当前位置:文档之家› 苯并噻吩和喹啉衍生物的合成研究

苯并噻吩和喹啉衍生物的合成研究

苯并噻吩和喹啉衍生物的合成研究
苯并噻吩和喹啉衍生物的合成研究

苯并噻吩和喹啉衍生物的合成研究

含硫和含氮杂环化合物无论从种类、数量还是用途上,在精细化学品中都有举足轻重的作用。苯并杂环化合物由于具有特殊的共轭结构和独特的生物活性,在化学、生物学、药学、农学和材料科学中都有着广泛应用,因此引起了化学家的广泛关注。

苯并噻吩衍生物是一类重要的含硫苯并杂环化合物,在农药、医药、染料和功能材料等领域有着广泛应用。迄今为止,已经有许多方法用于苯并噻吩骨架的合成,包括α-芳基酮、邻炔基(烯基)苯硫酚和芳基硫醚的分子内环化,苯并噻吩骨架直接官能化以及其他方法。

尽管这些合成策略已经取得了很大进展,但是大都需要合成预官能化的苯硫酚,从而限制了它们在有机合成中的普遍应用。因此,通过简单易得的苯硫酚直接合成苯并噻吩衍生物是一种有效而且实用的方法。

喹啉(又名苯并吡啶)衍生物是一类重要的含氮苯并杂环化合物,因其具有良好的药理活性、生物活性和光学活性而被广泛应用于医药、农药和材料等领域。喹啉骨架结构的经典合成路线是以取代的苯胺、β-二羰基化合物或β-酮酯为原料在强酸性条件下缩合。

然而,该方法反应条件苛刻、官能团耐受性差、区域选择性难以控制,这限制了它们在有机合成中的应用。因此,发展简单、高效、绿色地构建喹啉骨架衍生物的方法具有非常重要的研究意义。

本文主要内容:(1)选用Mes-Acr-Me+作为光敏剂,PhCOOH作为添加剂,CHCl3作为溶剂在氮气氛围室温搅拌下,实现了可见光诱导苯硫酚与丁炔二酸二甲酯串联加成/环化反应,合成了5-甲基苯并[b]噻吩-2,3-

二甲酸甲酯衍生物。(2)选用Mes-Acr-Me+作为光敏

剂,CuCl2作为催化剂,TBHP作为氧化剂,Phen作为配体,DMF作溶剂在氧气氛围室温条件下,实现了可见光诱导邻炔基芳香烯胺分子内氧化环化,制备了4-苯甲酰基-2-苯基-3-甲酸乙酯喹啉衍生物。

(3)选用Ru(bpy)3Cl2作为光敏剂,CuCl作为催化剂,DMF作溶剂在氧气氛围室温条件下,实现了可见光诱导邻炔基苯胺与丁炔二酸二甲酯分子间加成/氧化环化,制备了4-苯甲酰基-2,3-二甲酸甲酯喹啉衍生物。(4)选用Ru(bpy)3Cl2作为光敏

剂,PdCl2和CuCl2作为催化剂,PivOH作为添加剂,Phen 作为配体,DMF作溶剂在氧气氛围室温条件下,实现了邻烯基苯胺与丁炔二酸二甲酯分子间加成/氧化环化,制备了2,3-二甲酸甲酯喹啉衍生物。

(5)选用廉价易得的Cu(OAc)2·H2O作为催化剂,无需额外的配体和碱,实现了一种新的有效的酰胺化8-氨基喹啉与二芳基碘鎓盐的N-芳基化反应,通过螯合辅助作用选择性C-N键交叉偶联反应得到所需的N-芳基-8-氨基喹啉酰胺衍生物。

苯中噻吩含量的色谱测定方法

苯中噻吩含量的色谱测定方法Quick determination method to the degree of polymerization of poly vinyl acetate 马秀东 Ma Xiudong (山西三维集团股份有限公司,山西洪洞,041603) (Shanxi Sanwei Group Co.,Ltd Hongtong, Shanxi Province Zip code:041603) 摘要:本文通过使用配有火焰光度检测器的毛细管柱气相色谱仪,测定精苯中噻吩含量。 关键词:苯噻吩毛细管柱气相色谱仪火焰光度检测器 Abstract: Key words: 1、前言 苯是染料、塑料、合成橡胶、合成树脂、合成纤维、合成药物和农药等的重要原料,也是涂料、橡胶、胶水等的溶剂,也可以作为燃料。工业上主要通过石油裂解和煤焦油的轻油部分提取和分馏得到。以苯为原料生产苯胺和苯乙烯时,苯中噻吩的含量要求不高于0.4ppm和0.1ppm,它苯胺的产率和苯乙烯的催化剂有着非常大的影响。 苯中噻吩含量的测定国家标准(GB/T 14327)采用的是分光光度法,该方法的检测范围是为0.001-0.005g/100mL,远远不能满足苯胺和苯乙烯要求的检测限的要求,另外该方法的测定时间一般需1.5小时,耗时较长,失去了对生产的及时指导意义。 作者简介:马秀东,男,1973年7月生,助理工程师。1996年毕业于雁北师范学院化学系。现就职于山西三维集团丁二醇分厂。 。 2、平均聚合度常规检测方法: 常规平均聚合度的测定方法依照GB7351--87中有关条款进行。 1、原理: 高聚物溶液的粘度与高聚物分子的平均聚合度有一定关系,此关系可用计算式表示,因此可通过高聚物溶液粘度的测定推算其平均聚合度。 2、分析步骤 (1)溶样: 取树脂溶液20g左右,于500ml烧杯中,加甲醇50ml在55~60℃水浴上搅拌,放置15分钟,

