当前位置:文档之家› 第9章_静电场中的导体和电介质

第9章_静电场中的导体和电介质

第9章_静电场中的导体和电介质
第9章_静电场中的导体和电介质

第9章 静电场中的导体和电介质

什么是导体?什么是电介质? 9.1 静电场中的导体 静电平衡

金属导体:金属离子+、自由电子-

1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。)

2、导体静电平衡条件

不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r

的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。

感应电荷在金属板的内部建立起一个附加电场,其电场强度'E r 和外在的电场

强度

0E r

的方向相反。这样,金属板内部的电场

强度E r 就是0E r 和'E r

的叠加。开始时0'E E <,

金属板内部的电场强度不为零,自由电子会不断

地向左移动,从而使'E r

增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r

时为止。这时,导体上没有电荷作定向运动,导体处于静电平

衡状态。

当导体处于静电平衡状态时,满足以下条件: 从场强角度看:

①导体内任一点,场强0=E

(否则内部电荷运动);

②导体表面上任一点E

与表面垂直(否则导体表面电荷运动)。

从电势角度也可以把上述结论说成:

①?导体内各点电势相等; ②?导体表面为等势面。

用一句话说:静电平衡时导体为等势体。 已知导体静电平衡时电场分布,应用高斯定理可分析电荷分布。

01

e i S s

E dS

q e F =??òv

v ?内

1、导体内无空腔时电荷分布(实心带电导体)

如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑?=

?内

S S

q s d E 0

1

ε

导体静电平衡时其内0=E

∴ 0=??s d E S

, 即0=∑内

S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体表面上。 2、导体内有空腔时电荷分布

(1)腔内无其它电荷情况:电荷只分布在导体外表面

如图所示,导体电量为Q ,在其内作一高斯面1S ,高斯定理为:1

01

S S E ds q e ??ò

r r

?内

静电平衡时,导体内

0=E

0=∑内

S q ,即1

S 内净电荷为0

1S 是任意的,所以导体内无净电荷,电荷只分布在导体表面上。

内表面电荷分布情况:

在导体内部作一高斯面2S ,使2S 包围导体空腔。根据高斯定理,2S 内所包围电荷代数和为零。

空腔内无其它电荷,静电平衡时,导体内又无净电荷 ∴ 空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有这种可能,如图所示,这时在腔内就分布始于正电荷终止于负电荷的电场线。沿电场线方向电势越来越低,A B U U >,但静电平衡时,导体为等势体,即

B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无电荷分布,电荷都分布在外表面上,(腔内电势与

导体电势相同)。

(2)空腔内有点电荷情况:若原来导体带电量为Q ,空腔内放一电荷q ,则导体内表面有感应电荷q -,导体外表面电荷为+Q q 。 如图所示,导体电量为Q ,其内腔中有点电荷+q ,

静电平衡时0=E

,在导体内作一高斯面1S :

1

01

=0S S

E ds q e ??òr r ?内T导体内无净电荷,净电荷分布在导体表面 在导体内作一高斯面2S :

2

01

=0S S E ds q e ??ò

r r

?内

T0=∑内

S q

此时导体内部无净电荷,而腔内有电荷+q 。

∴ 腔内表面必有感应电荷-q ,即腔内表面带有与空腔内等量异号电荷。

结论:静电平衡时,腔内表面有感应电荷-q ,外表面有感应电荷+q ,空腔内电荷影响外部电场。

3、导体表面上电荷分布

设在导体表面上某一面积元S ?(很小)上,电荷分布如图所示 ,过S ?边界作一闭合柱面S (硬币型高斯面),上下底1S 、2S 均与S ?平行,S 侧面3S 与S ?垂直,柱面的高很小,即1S 与2S 非常接近S ?,此柱面并且是关于S ?对称的。

S

作为高斯面,高斯定理为∑?=

?内

S S

q

s d E 0

1

ε

S

E ES ds E s

d E s d E s d E s d E s d E s S S S S S S

?==?=?=?+?+?=???????11

1

3

2

1

很小

S q S ?=

∑σεε0

1

1

S S E ?=

??σε0

1

(注意与无限大带电平面0

2εσ

=E 的区别)

结论:导体表面附近,σ∝E ,导体内电场0E =,即电场强度在导体表面跃迁。 4、导体表面曲率对电荷分布影响

导体表面电荷分布与导体形状及周围环境有关。根据实验,一个形状不规则的导体带电后,在表面上曲率越大的地方场强越强。由上面讲到的结果知,E 大的地方,σ 必大,所以曲率大的地方即越尖的地方电荷面密度越大。如图,实验表明,如把一定量的电荷放到如图所示的非球形导体上,当到达静电平衡时,导体为一等势体,导体表面为一等势面。 在点A 附近,曲率半径较小,其电荷面密度和电场强度的值较大;而在点B 附近,曲率半径较大,其电荷面密度和电场强度的值较小。 如图给出带有等量异号电荷的一个非球形导体和一块平板导体的电场线图像。 从图中可以看出,曲率半径较小的带电导体表面附近,电场线密集,电场较强,尖端附近的电场最强。

