进行介绍、对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。 2、反应机理 为了了解RSDS-Ⅱ加氢脱硫和S-Zorb吸附脱硫这两类催化汽油脱硫工艺的区别,首先从脱硫机理比较。 大部分FCC汽油中的硫主要以四种方式存在,即:硫醇、硫化物(包括线性和立体)、噻吩和苯噻吩;硫醇和硫化物的加氢反应很快,通常在直接脱硫的条件下处于热力学平衡状态;噻吩和苯噻吩的加氢脱硫与烯烃的加氢饱和反应速率

二苯并噻吩类硫化物在非负载型NiMoW催化剂上加氢脱硫反应机理

文章编号:0253?2409(2013)08?0991?07  收稿日期:2013?03?19;修回日期:2013?05?20三  基金项目:国家重点基础研究发展规划(973计划,2010CB 226905)三  联系作者:殷长龙(1973?),男,山东临沭人,博士,从事催化生产清洁油品的研究三E?mail :catgroup @https://www.doczj.com/doc/b815630600.html, 三  本文的英文电子版由Elsevier 出版社在ScienceDirect 上出版(http ://https://www.doczj.com/doc/b815630600.html, /science /journal /18725813)三 二苯并噻吩类硫化物在非负载型NiMoW 催化剂上加氢脱硫反应机理 殷长龙,翟西平,赵蕾艳,刘晨光 (中国石油大学(华东)重质油国家重点实验室CNPC 催化重点实验室,山东青岛 266580) 摘 要:研究了二苯并噻吩(DBT )二4?甲基二苯并噻吩(4?MDBT )和4,6?二甲基二苯并噻吩(4,6?DMDBT )在非负载型NiMoW 催化剂上的加氢脱硫反应产物分布及反应机理,给出了它们在非负载型催化剂上加氢脱硫反应网络三研究发现,由于甲基的空间位阻效应,二苯并噻吩类化合物加氢脱硫转化率顺序为4,6?DMDBT ≈4?MDBT

苯并噻吩和喹啉衍生物的合成研究

苯并噻吩和喹啉衍生物的合成研究 含硫和含氮杂环化合物无论从种类、数量还是用途上,在精细化学品中都有举足轻重的作用。苯并杂环化合物由于具有特殊的共轭结构和独特的生物活性,在化学、生物学、药学、农学和材料科学中都有着广泛应用,因此引起了化学家的广泛关注。 苯并噻吩衍生物是一类重要的含硫苯并杂环化合物,在农药、医药、染料和功能材料等领域有着广泛应用。迄今为止,已经有许多方法用于苯并噻吩骨架的合成,包括α-芳基酮、邻炔基(烯基)苯硫酚和芳基硫醚的分子内环化,苯并噻吩骨架直接官能化以及其他方法。 尽管这些合成策略已经取得了很大进展,但是大都需要合成预官能化的苯硫酚,从而限制了它们在有机合成中的普遍应用。因此,通过简单易得的苯硫酚直接合成苯并噻吩衍生物是一种有效而且实用的方法。 喹啉(又名苯并吡啶)衍生物是一类重要的含氮苯并杂环化合物,因其具有良好的药理活性、生物活性和光学活性而被广泛应用于医药、农药和材料等领域。喹啉骨架结构的经典合成路线是以取代的苯胺、β-二羰基化合物或β-酮酯为原料在强酸性条件下缩合。 然而,该方法反应条件苛刻、官能团耐受性差、区域选择性难以控制,这限制了它们在有机合成中的应用。因此,发展简单、高效、绿色地构建喹啉骨架衍生物的方法具有非常重要的研究意义。 本文主要内容:(1)选用Mes-Acr-Me+作为光敏剂,PhCOOH作为添加剂,CHCl3作为溶剂在氮气氛围室温搅拌下,实现了可见光诱导苯硫酚与丁炔二酸二甲酯串联加成/环化反应,合成了5-甲基苯并[b]噻吩-2,3-