苯乙酮性质、用途及生产工艺

苯乙酮的特性、用途与生产工艺 概述: 苯乙酮,又称乙酰苯,沸点(℃):,相对密度(水=1):(20℃) ,相对蒸气密度(空气=1):,是最简单的芳香酮,其中芳核(苯环)直接与羰基相连。以游离状态存在于一些植物的香精油中。纯品为无色晶体。市售商品多为浅黄色油状液体。有像山楂的香气。微溶于水、易溶于多种有机溶剂,能与蒸气一同挥发。 苯乙酮分子结构:甲基C原子以sp3杂化轨道成键,苯环和羰基C原子以sp2杂化轨道成键。苯乙酮能发生羰基的加成反应、α活泼氢的反应,还可发生苯环上的亲电取代反应,主要生成间位产物。 苯乙酮可在三氯化铝催化下由苯与乙酰氯、乙酸酐或乙酸反应制取。另外,由乙苯催化氧化为苯乙烯时,苯乙酮为副产物。 苯乙酮主要用作制药及其他有机合成的原料,也用于配制香料。用于制香皂和香烟,也可用做纤维素醚,纤维素酯和树脂等的溶剂以及塑料的增塑剂,有催眠性。现在苯乙酮大多以异丙苯氧化制苯酚和丙酮的副产品获得,它还可由苯用乙酰氯乙酰化制得。 苯乙酮的制备: 【仪器及药品】 药品:乙酸酐苯硫酸镁盐酸氯化铝氢氧化钠 仪器:圆底烧瓶冷凝管滴液漏斗蒸馏装置干燥管搅拌装置 【操作步骤】 向装有10ml恒压滴液漏斗、机械搅拌装置和回流冷凝管(上端通过一氯化钙干燥管与氯化氢气体吸收装置相连)的100ml三颈烧瓶中迅速加入13g()粉状无水三氯化铝和16ml(约14g,无水苯。在搅拌下将4ml(约,)乙酐自滴液漏斗慢慢滴加到三颈烧瓶中(先加几滴,待反应发生后在继续滴加),控制乙酐的滴加速度以使三颈烧瓶稍热为宜。加完后(约10min),待反应稍和缓后在沸水浴中搅拌回流,直到不再有氯化氢气体逸出为止。将反应混合物冷到室温,在搅拌下倒入18ml浓盐酸和30g碎冰的烧杯中(在通风橱中进行),若仍有固体不溶物,可补加适量浓盐酸使之完全溶解。将混合物转入分液漏斗中,分出有机层(哪一层),水层用苯萃取两次(每次8ml)。合并有机层,依次用15ml10%氢氧化钠、15ml水洗涤,再用无水硫酸镁干燥。先在水浴上蒸馏回收苯,然后在石棉网上加热蒸去残留的苯,稍冷后改用空气冷凝管(为什么)蒸馏收集195~202℃馏分,产量约为(产率85%)。纯苯乙酮为无色透明油状液体。 【注意事项】 1,滴加苯乙酮和乙酐混合物的时间以10min为宜,滴的太快温度不易控

脱噻吩精制焦化苯工艺的研究进展(可编辑修改word版)

脱噻吩精制焦化苯工艺的研究进展 谭小耀王祥生 (大连理工大学工业催化剂研究所,大连,116012) 提要概述了从焦化苯中脱除噻吩的工艺方法,比较了它们的优缺 点,并提出了今后的研究方向。 关键词焦化苯,噻吩,脱硫 苯是重要的化工原料,具有十分广泛的工业用途,其主要的来源之 一是煤高温裂解后得到的焦化苯。由于化学工业对苯质量的要求很高, 制取深度净化甚至不含噻吩的合成苯具有越来越重大的意义。我国的焦 化苯资源极为丰富,约占我国苯总产量的 40 %~50 %,但由于含有各种 杂质,特别是硫化物,如 0.2 %~1.6 %(质量分数,下同)的噻吩,0.3 %~0.4 %的二硫化碳等,从而限制了它的进一步深加工利用,它不能直 接用于化工合成,必须预先进行脱硫精制,主要是噻吩的脱除。 根据苯和噻吩的物理化学性质的差异(如表 1 所示),通常可以用萃 取精馏法、冷冻结晶法、吸附分离法等物理方法和催化加氢法、硫酸精 制法以及选择氧化法等化学方法脱除焦化苯中的噻吩。本文就这些焦化 苯精制工艺以及近期的发展状况作一综述。 表 1 苯和噻吩的物理化学性质 1精制方法 1.1吸附分离法 吸附分离法是利用苯与噻吩的分子大小和分子极性的差异来分离脱除焦化苯 中的噻吩。60 年代以来人们对吸附法脱噻吩进行了较多的研究,主要是探索具有 较大吸附容量和高吸附选择性的吸附剂,其中研究较多的是八面沸石分子筛。然而,尽管通常的八面沸石分子筛从烷烃中选择吸附噻吩的容量可达15 %以上,但它对 苯和噻吩却没有吸附选择性,因此不能直接用来脱除苯中的噻吩。相应的,经过 一定的离子交换改性后的X 型和Y 型分子筛,由于加入了某些离子后改进了吸附 剂的孔径大小及分布、表面性质、电场分布、酸碱性、表面自由力以及极性等,因而具有了一定的选择性,如CaX、NiX、CoX 等,其中尤以NiCaX[1]分子筛的吸 附容量最大,当Ni 含量为4.09 %时,其动态吸附量达0.54 mg/g 吸附剂。改性Y 分子筛也具有较优良的选择性吸附能力,其中用于改性的金属离子主要有稀土离子、Cu2+、Ag+、Ni+等,且其选择吸附能力依