5、尖端放电

带电尖端附近的电场强度特别大,已可使尖端附近的空气发生电离而成为导体。在电场不过分强的情况下,带电尖端经由电离化的空气而放电的过程,是比较平稳地无声息地进行的;但在电场很强的情况下,放电就会以暴烈的火花放电的形式出现,并在短暂的时间内释放出大量的能量。这两种形式的放电现象就是所谓的尖端放电现象。例如,阴雨潮湿天气时常可在高压输电线表面附近看到淡蓝色辉光的电晕,就是一种平稳的尖端放电现象。

尖端放电在技术上有很广的用途。比如电风吹火、避雷针等。高大建筑物上都会安装避雷针,当带电云层靠近建筑物时,建筑物会感应上与云层相反的电荷,这些电荷会聚集到避雷针的尖端,达到一定的值后便开始放电,这样不停的将建筑物上的电荷中和掉,永远达不到会使建筑物遭到损坏的强烈放电所需要的电荷。雷电的实质是两个带电体间的强烈的放电,在放电的过程中有巨大的能量放出。建筑物的另外一端与大地相连,与云层相同的电荷就流入大地。

尖端放电也有危害的一面,高压输电线附近的离子与空气碰撞会使空气分子电离而导电,放电浪费了很多电能。尖端放电会使电能白白损耗,还会干扰精密测量和通讯。高压输电导线和高压设备的金属元件,表面要很光滑,为的是避免因尖端放电而损失电能或造成事故。

若把一空腔导体放在静电场中,静电平衡时。电场线将终止于导体的外表面而不能穿过导体的内表面进入内腔(下图),因此,导体内和空腔中的电场强度处处为零。由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,这表明,我们可以利用空腔导体来屏蔽外电场。所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响。上面讲的是用空腔导体来屏蔽外电场。

有时也需要防止放在导体空腔中的电荷对导体外其他物体的影响。空腔内电荷位于腔内不同位置时,只改变内表面感应电荷分布,外表面电荷分布由表面曲率半径决定。空腔内电荷电量发生改变时,外表面感应电荷分布受影响。这时,如把导体腔接地,导体空腔外面的电场就消失了,这样,接地的导体空腔内的电荷对导体外的电场就不会产生任何影响。

综上所述, 空腔导体(无论接地与否)将使腔内空间不受外电场的影响,而接地空腔导体将使空间不受空腔内的电场的影响。这就是空腔导体的静电屏蔽作用。 应用:精密仪器金属网、金属外壳罩

屏蔽外电场:空腔导体使腔内空间不受外电场影响——外屏蔽 屏蔽内电场:接地空腔导体,使空间不受空腔内影响——全屏蔽

应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等。

例1:在电荷+q 的电场中,放一不带电的金属球,从球心 O 到点电荷所在距 离处的矢径为r ,试问

(1)金属球上净感应电荷 '

q ?

(2)这些感应电荷在球心O 处产生的场强E

解:(1)='

q 0

(2)球心O 处场强0=E (静电平衡要求),即+q 在O 处产生的场强+E

与感应电荷在O 处产生场强的矢量和=0。

0=++感E E

r r q E E 3

04πε=-=+感 方向指向+q 。

(感应电荷在 O 处产生电势=?球电势=?选无穷远处电势=0。)

例2

有一外半径1R 为10cm ,内半径2R 为7cm 的金属球壳,在球壳中放一半径3R 为5cm 的同心金属球。若使球壳和球均带有3

10q C -=的正电荷,问两球体上的电荷如何分布?球心的电势为多少?

解: 为了计算球心的电势,必须先计算出各点的电场强度。

我们先从球内开始,如取以3r R <的球面1S 为高斯面,则由导体的静电平衡条件,球内的电场强度为:

130,E r R =< (1)

在球与球壳之间,作32R r R <<的球面2S 为高斯面,由高斯定理,有

2

220

4S q

q E ds E r p e e ?拮=

ò

r r

? 得球与球壳间的电场强度

2322

01,4q

E R r R r

pe =

<< (2)

而对于所有21R r R <<的球面3S 上的各点,由静电平衡条件知其电场强度应为零,即

3210,E R r R =<< (3)

由高斯定理可知,其内所含有电荷的代数和应为零,即

将已知数据代入上式,

例3:平行放置的两块大金属平板A 和B ,相距为d ,两板带电量分别为A Q 和B Q ,求两板各表面上的电荷面密度。

解:只要金属板线度远大于间距d ,可将两板视为无限大。根据静电平衡知,电荷只分布在金属板外表面,设四个金属板电荷面密度分别为1s 、2s 、3s 、4s 根据电荷守恒定律:

12+=A S S Q s s ,34+=B S S Q s s

静电平衡时0a b E E ==

31240000

02222a E s s s s

e e e e =

---=

31240000

02222b E s s s s

e e e e =

++-= 四式联立,得:1423==,=-=22A B A

B

Q Q Q Q S S

s s s s +- 分析:若两极板带有等量异号电荷,0A B Q Q =-=

9.2 静电场中的电介质

9.2.1 电介质的极化

电介质是由大量电中性分子组成的绝缘体,分子中外层电子与原子核相互作用很强,电子呈束缚状态,即使在外电场中,电子也很难挣脱原子核的束缚发生定向移动。按照分子内部结构,电介质可分为两类:

分子正负电荷中心重合(如224H He CH 、、)。

无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a 所示,但当外电场存在时,它的正负电荷的中心发生相对位移,

形成一个电偶极子,其偶极矩p 方向沿外电场0E

方向,如图b 所示。对一块介质

整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列

如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了。由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷。

结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化。

32HCl H H O CO 、N 、、等)。分子正负电荷中心不重合时相当于一电偶极子。

有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d 所示,所以电介质内部呈电中性。当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿

着外电场0E 方向排列起来,如图f 所示。但随着外电场0E

的增强,排列整齐的程

度要增大。无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电

荷。

结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化。

说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们。 9.2.2 电介质中的高斯定理 (1) 电介质中的电场强度

如图所示,一面积为S ,相距为d 的平板电容器,极板间为真空。若对此电容器充电,使两极板上带等量异号的电荷,充电后撤去电源,维持极板上的电荷Q 不变。用伏特计测得两极板电压为0U 。此时若在两极板间插入各向同性的电介质(如:玻璃,硬橡胶等),这时会发现伏特计读数变小。伏特计读数与电介质有关,0

r

U U e =

,r e 为电介质的相对电容率,空气的相对电容率近似等于1,其它电介质的相对电容率均大于1。

根据匀强电场性质可知,两极板间电压U Ed =,两极板间距离固定,伏特计读数变小,只能说明两极板间场强变弱。E 是如何减少的呢?从平板电容场强公式

εσ

=

E 知,E 的减小,意味着电介质与极板的接触处的电荷面密度σ减小了。但是,极板上的电荷0q 没变,即电荷面密度0σ

没变。这种改变只能是电介质极化在

表面上出现的极化电荷。当电介质受外电场0E

作用发生极化时,电介质出现极化

电荷,极化电荷也要产生电场,所以,电介质中的电场是外电场0E

与极化电荷产

生电场'

E 的叠加,即'E E E +=0,极化电荷的电场与源电场反向,所以:

'0E E E -=。 束缚电荷受到限制,∴束缚电荷量比自由电荷少的多,故'

σ比0

σ少的多。

插入电介质后场强变弱,0

E E e =

,介质的相对电容率0=1r E

E

e >。 (2) 电介质中的高斯定理

根据真空中的高斯定理,通过闭合曲面S 的电场强度通量为给面所包围的电荷除以0q ,即

∑?=

?内

S S

q s d E 0

此处,

∑内

S q 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,

q q S 0

1

1

εε=

∑内

;在有介质存在时,S 内既有自由电荷,又有极化电荷,∑内

S q 应是

S 内一切自由电荷与极化电荷的代数和,即

∑∑?+=

=

?内

S 'S S

)q q

(q s d E 0

1

1εε

q 、'q 分别表示自由电荷和极化电荷。

下面以平行板电容器为例,来讨论之。设极板上自由电荷面密度为

σ±,介质在极板分界面上极化电荷面密度为

'σ±,介质相对介电常数为r ε。实际上,'

q 难以测量和

计算,故应设法消除之。

介质内电场:'

E E E +=0

'

'

0000

=E E E s s e e =--。 0''E E s s

0000=r r E E s s

e e e e

=

=,0=r e e e 为电介质的电容率。 即: 0

000εσεσεσ'-

= (’

σ极化电荷面密度) )(r

'

εσεσεσσ110000-

=-=?

取柱形高斯面,底面1S 、2分别在介质和极板内,且与板面平行,3

S 为侧面,与

板面垂直。此时,高斯定理为

'

'0

10100

11()()S S

E dS q q S S s s e e ?+=-?ò

r r ?内 010*******

1[(1)]S r r S S S q s s s s e e e e e e =

--===?内

0S S

q E ds e

薹=

?