二甲酸甲酯衍生物。(2)选用Mes-Acr-Me+作为光敏 剂,CuCl2作为催化剂,TBHP作为氧化剂,Phen作为配体,DMF作溶剂在氧气氛围室温条件下,实现了可见光诱导邻炔基芳香烯胺分子内氧化环化,制备了4-苯甲酰基-2-苯基-3-甲酸乙酯喹啉衍生物。 (3)选用Ru(bpy)3Cl2作为光敏剂,CuCl作为催化剂,DMF作溶剂在氧气氛围室温条件下,实现了可见光诱导邻炔基苯胺与丁炔二酸二甲酯分子间加成/氧化环化,制备了4-苯甲酰基-2,3-二甲酸甲酯喹啉衍生物。(4)选用Ru(bpy)3Cl2作为光敏 剂,PdCl2和CuCl2作为催化剂,PivOH作为添加剂,Phen 作为配体,DMF作溶剂在氧气氛围室温条件下,实现了邻烯基苯胺与丁炔二酸二甲酯分子间加成/氧化环化,制备了2,3-二甲酸甲酯喹啉衍生物。 (5)选用廉价易得的Cu(OAc)2·H2O作为催化剂,无需额外的配体和碱,实现了一种新的有效的酰胺化8-氨基喹啉与二芳基碘鎓盐的N-芳基化反应,通过螯合辅助作用选择性C-N键交叉偶联反应得到所需的N-芳基-8-氨基喹啉酰胺衍生物。