对甲苯乙酮的制备

对甲苯乙酮的制备 作者:xxx 学号:xxx 摘要:以甲苯和乙酸酐为原料,无水氯化铝为催化剂,制备对甲基苯乙酮。在实验过程中,要求掌握实验室中利用Friedel Crafts酰基化制备对甲基苯乙酮的原理和方法。同时要求掌握带有气体吸收装置的加热回流等基本操作,学会控制无水的反应条件。 关键词:对甲苯乙酮、傅克酰基化反应、乙酸酐、尾气吸收 The preparation of toluene Acetophenone Author: xxx Number: xxx Abstract: Toluene and acetic anhydride is as raw materials,Anhydrous aluminium chloride is as catalyst to preparate for methyl acetophenone. In the experimental process, we require to master the principle and method of preparing methyl acetophenone using Friedel Crafts acyl laboratory. At the same time,we require to master with gas absorption heating reflux device and other basic operations,to learn to control the anhydrous reaction conditions. Keywords: absorption of toluene acetophenone, Friedel Crafts acylation reaction,acetic anhydride, tail gas 对甲基苯乙酮为无色略带黄色的透明液体,在稍低的温度下凝固,具有山楂子花的芳香及紫苜蓿、蜂蜜和香豆素的香味,且香气较苯乙酮较为柔和,极度稀释后有及草莓似的甜香味。对甲基苯乙酮的沸点为226度,熔点为28度,密度为1.0051,折射率为1.5335,闪点为92度,易溶于乙醇、乙醚、氯仿和丙二醇等,几乎不溶于水和甘油。对甲基苯乙酮有毒,应避免吸入对甲基苯乙酮的蒸气,避免与眼睛、皮肤接触,其存在于烤烟烟叶、白肋烟烟叶、香料烟烟叶、烟气中。天然存在于可可、黑醋栗、玫瑰木油、巴西檀木油、西藏柏木油、芳樟油,以及含羞草中。制备对甲基苯乙酮主要是采用乙酰化法,以甲苯和醋酸酐为原料,在无水三氧化铝催化剂存在下,进行乙酰化反应,然后冰解、中和、水洗、分离、蒸馏而得。也可以从巴西檀香木、玫瑰木等天然原料中经精馏提取而得。对甲基苯乙酮常用于调和花精油,也用于香皂及草莓等水果味香料的制造。对甲基苯乙酮也常用于烘烤食品、糖果、布丁,可用于日化香精和食用香精的配方中。 1.结果与讨论 1.1.实验装置的选取

【开题报告】苯并噻吩类有机半导体材料结构单元的合成

开题报告 高分子材料与工程 苯并噻吩类有机半导体材料结构单元的合成 一、选题的背景和意义 近年来,有机光电器件以其成本低廉、大面积和可弯曲而被广泛关注,尤其是液晶和有机光电器件等可用于移动电子器件的显示部分。相对于传统的无机半导体材料和碳纳米管,有机材料具有易于通过分子裁剪调控材料性能,器件制备温度低,和柔性基底相容,可用于大面积显示领域等突出优势。尽管目前部分有机半导体材料其光电性能已达到实用化程度,但仍然存在着许多挑战。要想真正实现工业化应用,发展新的性能更好的有机半导体材料仍然是本领域的重要研究内容。 目前报道的有机半导体材料主要是基于芳香苯环和含硫、硒、氮等杂原子的五元芳香杂环形成的大共轭结构体系。通常利用更大的结构单元如萘、蒽、并二噻吩、并三噻吩、苯并噻吩等来合成新型的有机半导体材料。这些芳香环单元以不同的结合形式形成了结构不同、性质各异的半导体材料。其中,苯并噻吩是一类重要的合成结构单元,利用其噻吩环的活性可以合成很多重要的有机半导体材料。然而,当噻吩环的α-位和β-被占用时,苯并噻吩便很难进行修饰。如果在其苯环上引入双甲基,便可以进行多种修饰,用其合成更多的性能优异的有机半导体材料。然而,目前有关二甲基苯并噻吩的合成很少报道,且难以获得,因而限制了其在有机半导体材料合成及光电器件方面的应用。 利用简单的步骤合成二甲基苯并噻吩,将有利于合成更多性能优异的有机半导体材料,从而推动其在有机光电器件方面的应用。 二、研究目标与主要内容(含论文提纲) 研究目标:利用简单的四步反应合成二甲基苯并噻吩。 研究内容:邻二甲苯在低温下双溴化,然后通过比较便宜的2-甲基-2-羟基-3-丁炔进行Sonogashira交联偶合反应,得到带炔醇键的化合物,再在强碱作用下回流脱去端基得到炔化合物,进一步插硫关环得到二甲基苯并噻吩。 三、拟采取的研究方法、研究手段及技术路线、实验方案等

对硝基α氨基苯乙酮盐酸盐的车间生产工艺规程

对硝基-α-氨基苯乙酮盐酸盐的车间生 产工艺规程 目录 1.产品概述............................... 错误!未指定书签。 1.1化学名称.......................... 错误!未指定书签。 1.2产品化学结构...................... 错误!未指定书签。 1.3质量标准及检验方法................ 错误!未指定书签。 1.4临床用途:有机合成中间体,是制造合霉素和氯霉素等医药的 原料 ................................. 错误!未指定书签。 1.5包装规格要求及贮藏................ 错误!未指定书签。 2.设计原理............................... 错误!未指定书签。 2.1工艺路线选择...................... 错误!未指定书签。 2.2设备选型和材质选用................ 错误!未指定书签。 2.3设计范围.......................... 错误!未指定书签。