苯深度脱噻吩吸附剂的研究进展

新材料与新技术 化 工 设 计 通 讯 New Material and New Technology Chemical Engineering Design Communications ·72· 第44卷第6期 2018年6月 以苯为原料部分加氢生产环己烯工艺技术是近年来国内逐渐完善的一项绿色、环保无污染的新技术,以该技术为基础制备己二酸或己内酰胺的技术称为环己烯法己二酸或环己烯法己内酰胺技术。该流程以苯为原料,经过苯部分加氢制环己烯、环己烯水合制环己醇、环己醇脱氢制环己酮、环己酮氨肟化制环己酮肟,环己酮肟重排等工艺,最终得到产品己内酰胺。 苯部分加氢制环己烯工艺技术采用钌锌催化剂,该催化剂对硫非常敏感,苯原料中的含硫杂质是催化剂中毒、失活的重要因素,必须严格控制原料中的硫含量。苯中含硫杂质主要包括无机硫杂质和有机硫杂质,通过加氢脱硫工艺可有效脱除苯中无机硫杂质和简单的有机硫杂质,剩余的为稠环噻吩类含硫化合物及其衍生物。为了保护钌锌催化剂不中毒,工艺设计上要求进入苯部分加氢装置的苯原料中噻吩含量不超过10×10-9。 国标《焦化苯(GB/T 2283—1993)》规定特级焦化苯中每100mL 苯中噻吩含量不大于0.04g ,折合为455×10-6;《石油苯(GB/T 3405—2011)》规定石油苯-545中噻吩含量不大于0.6mg/kg ,折合为0.6×10-6。无论是焦化苯还是石油苯都不能直接作为苯部分加氢制环己烯原料使用。 现有的苯部分加氢装置原料苯预处理工段采用吸附的方式脱除原料中的少量杂质,其中最主要的是原料中的含硫杂质。吸附塔分为两段,一段装填氧化铝小球,一段装填钯吸 附剂。原料苯控制总硫不超过0.5×10-6, 噻吩量不超过0.1×10-6 ,经过吸附塔吸附后,苯中噻吩含量降低至10×10-9以下。虽然目前钯吸附剂已经比较成熟,天辰公司也在实验室成功开发出用于脱噻吩的钯吸附剂,但由于金属钌价格越来越低,而金属钯价格一路攀升,使用钯吸附噻吩以保护钌催化剂已显得不经济。 苯脱噻吩处理过程是环己烯法生产己二酸和己内酰胺原料预处理的必需流程。目前国内环己烯法生产己二酸和己内酰胺的生产装置总产能(以环己醇计)已经超过200万t ,每年更新装填的苯脱噻吩吸附剂超过50t 。50t 吸附剂中贵金属量(按1%计)为500kg ,以当前贵金属价格计算,采购500kg 钯 粉需要资金约为1.17亿元,而采购500kg 钌粉仅需0.11亿元,因此以钌吸附剂代替钯吸附剂成本大大降低。 未来随着国内己内酰胺和己二酸行业的快速增长和己内酰胺、己二酸向国际市场的开拓,国内环己烯法环己醇生产装置总产能有望超过400万t ,以及每年需要更新原料苯噻吩吸附剂超过100t ,因此开发低价的钌基噻吩吸附剂具有广阔的市场。 以三氧化二铝小球负载贵金属吸附剂脱除苯中少量的噻吩是一项成熟的技术。该技术是旭化成公司环己烯法生产环己醇技术的一部分。随着该技术在国内的推广,国内多家公司成功开发了脱硫吸附剂并实现了工业应用。这些公司包括贵研铂业[1-2]、上海盛邦[3]、烟台百川[4]等公司。天辰公司也在实验室开发出了技术水平相当的脱噻吩吸附剂[5]。 目前钯基脱噻吩吸附剂的主要指标为钯含量不低于1%,载体氧化铝小球比表面积(350±20)m 2/g ,堆积密度0.55kg/L 或者0.7kg/L (根据载体不同,堆积密度不同),硫容不低于0.7g/kg 噻吩每千克吸附剂。 近期,贵研铂业和上海盛邦都分别开发出了商业化的钌基脱噻吩吸附剂,其中贵研铂业的SX-301吸附剂的性能指标如表1所示,对外宣称其硫容甚至比钯催化剂还要高。上海盛邦的BDS-300新型脱噻吩吸附剂的主要性能指标如表2所示,其对外宣称该吸附剂的有效硫容高达1.22g/kg ,远超过1%Pd/Al 2O 3的理论硫容0.82g/kg 。其钌含量较高(2%)是高硫容的主要原因。 表1 贵研铂业SX-301吸附剂主要技术指标 项目质量指标检验方法钌金属含量(1±0.02)% 原子吸收法水含量≤2% 干燥法比表面积(330±20)m 2/g 催化剂 氮吸附法氯含量≤100×10-6SH/T0343—1992抗压强度≥30N/颗粒HG/T2782—2011磨损≤0.3%HG/T3927—2007 填充密度(0.7±0.02)kg/L 量筒测量颗粒尺寸直径1.5~2.5mm 千分尺测量 硫容 ≥0.8g/kg (下转第217页) 摘 要:苯是一种重要的化工原料,主要用于生产染料、医药、消毒剂、炸药和人造纤维等。随着有机合成工业的发展,苯在基础化工中的地位越来越重要,需求量也越来越大。同时,苯原料中的杂质特别是含硫杂质的含量要求也越来越严苛。传统的加氢脱硫方法一般用负载W 、Ni 、Mo 为活性组分,氧化铝为载体在高氢油比(150~800)、较高温度(180~350℃)下进行。 这样不仅设备投资大,操作条件高,且苯中的经加氢脱硫后的硫含量最低只能达到10-6 级,难脱除的噻吩仍以杂质的形式存留在苯中。 关键词:苯;噻吩;吸附;研究中图分类号:TQ055.81 文献标志码:B 文章编号:1003–6490(2018)06–0072–02 Research Progress of Benzene Deep Dethiophene Adsorbents Tian Yan-pu Abstract :Benzene is an important chemical raw material ,mainly used in the production of dyes ,medicine ,disinfectants ,explosives and artificial fibers.With the development of organic synthesis industry ,benzene is becoming more and more important in basic chemical industry ,and its demand is also increasing.Meanwhile ,the content of impurities in benzene raw materials ,especially sulfur containing impurities ,is also increasingly demanding.The traditional hydrodesulfurization method usually uses W ,Ni and Mo as active components.Alumina is used as the carrier at high hydrogen oil ratio (150~800)and higher temperature (180~350).This not only has high investment and operating conditions ,but also the lowest sulfur content in benzene can only reach ppm grade ,and the refractory thiophene remains in the form of impurity in benzene. Key words :benzene ;thiophene ;adsorption ;study 苯深度脱噻吩吸附剂的研究进展 田彦普 (福建天辰耀隆新材料有限公司,福建福州?350309) 收稿日期:2018–03–03作者简介: 田彦普(1973—),男,河北辛集人,高级工程师,主要 研究方向为化工新材料开发。