3.反应过程............................... 错误!未指定书签。 3.1反应机理.......................... 错误!未指定书签。4.生产方法及工艺规程.................... 错误!未指定书签。 4.1生产.............................. 错误!未指定书签。 4.1.1设计采用原料................. 错误!未指定书签。 4.1.2生产工艺路线................. 错误!未指定书签。 4.2化学反应式........................ 错误!未指定书签。 5.生产工艺工程........................... 错误!未指定书签。 5.1原料配比.......................... 错误!未指定书签。 5.2主要工艺条件及详细操作过程........ 错误!未指定书签。 5.3工艺过程简图...................... 错误!未指定书签。 5.4异常现象的处理和有关注意事项...... 错误!未指定书签。 5.5重点工艺控制点.................... 错误!未指定书签。6中间体和成品的质量标准和检查方法........ 错误!未指定书签。 6.1生产中间体控制项目................ 错误!未指定书签。 6.2?成品出厂质量标准.................. 错误!未指定书签。 7.主要设备选择........................... 错误!未指定书签。 7.1设备选型及选材.................... 错误!未指定书签。 7.1.1反应器的选择................. 错误!未指定书签。 7.1.2塔设备的选择................. 错误!未指定书签。 7.1.3换热器的选择................. 错误!未指定书签。 8.生产分析............................... 错误!未指定书签。

年产5000吨乙酰苯胺的车间生产工艺设计.

目录 课程设计任务书1份(1页)课程设计说明书1份(39页)计算机绘图图纸1套(2张)

课程设计任务书

退热冰[1]即乙酰苯胺,学名N-苯(基)乙酰胺,白色有光泽片状结晶或白色结晶粉末,是磺胺类药物的原料,可用作止痛剂、退热剂、防腐剂和染料中间体,由苯胺和冰醋酸通过酰化反应[2]制得。 关键词:退热冰;乙酰苯胺;生产;车间设计

摘要 (i) 1.设计说明 (1) 1.1 概述 (1) 1.2 设计依据 (1) 1.2.1 依据 (1) 1.2.2 主要技术资料 (1) 1.3 设计范围 (2) 1.4 设计原则 (2) 2.产品简介 (3) 3.化学原理及酰化工艺规程 (4) 3.1 化学反应原理 (4) 3.2 乙酰苯胺工艺酰化过程说明 (4) 3.2.1 酰化岗位操作法 (4) 3.2.2 制片岗位操作法 (6) 3.2.3 泵房岗位操作法 (7) 4.工艺流程示意图 (10) 5.物料衡算、能量衡算及设备的计算选型 (11) 5.1 物料衡算 (11) 5.1.1 概述 (11) 5.1.2 乙酰化过程的物料衡算 (12) 合计:9183.56 (14) 合计:9183.56 (14) 5.1.3 减压蒸馏岗的物料衡算 (14) 5.2 能量衡算 (16) 5.2.1 概述 (16) 5.2.2 热量衡算计算 (17) 5.2.3 比热的计算 (18) 5.2.4 酰化反应热量衡算 (19) 5.2.5 减压蒸馏热量衡算 (20) 5.3 设备计算和主要工艺设备选型 (21) 5.3.1 工艺设备选型原则 (21) 5.3.2 酰化反应罐 (22) 5.3.3 回收苯胺储罐 (22) 6.生产分析控制 (23) 6.1 概述 (23) 6.2 分析项目 (23) 6.2.1 原料质量标准及规格 (23) 6.2.2 中间体、半成品的质量标准和检验方法生产控制(分析) (24) 7.厂房和车间布置的设计方案 (26) 7.1 工艺布局的基本要求 (26) 7.2 洁净室(区)布置要求 (26) 7.2.1 一般规范 (26)

石油苯中痕量噻吩检测技术

石油苯中痕量噻吩的检测技术 李添魁 (化验分析监测中心) 1 前言 苯是染料、塑料、合成橡胶、合成树脂、合成纤维、合成药物和农药等的重要原料, 也是涂料、橡胶、胶粘剂等的溶剂,要求噻酚含量必须很低,如以苯为原料生产苯胺和苯乙烯时,要求苯中噻吩的含量不超过0.4ppm、0.7ppm,否则对苯胺的产率和苯乙烯的催化剂有非常大的影响,有些高端客户对于噻吩指标有较高要求,其含量不得大于0.10 mg/kg,因此准确、快速分析苯中痕量噻吩对控制产品质量起着至关重要的作用。石油苯在2011年10月前产品标准执行GB/T 3405-1989,无噻吩分析指标,自2011年10月之后启用GB/T 3405-2011,新旧产品标准主要区别是增加了一些杂质类组分的分析,尤其在总硫含量的基础上增加了噻吩项目的分析,石油苯-545要求噻吩含量不超过0.6ppm。 在GB/T 3405-2011中规定了石油苯中噻吩测定使用分光光度法(ASTM D 1685)和气相色谱法(ASTM D4735)(PFPD或FPD),且分析方法直接引用ASTM标准,无相应的国内标准或中译版,我厂正在开展石油苯产品质量攻关活动,急需建立石油苯中噻吩检测方法,如何根据自己的实际情况选择适宜的符合要求的分析方法,显得十分重要。下面对苯中痕量噻吩的几种分析方法进行比较分析,以筛选出符合产品标准并适合我厂的分析方法。 2 分光光度法(ASTM D1685) 分光光度法测定原理是苯中噻吩与吲哚醌发生反应,生成可溶于硫酸的蓝色的靛吩咛,进行分光光度法测定,测定范围在0.1-250ppm,因操作繁琐,操作时易引入干扰,条件要求高,在实际操作中能达到的稳定的检测下限为1ppm。测定全过程约需要2 h,检测时间长,实验过程繁琐,并且实验需要使用大量浓硫酸萃取,测定所用的无噻吩苯也需要人工用浓硫酸洗苯,操作危险,同时产生大量废酸污染,不建议采用。 3 气相色谱法 ASTM是一个非盈利性质的国际组织,提供一个拓展和出版非官方意见的标准的论坛。在精炼苯-535中含有1ppm的噻吩,在精炼苯-545中含有0.6ppm的噻吩,ASTM已经出版了两个标准测试方法,ASTM D4735和ASTM D7011,采用配置了硫选择性检测器的气相色谱分析精炼苯中的痕量噻吩。ASTM D4735指定使用火焰光度检测器(PFD)或者脉冲式火焰光度检测器(PFPD),而ASTM D7011允许使用任意一种硫选择性检测器,只要其性能满足规定要求和质控判据。而PFPD是唯一被两个方法都批准使用的硫选择性检测器,但因ASTM D7011方法发布较晚,未被石油苯新标准(GB/T 3405-2011)采用。, 3.1 ASTM D 4735(GC-FPD法+GC-PFPD法) 3.1.1 GC-FPD法 FPD 是一种高选择性、高灵敏度的质量型破坏型检测器,对含S、P化合物具有高选择性和高灵敏度,也称硫磷检测器(见图1)。主要用于痕量硫、磷化合物的检测等。GC-FPD 分析原理是石油苯经色谱柱分离后的噻吩组分进入FPD检测器,在FPD富氢的火焰中燃烧时不同程度地变为碎片或原子,其中的硫形成为激发态的硫二聚物(S*),当其由激发态返回基态时,发射出特征波长的光谱(350-430nm),发光强度与硫化物浓度的平方成正比,通过光电倍增管(PMT)把光信号转换为电信号,得到色谱图,测量噻吩色谱峰的大小可定量分析噻吩含量。典型仪器有美国agilent7890气相色谱仪(配FPD检测器)、日本岛津GC2010气相色谱仪(配FPD检测器)等。

邻羟基苯乙酮生产工艺

邻羟基苯乙酮项目技术调查报告 有机0911 朱耀 43 第一章产品及原料介绍 1.1 邻羟基苯乙酮 中文名称:2-羟基苯乙酮;1-(2-羟苯基)-乙酮;邻羟基苯乙酮;邻乙酰基苯酚;英文名称:1-(2-hydroxyphenyl)-Ethanone;o-hydroxy-acetophenon;1-(2-hydroxyphenyl)ethanone;;2'-hydroxy-acetophenon CAS: 118-93-4 ,分子式: C8H8O2 ,分子质量:136.15 ,沸点: 213℃,熔点: 4-6℃,性质描述: 浅绿至黄色油状液体。沸点 213℃/95.6kPa(717mmHg),106℃/2.3kPa(17mmHg),相对密度 1.131,折光率 1.5584,闪点98。 用途: 心律平的中间体。 结构式: 1.2苯酚 相对分子量或原子量94.11,密度1.071,熔点(℃)40.3,沸点(℃)182 ,折射率1.5425(41),毒性LD50(mg/kg) 大鼠经口530。 性状:无色或白色晶体,有特殊气味。在空气中因为被氧化而显粉红色 溶解情况:溶于乙醇、乙醚、氯仿、甘油、二硫化碳等。易溶于有机溶

液,常温下微溶于水,当温度高于65℃时,能跟水以任意比例互溶。 用途:用于制染料合成树脂、塑料、合成纤维和农药、水杨酸等。作外科消毒,消毒能力大小的标准(石炭酸系数)。 制备或来源:由煤焦油经分馏,由苯磺酸经碱熔。由氯苯经水解,由异丙苯经氧化重排。 其他:加热至65℃以上时能溶于水(在室温下,在水中的溶解度是9.3g,当温度高于65℃时能与水混溶),有毒,具有腐蚀性如不慎滴落到皮肤上应马上用酒精(乙醇)清洗,在空气中易被氧化而变粉红色。在民间有土方用石炭酸来治皮肤顽疾,以毒攻毒,如用来治脚底起泡。 1.3乙酐 中文名称:乙酸酐,英文名称:Acetic Anhydride。别名:醋酸酐;醋酐;乙酐;Ac2O 无水醋酸; 分子式:C4H6O3;(CH3CO)2O。外观与性状:无色透明液体,有刺激性气味(类似乙酸),其蒸气为催泪毒气。分子量:102.09 。蒸汽压:1.33kPa/36℃ 闪点:49℃。熔点:-73.1℃。沸点:138.6℃ 溶解性:溶于苯、乙醇、乙醚,氯仿;渐溶于水(变成乙酸)。 密度:相对密度(水=1)1.08;相对密度(空气=1)3.52 。 折光率:n20D 1.450 。稳定性:稳定。 1.4氯苯 中文名称:氯苯、一氯代苯。英文名称:chlorobenzene、monochlorobenzene CAS: 108-90-7 。分子式: C6H5Cl 。分子量: 112.56 。熔点(℃): -45.2 沸点(℃): 132.2 。相对密度(水=1): 1.10 。相对蒸气密度(空气=1): 3.9 饱和蒸气压(kPa): 1.33(20℃) 。临界温度(℃): 359.2 。临界压力(MPa): 4.52 辛醇/水分配系数的对数值: 2.84 。闪点(℃): 28。引燃温度(℃): 590 爆炸上限%(V/V): 9.6。爆炸下限%(V/V): 1.3 。外观与性状:无色透明液体,具有不愉快的苦杏仁味。 溶解性:不溶于水,溶于乙醇、乙醚、氯仿、二硫化碳、苯等多数有机溶剂。主要用途:作为有机合成的重要原料。