苯并噻吩的常用数据

苯并噻吩(BT)及其衍生物是杂环化合物的重要组成部分。其一般有芳香性,稳定性较高,是较难脱除的一类有机硫,在石油脱硫的研究中占据举足轻重的位置。同时,它们存在各种不同的反应能力,是重要的有机合成中间体,在农药、医药、染料等领域有着重要的应用。 CAS号:95-15-8 产品中文名:苯并噻吩 产品英文名:1-Benzothiophene 别名:硫茚 Title: Thianaphthene CAS Registry Number: 95-15-8 CAS Name: Benzo[b]thiophene Additional Names: benzothiofuran Molecular Formula: C8H6S Molecular Weight: 134.20 Percent Composition: C 71.60%, H 4.51%, S 23.89% Literature References: Occurs in lignite tar. Catalytic synthesis from styrene and hydrogen sulfide: Moore, Greensfelder, J. Am. Chem. Soc. 69, 2008 (1947); from ethyl benzene and hydrogen sulfide: Hansch, Hawthorne, ibid. 70, 2495 (1948). Properties: Leaflets. Odor similar to that of naphthalene. mp 32°; bp760 221°; bp20 103-105°. Volatile with steam. Sol in the usual organic solvents. Melting point: mp 32° Boiling point: bp760 221°; bp20 103-105° Use: Manuf of pharmaceuticals, thioindigo. 网化商城危险提示: 网化商城最新报价:

噻吩脱除方法研究现状与进展

噻吩脱除方法研究现状与进展 苗茂谦上官炬0 前言 噻吩作为一种有机硫广泛存在于焦化苯、石油馏分、液化石油气等液体及焦炉气、天然气、石油加工气和半水煤气等各种工业气体中,其含量相对于其它种类的有机硫低一些。它由于是一种杂原子五元单环化合物,会引起后续工业管道、设备腐蚀,导致催化剂中毒和降低产品质量。因此,脱除噻吩成为脱硫研究者关注的课题。噻吩由于其稳定性高(热解温度在400℃以上),文献称之为非反应性硫,故其脱除难度位于有机硫之首。为了研究开发化工原料气中噻吩的脱除,下面综述了目前国内外噻吩脱除方法研究现状与进展。 1催化加氢法 催化加氢法(HDS )是一种传统脱除有机硫的有效方法,是指有机硫化物在催化剂的作用下与氢发生转化反应,变成容易脱除的硫化氢。用于催化加氢脱硫的催化剂主要有Co-Mo ,Ni-Mp ,Ni-W 三个系列,催化剂载体为具有100~300m 2/g 表面积的Al 2O 3,SiO 2-Al 2O 3,分子筛,MgO 和硅藻土等多孔性材料。其中Co-Mo/Al 2O 3加氢串ZnO 是一种可以同时除去包括噻吩在内各种有机硫的方法。反应温度和压力的提高可以提高加氢活性,因此催化加氢通常都是在高温高压下操作的,典型的操作条件是温度为300~450℃,压力为3~5MPa 。催化加氢法,由于过程需要300℃以上的高温热源,对反应条件和设备要求高,并且催化剂价格昂贵,硫处理成本高,因此适合大型的合成氨厂和炼油厂使用。在实际生产中,低级的硫醇、硫醚、二硫化合物容易加氢脱除,而高级含硫化合物如高级硫醇、噻吩、苯并噻吩等经过催化加氢处理后残留量仍然较高。 催化加氢法的近期研究主要是开发新型的催化剂,以提高脱硫活性,降低反应温度,并提高催化剂的使用寿命。 2硫酸精制法 硫酸精制法也是一种传统方法,硫酸精制法有两种途径,即磺化法和借助不饱和化合物的共聚法。磺化法是最早应用的精制方法,用浓硫酸使噻吩磺化进入酸层而除去,因此操作过程简单,但这一过程将产生被大量的有机杂质污染了的再生酸,由于酸渣难以处理,而且油品和苯的损失大,从而限制了它的应用。 鉴于此,加入不饱和化合物类添加剂,在硫酸的催化作用下噻吩进行烷基化反应生成较重的噻吩衍生物,或者与添加剂反应生成树脂类聚合物,而后洗除或者精馏分离出来,这样可以提高净化度,减少脱硫时间及苯和油品的损失。应用的添加剂主要有醛类、稀烃类、含有不饱和化合物的植物油和动物脂和酚类等。 这些年的发展主要是操作工艺的改进,如采用多段加入添加剂法,或同时加入多种添加剂,这样可以大大降低添加剂和酸的用量。 为了避免硫酸的强腐蚀性,人们也研究了用无水AlCl 3和AlBr 3作催化剂的聚合过程。此外,还有将硫酸固定化工艺的报道,如用硫酸处理过的硅胶和通过硫酸活化后的蒙脱土,它们本质上仍然是利用噻酚与硫酸的反应,产物被吸附在硅胶和蒙脱土上。 3萃取脱硫 萃取脱硫的基本原理是在一个合适的溶剂中,有机硫化物的溶解性较烃类更高,硫化合物能从燃料油(太原理工大学煤化工研究所 030006) 山西科灵催化净化技术发展公司