新型汽油脱硫技术的对比

新型汽油脱硫技术的对比 摘要:文章针对两种汽油脱硫新技术:RSDS-Ⅱ选择性加氢脱硫技术和S-Zorb 吸附脱硫技术,从反应机理、技术特点、设备特点各方面逐一对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。 关键词:汽油脱硫对比 1、前言 随着人们环保意识的不断增强,降低汽车尾气污染,改善空气质量,已经成为世界范围内的共识。各国对发动机燃料的组成进行了日趋严格的限制,以降低有害物质的排放。降低汽油中的硫含量将有效的减少汽车尾气中有害物质的排放。2017年10月执行的国V汽油标准要求成品汽油中的硫含量须小于10μg/g。 我国汽油组分将长期以催化裂化汽油为主,其份额占到80%左右。汽油质量升级主要是提高催化裂化汽油的质量,控制汽油中的硫、烯烃、芳烃含量和辛烷值等主要指标,与相应的国际标准接轨。而且我国绝大多数的催化裂化装置为重油和渣油催化裂化,和普通催化裂化相比,汽油中的硫含量更高,汽油脱硫难度更大,开发清洁燃料技术成为当前炼油行业技术创新的重点。 中国炼油企业多年来狠抓科技创新,积极推进以生产清洁燃料为主要目标,针对催化汽油脱硫技术引进和开发了两种新型工艺:(1)一次性买断引进美国康菲公司开发的S-sorb汽油吸附脱硫技术,2007年在燕山分公司建成国内第一套120万吨/年工业化装置;(2)由中石化石油化工科学研究院、洛阳石化工程公司、长岭分公司合作开发的RSDS-Ⅱ汽油选择性加氢脱硫技术,2008年在长岭分公司30万吨/年选择性加氢装置成功进行工业化试验。本文对这两种新工艺的反应机理、技术特点进行介绍、对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。 2、反应机理 为了了解RSDS-Ⅱ加氢脱硫和S-Zorb吸附脱硫这两类催化汽油脱硫工艺的区别,首先从脱硫机理比较。 大部分FCC汽油中的硫主要以四种方式存在,即:硫醇、硫化物(包括线性和立体)、噻吩和苯噻吩;硫醇和硫化物的加氢反应很快,通常在直接脱硫的条件下处于热力学平衡状态;噻吩和苯噻吩的加氢脱硫与烯烃的加氢饱和反应速率

二苯并噻吩类硫化物在非负载型NiMoW催化剂上加氢脱硫反应机理

文章编号:0253?2409(2013)08?0991?07  收稿日期:2013?03?19;修回日期:2013?05?20三  基金项目:国家重点基础研究发展规划(973计划,2010CB 226905)三  联系作者:殷长龙(1973?),男,山东临沭人,博士,从事催化生产清洁油品的研究三E?mail :catgroup @https://www.doczj.com/doc/cf1324786.html, 三  本文的英文电子版由Elsevier 出版社在ScienceDirect 上出版(http ://https://www.doczj.com/doc/cf1324786.html, /science /journal /18725813)三 二苯并噻吩类硫化物在非负载型NiMoW 催化剂上加氢脱硫反应机理 殷长龙,翟西平,赵蕾艳,刘晨光 (中国石油大学(华东)重质油国家重点实验室CNPC 催化重点实验室,山东青岛 266580) 摘 要:研究了二苯并噻吩(DBT )二4?甲基二苯并噻吩(4?MDBT )和4,6?二甲基二苯并噻吩(4,6?DMDBT )在非负载型NiMoW 催化剂上的加氢脱硫反应产物分布及反应机理,给出了它们在非负载型催化剂上加氢脱硫反应网络三研究发现,由于甲基的空间位阻效应,二苯并噻吩类化合物加氢脱硫转化率顺序为4,6?DMDBT ≈4?MDBT

苯乙酮的制备

实验十二苯乙酮的制备 【实验目的】 1.学习利用Friedel-Crafts酰基化反应制备芳香酮的原理与方法。 2.巩固无水实验操作的基本实验技巧。 【实验原理】 Friedel-Crafts酰基化反应是制备芳香酮的最重要和常用的方法之一,酸 酐是常用的酰化试剂,无水FeCl 3,BF 3 ,ZnCl 2 和AlCl 3 等路易斯酸作催化剂,分 子内的酰化反应还可用多聚磷酸(PPA)作催化剂。酰基化反应常用作过量的液体芳烃、二硫化碳、硝基苯、二氯甲烷等作为反应的溶剂。该类反应一般为放热反应,通常是将酰基化试剂配成溶液后,慢慢滴加到盛有芳香族化合物的反应瓶中。用苯和乙酸酐制备苯乙酮的反应方程式如下: +(CH3CO)2O3COCH 3 +CH 3 COOH 【仪器与药品】 仪器:三颈烧瓶(100ml)、恒压滴液漏斗、机械搅拌器、回流冷凝管、分液漏斗、蒸馏装置 药品:无水三氯化铝、无水苯、乙酐、浓盐酸、氢氧化钠(10%)、无水硫酸镁 【实验装置图】

【实验步骤】 向装有恒压滴液漏斗、机械搅拌器和回流冷凝管(上端通过一氯化钙干燥管与氯化氢气体吸收装置相连)的100ml三颈烧瓶中[1]迅速加入研细的13g(0.097 mol)无水三氯化铝[2]和16 ml(约14g,0.18 mol)无水苯。在搅拌下自滴液漏斗慢慢滴加4ml乙酐(约4.3g,0.04mol),ml回流,直到不再有氯化氢气体逸出为止(约30 min)。 将反应混合物冷却到室温,在搅拌下倒入18 ml浓盐酸和35g萃冰的烧杯中(在通风橱中进行)。若仍有固体不溶物,可补加适量浓盐酸使之完全溶解。将混合物转入分液漏斗中,分出有机层,水层每次用8 ml苯萃取2次。合并有机层,依次用15 ml 10%氢氧化钠、15 ml水洗涤,无水硫酸镁干燥。 将干燥后的反应混合物在水浴上蒸馏回收苯,然后再石棉网上加热蒸去残留的苯,稍冷却后改用空气冷凝管,蒸馏收集195~202oC馏分,产量约为4g。 纯苯乙酮为无色透明油状液体。 【注释】 [1] 本实验所用仪器和试剂均需充分干燥,否则影响反应顺利进行,装置中凡是与空气相连的部位,应安装干燥管。 [2] 由于芳香酮与三氯化铝可形成配合物,与烷基化反应相比,酰基化反应的催化剂用量大得多。对烷基化反应n(AlCl3)/n(RX)=0.1,酰基化反应n(AlCl3)/n(RCOCl)=1.1,由于芳烃与酸酐反应产生的有机酸会与AlCl3反应,所以n(AlCl3)/n(Ac2O)=2.2。