苯并噻吩

苯并噻吩 基本信息 中文名称苯并噻吩分类化学 外文名称Benzothiophene分子式C8H6S 简介:白色叶片状结晶。有萘样气味。能随水蒸气 苯并噻吩(BT)及其衍生物是杂环化合物的重要组成部分。其一般有芳香性,稳定性较高,是较难脱除的一类有机硫,在石油脱硫的研究中占据举足轻重的位置。同时,它们存在各种不同的反应能力,是重要的有机合成中间体,在农药、医药、染料等领域有着重要的应用。 物理性状 1. 性状:白色叶片状结晶。有萘样气味。能随水蒸气挥发。 2. 密度(g/mL,25/4℃):1.1484 3. 相对蒸汽密度(g/mL,空气=1):未确定 4. 熔点(oC):32 5. 沸点(oC,常压):221 6. 沸点(oC,5.2kPa):未确定 7. 折射率:1.6374 8溶解性:易溶于乙醇,溶于乙醚、丙酮和一般有机溶剂,不溶于水。溶于浓硫酸呈樱桃红色,加热后消失。

存储方法 密封于阴凉、干燥处保存。确保工作间有良好的通风设施。密封保存。远离火源,储存的地方远离氧化剂。 合成方法 工业上主要由粗萘中提取。也可用苯乙烯或乙苯与硫化氢合成或由噻吩和苯环缩合制得。 苯并噻吩衍生物: (1)3-甲醛苯并噻吩: 英文名称:Benzo[b]thiophenc-3-carboxaldehyde,分子式:C9H6OS;CAS[5381-20-4],常温下为淡黄色或类白色固体,熔点57~59℃。用于制备俘精酸酐类、杂环丙酮类、叠氮乙烯基苯并噻唑类、N-羟基脲、B-杂环-氨基酸类、吡碇并喹喔啉等化合物,用作光致变色材料、抗肿瘤剂a2肾上腺素能激动剂、LEA-1拮抗剂、Pab1抑制剂、抗癫痫药、抗病毒剂、PTPs抑制剂和抗菌剂等。 是一种很重要的医药中间体,市场需求量大,且需求面广,目前主要是国外需求量较大,国内市场也逐渐有需求,现在开发该产品正是时候,开发潜力较大 (2)二苯并噻吩:

芳烃装置苯产品硫含量超标分析与对策

175 CPCI 中国石油和化工 能源与环保芳烃装置苯产品硫含量超标分析与对策 马 杰1 唐绍泉2 (1.独石化公司炼油厂重整加氢联合车间;2.独石化公司炼油厂技术处 新疆独山子 833600) 摘 要:自2015年8月底以来,芳烃装置苯硫含量分析出现多次超标。通过对各影响因素分析,排查发现重整生成油中噻吩富集,是造成苯产品硫含量多次超标的主要原因。 关键词:苯产品 硫含量超标 噻吩 1 苯产品硫含量超标的情况及原因分析 1.1 超标情况 自2015年8月开始,某公司芳烃装置分离单元苯产品馏出口出现多次硫含量超标的情况,硫含量超过厂部内控指标不大于0.5mg/kg 的要求。为保证苯成品的质量合格,车间将苯切回原料回炼。装置苯产品硫含量频繁超标,9月初苯产品硫含量连续超标,最高达到2mg/kg ,导致车间三苯产品无法正常生产,苯产品内部循环,无法及时回炼,影响到厂部物料平衡 1.2 原因分析排查 根据前期硫含量超标的原因和影响因素,从操作调整和原料性质几个方面进行了原因分析排查。 (1)装置操作波动原因 芳烃装置采用环丁砜液-液抽提技术,其三苯产品可能因为带水二带由少量的环丁砜,引起硫含量超标。抽提蒸馏单元的苯产品,车间为保证纯度和硫含量合格,将其作为分离三苯的原料进入分析单元,重新回炼分离;前期出现过,抽提蒸馏单元苯产品带有少量的环丁砜,引起装置苯馏出口硫含量超标的情况。 为此将抽提蒸馏单元苯硫含量作为正常样品进行监控,此次苯馏出口超标过程中,未发现抽提蒸馏苯硫含量高的情况,且抽提蒸馏单元操作平稳,未出现异常和波动。发现作为分离进料的抽提油硫含量上升,根据对前期芳烃抽余油硫含量调整试验数据得出抽提油硫含量上升原因可能为夹带溶剂或溶剂降解物,造成苯硫含量超标。 对应的调整:提高溶剂回收塔的精馏强度,对抽提水循环系统置换,提高抽提水洗水量等,经过调整,抽提油硫含量略有下降,无明显效果,抽提油硫含量最高达4.7 mg/kg , 抽提油硫含量仍在1.0 mg/kg 以上,苯硫含量在1.0 mg/kg 以上,可以判断并非操作波动引起超标。 (2)原料硫含量影响 从苯产品硫含量超标后,装置操作调整情况可以看出,芳烃装置溶剂回收塔和分离苯塔操作调整,可以判断苯中硫的性质和苯的性质接近。车间判断可能为噻吩含量上升,造成苯硫含量超标。联系化验室做苯中噻吩分析,分析结果为噻吩含量2.54mg/kg ,连续监测三点,噻吩含量均超过2.0mg/kg ,可以确定芳烃产品苯硫含量超标主要原因是噻吩含量超。 芳烃装置生产过程中,不产生噻吩类物质,芳烃三苯生产原料为重整生成油和乙烯裂解汽油,为判断噻吩来源。车间联系厂部,将抽提蒸馏单元(原料为乙烯裂解汽油)改循环。芳烃抽提单元全部加工经过预处理的重整生成油。为防止原料罐中组分对判断造成影响,芳烃装置进料全部改为重整给芳烃原料直供。调整后,苯产品噻吩含量持续增加,从2.54 mg/kg 上升到4.14 mg/kg ,据此判断苯中噻吩为重整生成油带入。 1.3 重整生成油中噻吩来源分析(1)重整生成油噻吩分析 针对重整生成油中噻吩引起芳烃装置苯产品硫含量超标,为查明重整油中噻吩的来源,对重整精制油和生成油进行了对比分析。