苯并噻吩和喹啉衍生物的合成研究

苯并噻吩和喹啉衍生物的合成研究 含硫和含氮杂环化合物无论从种类、数量还是用途上,在精细化学品中都有举足轻重的作用。苯并杂环化合物由于具有特殊的共轭结构和独特的生物活性,在化学、生物学、药学、农学和材料科学中都有着广泛应用,因此引起了化学家的广泛关注。 苯并噻吩衍生物是一类重要的含硫苯并杂环化合物,在农药、医药、染料和功能材料等领域有着广泛应用。迄今为止,已经有许多方法用于苯并噻吩骨架的合成,包括α-芳基酮、邻炔基(烯基)苯硫酚和芳基硫醚的分子内环化,苯并噻吩骨架直接官能化以及其他方法。 尽管这些合成策略已经取得了很大进展,但是大都需要合成预官能化的苯硫酚,从而限制了它们在有机合成中的普遍应用。因此,通过简单易得的苯硫酚直接合成苯并噻吩衍生物是一种有效而且实用的方法。 喹啉(又名苯并吡啶)衍生物是一类重要的含氮苯并杂环化合物,因其具有良好的药理活性、生物活性和光学活性而被广泛应用于医药、农药和材料等领域。喹啉骨架结构的经典合成路线是以取代的苯胺、β-二羰基化合物或β-酮酯为原料在强酸性条件下缩合。 然而,该方法反应条件苛刻、官能团耐受性差、区域选择性难以控制,这限制了它们在有机合成中的应用。因此,发展简单、高效、绿色地构建喹啉骨架衍生物的方法具有非常重要的研究意义。 本文主要内容:(1)选用Mes-Acr-Me+作为光敏剂,PhCOOH作为添加剂,CHCl3作为溶剂在氮气氛围室温搅拌下,实现了可见光诱导苯硫酚与丁炔二酸二甲酯串联加成/环化反应,合成了5-甲基苯并[b]噻吩-2,3-

二甲酸甲酯衍生物。(2)选用Mes-Acr-Me+作为光敏 剂,CuCl2作为催化剂,TBHP作为氧化剂,Phen作为配体,DMF作溶剂在氧气氛围室温条件下,实现了可见光诱导邻炔基芳香烯胺分子内氧化环化,制备了4-苯甲酰基-2-苯基-3-甲酸乙酯喹啉衍生物。 (3)选用Ru(bpy)3Cl2作为光敏剂,CuCl作为催化剂,DMF作溶剂在氧气氛围室温条件下,实现了可见光诱导邻炔基苯胺与丁炔二酸二甲酯分子间加成/氧化环化,制备了4-苯甲酰基-2,3-二甲酸甲酯喹啉衍生物。(4)选用Ru(bpy)3Cl2作为光敏 剂,PdCl2和CuCl2作为催化剂,PivOH作为添加剂,Phen 作为配体,DMF作溶剂在氧气氛围室温条件下,实现了邻烯基苯胺与丁炔二酸二甲酯分子间加成/氧化环化,制备了2,3-二甲酸甲酯喹啉衍生物。 (5)选用廉价易得的Cu(OAc)2·H2O作为催化剂,无需额外的配体和碱,实现了一种新的有效的酰胺化8-氨基喹啉与二芳基碘鎓盐的N-芳基化反应,通过螯合辅助作用选择性C-N键交叉偶联反应得到所需的N-芳基-8-氨基喹啉酰胺衍生物。

苯深度脱噻吩吸附剂的研究进展

新材料与新技术 化 工 设 计 通 讯 New Material and New Technology Chemical Engineering Design Communications ·72· 第44卷第6期 2018年6月 以苯为原料部分加氢生产环己烯工艺技术是近年来国内逐渐完善的一项绿色、环保无污染的新技术,以该技术为基础制备己二酸或己内酰胺的技术称为环己烯法己二酸或环己烯法己内酰胺技术。该流程以苯为原料,经过苯部分加氢制环己烯、环己烯水合制环己醇、环己醇脱氢制环己酮、环己酮氨肟化制环己酮肟,环己酮肟重排等工艺,最终得到产品己内酰胺。 苯部分加氢制环己烯工艺技术采用钌锌催化剂,该催化剂对硫非常敏感,苯原料中的含硫杂质是催化剂中毒、失活的重要因素,必须严格控制原料中的硫含量。苯中含硫杂质主要包括无机硫杂质和有机硫杂质,通过加氢脱硫工艺可有效脱除苯中无机硫杂质和简单的有机硫杂质,剩余的为稠环噻吩类含硫化合物及其衍生物。为了保护钌锌催化剂不中毒,工艺设计上要求进入苯部分加氢装置的苯原料中噻吩含量不超过10×10-9。 国标《焦化苯(GB/T 2283—1993)》规定特级焦化苯中每100mL 苯中噻吩含量不大于0.04g ,折合为455×10-6;《石油苯(GB/T 3405—2011)》规定石油苯-545中噻吩含量不大于0.6mg/kg ,折合为0.6×10-6。无论是焦化苯还是石油苯都不能直接作为苯部分加氢制环己烯原料使用。 现有的苯部分加氢装置原料苯预处理工段采用吸附的方式脱除原料中的少量杂质,其中最主要的是原料中的含硫杂质。吸附塔分为两段,一段装填氧化铝小球,一段装填钯吸 附剂。原料苯控制总硫不超过0.5×10-6, 噻吩量不超过0.1×10-6 ,经过吸附塔吸附后,苯中噻吩含量降低至10×10-9以下。虽然目前钯吸附剂已经比较成熟,天辰公司也在实验室成功开发出用于脱噻吩的钯吸附剂,但由于金属钌价格越来越低,而金属钯价格一路攀升,使用钯吸附噻吩以保护钌催化剂已显得不经济。 苯脱噻吩处理过程是环己烯法生产己二酸和己内酰胺原料预处理的必需流程。目前国内环己烯法生产己二酸和己内酰胺的生产装置总产能(以环己醇计)已经超过200万t ,每年更新装填的苯脱噻吩吸附剂超过50t 。50t 吸附剂中贵金属量(按1%计)为500kg ,以当前贵金属价格计算,采购500kg 钯 粉需要资金约为1.17亿元,而采购500kg 钌粉仅需0.11亿元,因此以钌吸附剂代替钯吸附剂成本大大降低。 未来随着国内己内酰胺和己二酸行业的快速增长和己内酰胺、己二酸向国际市场的开拓,国内环己烯法环己醇生产装置总产能有望超过400万t ,以及每年需要更新原料苯噻吩吸附剂超过100t ,因此开发低价的钌基噻吩吸附剂具有广阔的市场。 以三氧化二铝小球负载贵金属吸附剂脱除苯中少量的噻吩是一项成熟的技术。该技术是旭化成公司环己烯法生产环己醇技术的一部分。随着该技术在国内的推广,国内多家公司成功开发了脱硫吸附剂并实现了工业应用。这些公司包括贵研铂业[1-2]、上海盛邦[3]、烟台百川[4]等公司。天辰公司也在实验室开发出了技术水平相当的脱噻吩吸附剂[5]。 目前钯基脱噻吩吸附剂的主要指标为钯含量不低于1%,载体氧化铝小球比表面积(350±20)m 2/g ,堆积密度0.55kg/L 或者0.7kg/L (根据载体不同,堆积密度不同),硫容不低于0.7g/kg 噻吩每千克吸附剂。 近期,贵研铂业和上海盛邦都分别开发出了商业化的钌基脱噻吩吸附剂,其中贵研铂业的SX-301吸附剂的性能指标如表1所示,对外宣称其硫容甚至比钯催化剂还要高。上海盛邦的BDS-300新型脱噻吩吸附剂的主要性能指标如表2所示,其对外宣称该吸附剂的有效硫容高达1.22g/kg ,远超过1%Pd/Al 2O 3的理论硫容0.82g/kg 。其钌含量较高(2%)是高硫容的主要原因。 表1 贵研铂业SX-301吸附剂主要技术指标 项目质量指标检验方法钌金属含量(1±0.02)% 原子吸收法水含量≤2% 干燥法比表面积(330±20)m 2/g 催化剂 氮吸附法氯含量≤100×10-6SH/T0343—1992抗压强度≥30N/颗粒HG/T2782—2011磨损≤0.3%HG/T3927—2007 填充密度(0.7±0.02)kg/L 量筒测量颗粒尺寸直径1.5~2.5mm 千分尺测量 硫容 ≥0.8g/kg (下转第217页) 摘 要:苯是一种重要的化工原料,主要用于生产染料、医药、消毒剂、炸药和人造纤维等。随着有机合成工业的发展,苯在基础化工中的地位越来越重要,需求量也越来越大。同时,苯原料中的杂质特别是含硫杂质的含量要求也越来越严苛。传统的加氢脱硫方法一般用负载W 、Ni 、Mo 为活性组分,氧化铝为载体在高氢油比(150~800)、较高温度(180~350℃)下进行。 这样不仅设备投资大,操作条件高,且苯中的经加氢脱硫后的硫含量最低只能达到10-6 级,难脱除的噻吩仍以杂质的形式存留在苯中。 关键词:苯;噻吩;吸附;研究中图分类号:TQ055.81 文献标志码:B 文章编号:1003–6490(2018)06–0072–02 Research Progress of Benzene Deep Dethiophene Adsorbents Tian Yan-pu Abstract :Benzene is an important chemical raw material ,mainly used in the production of dyes ,medicine ,disinfectants ,explosives and artificial fibers.With the development of organic synthesis industry ,benzene is becoming more and more important in basic chemical industry ,and its demand is also increasing.Meanwhile ,the content of impurities in benzene raw materials ,especially sulfur containing impurities ,is also increasingly demanding.The traditional hydrodesulfurization method usually uses W ,Ni and Mo as active components.Alumina is used as the carrier at high hydrogen oil ratio (150~800)and higher temperature (180~350).This not only has high investment and operating conditions ,but also the lowest sulfur content in benzene can only reach ppm grade ,and the refractory thiophene remains in the form of impurity in benzene. Key words :benzene ;thiophene ;adsorption ;study 苯深度脱噻吩吸附剂的研究进展 田彦普 (福建天辰耀隆新材料有限公司,福建福州?350309) 收稿日期:2018–03–03作者简介: 田彦普(1973—),男,河北辛集人,高级工程师,主要 研究方向为化工新材料开发。

相关主题
文本预览
相关文档 最新文档