对重整生成油、重整预分馏精制油中总硫进行分析,油品中硫含量控制均在0.5mg/kg 以下,符合操作控制指标要求。对重整生成油的 噻吩分析中,噻吩含量<0.5mg/kg 。 重整生成油中噻吩含量较小,但噻吩与苯馏程接近分析,普通的蒸馏方法无法分离。噻吩随重整生产油进入芳烃装置,进过预处理、抽提和分离逐渐浓缩,最终在苯产品中表现出来。重整生成油中苯含量基本在9~11%,到合格的苯产品浓缩接近8~10倍。微量的噻吩经过大幅浓缩后进入苯产品中,最终导致苯产品硫含量超标。 将重整原料由掺炼直馏石脑油30%的混合原料改为重整装置开工料,其硫含量<0.5mg/kg 。开工料加工完,重整混合原料中不掺炼直馏石脑油,只加工加氢裂化石脑油和乙烯芳烃装置抽余油混合料。10日后因重整原料量不足,重整原料中掺炼10%直馏石脑油。 重整原料更换开工油后,苯硫含量由1.6mg/kg 下降至0.5mg/kg ,下降明显;8日重整原料更换为混合料时,苯产品硫含量维持0.5mg/kg ,最后直馏石脑油掺炼比例<10% 的混合原料时,芳烃苯硫含量上升至0.7mg/kg ,基本保持平稳。可以看出直馏石脑油的掺炼量影响芳烃苯产品硫含量。(3)预加氢氢气影响 车间在操作调整过程中,发现7月以来苯成品分析中噻吩含量由0.10mg/kg 左右上升到0.6~0.7mg/kg ,上升幅度较大,但总硫含量均<0.5mg/kg 。考虑为回收重整氢气,7月以来将排瓦斯管网的多余的重整氢气经过汽油加氢装置胺液脱硫水洗后改入重整再接触系统,部分利用,部分送去厂部氢气回收。 装置停止回收脱硫后的氢气,直接改入瓦斯管网,苯硫含量维持在0.5mg/kg 。开始重整原料直馏石脑油掺炼量逐渐提高到45%,苯硫含量维持稳定。车间重新回收 脱硫后的重整氢气约2200Nm 3/h (前期回收量约为5000Nm 3/h ) ,芳烃苯中硫含量上无明显变化,但噻吩含量有0.1mg/kg 上升至0.6mg/kg 。停止回收氢气后,苯中噻吩含量降低至0.1mg/kg 。氢气是造成芳烃苯产品超标的直接原因。 3 实际对策 将富余汽油加氢装置脱硫、水洗后的氢气改出重整再接触系统,减少回收氢气量。停止回收脱硫后氢气,从根本上防止了噻吩形成的问题,但将大量的富余氢气做为燃料,造成资源的浪费。在保证芳烃苯噻吩含量≯0.7mg/kg 时,可以回收氢气最大量约2400Nm 3/h 。在停止富余脱硫氢气回收后,芳烃苯中噻吩含量可降低到0.2mg/kg 以下,保证产品硫含量合格。 根据物料平衡情况,降低重整原料中高硫直馏石脑油的掺炼量。在重整原料中直馏石脑油的掺炼量<15%的条件下,可以进行富余氢气回收;超过掺炼比,应降低或停止富余氢气回收,确保产品质量合格。 改进氢气回收方式,提高氢气回收率。重整氢气膜分离系统投用后,重整氢经膜提纯后,并入系统,措施实施后,芳烃苯硫含量一直保持合格。 4 结论 以上看出,重整回收富余脱硫氢气中的微量的胺含量以及过高的重整原料中掺炼高硫直馏石脑油的比例,可以加速油品中噻吩的形成,从而影响芳烃装置苯产品质量。有效控制富余氢气的回收量,改进氢气回收方式可以从根本上保证芳烃装置苯产品硫含量合格。

相关主题
文本预览
相关文档 最新文档