òr r

?内

由上可知,'

q 不出现了。

定义:

D

称为电位移矢量(注意此式只适用于各向同性电介质,而对各向同性的均匀电介质,ε为一常数)。

高斯定理为:

说明:

(1)上式为电介质中的高斯定理,它是普遍成立的。

(2)D 是辅助量,无真正的物理意义。算出D

后,可求)D (E ε

=。 (3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切

线方向即为D

的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电

位移线条数)等于该处D

的大小。所以,通过任一曲面上电位移线条数为s d D S

??,称此为通过S 的电位移通量;对闭合曲面,此通量为s d D S

??。可见

有介质存在时,高斯定理陈述为:电场中通过某一闭合曲面的电位移通量等于该

闭合曲面内包围的自由电荷的代数和。

(4)电位移线与电力线有着区别:电位移线总是始于正的自由电荷,止于负的自由电荷(可从定理看出);而电力线是可始于一切正电荷和止于一切负电荷(即包括极化电荷)。如:平行板电容器情况(不计边缘效应)。

(5)应用:避开束缚电荷,求出D

,然后求D E e

=r

r

9.3 电容器 电场能量

9.3.1 电容

导体具有储存电荷和电能的本领,称作电容。这一节我们讨论:(1)孤立导体的电容,(2)电容器及其电容,(3)电容器的联接,(4)电场能量。

在真空中设有一半径为R 的孤立的球形导体,它的电量为q ,那么它的电势为(取无限远处电势=0)

R

q U 04πε=

对于给定的导体球,即R 一定,当q 变大时,U 也变大,q 变小时,U 也变小,但是

R U

q

04πε=确不变,此结论虽然是对球形孤立导体而言的,但对一定形状的

其它导体也是如此,

U

q

仅与导体大小和形状等有关,因而有下面定义。 定义:孤立导体的电量q 与其电势U 之比称为孤立导体电容,用C 表示:

U q

C =

对于孤立导体球,其电容为R R

q q

U

q C 0044πεπε===。

C 的单位为:F (法),1F=1C/1V 。在实用中F 太大,常用F μ或pF ,他们之间换算关系:pF F F 12

6

10

101==μ。

(电容与电量的存在与否无关)

9.3.2电容器 (1) 电容器电容

实际上,孤立的导体是不存在的,周围总会有别的导体,当有其它导体存在时,则必然因静电感应而改变原来的电场分布,当然影响导体电容。下面我们具体讨论电容器的电容。

两个带有等值而异号电荷的导体所组成的带电系统称为电容器。电容器可以储存电荷,以后将看到电容器也可以储存能量。

如图所示,两个导体A 、B 放在真空中,它们所带的电量分别为+q ,-q ,如果A 、B 电势分别为A U 、B U ,那么A 、B 电势差为B A U U -,电容器的电容定义为:

B

A U U q

C -=

由上可知,如将B 移至无限远处,B U =0。所以,上式就是孤立导体的电容。所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差。所以,孤立导体电容是B 放在无限远处时B

A U U q

C -=

的特例。导体A 、B 常称电容器的两

个电极。

(2) 电容器电容的计算 1、平行板电容器的电容

设A 、B 二极板平行,面积均为S ,相距为d ,电量为+q ,-q ,极板线度比d 大得多,且不计边缘效应。所以A 、B 间为均匀电场。

由高斯定理知,A 、B 间场强大小为

0r E q E S

s s e e =

==,。 A B

q S

U U Ed d C U U d s e e -==?=-

2、球形电容器

设二均匀带电同心球面A 、B ,半径A R 、B R ,电荷为+q ,-q 。分析:电场只分布在两极板之间,A 、B 间任一点场强大小为:24q

E r pe =

2

4()11

[]44B B

B

A

A

A

R R R A B R R R B A A B A B

q

U U E dr Edr dr r

q R R q R R R R pe pe pe -=?=-=

-=

蝌?

u r r

4()4A B B A A B B A A B

R R q q

C q R R U U R R R R pe pe ==

=

---。

讨论:(1)当A A B R R R ??-时,有A B R R ≈,

令d R R A B =-,则24A A A B R S q C U U d d

pe e ===

-——平行板电容器结果。

(2)A B R R ≈,外球壳在无穷远处时,44(1)A B

A A

B B

R R C R R R R pe pe =

?- (3)A 为导体球或A 、B 均为导体球壳结果如何?

3、圆柱形电容器

圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A 、B 半径为A R 、B R ,电荷为+q ,-q ,除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量

l

q

=λ,l 是柱高。由高斯定理知,A 、B 内任一点P 处E

的大小为 2E r l

pe =

ln 22B

B B

A

A

A

R R R B A B A

R R R R U U E d r

Edr dr r R l l

pe pe -=?==蝌?

u r r

2ln ln 2B

B A B

A

A

q

q l

C R R U U R R pe l

pe =

=

=

-。 同样:电容只与电介质、电容器的形状、大小有关,与带电量无关。电介质能增大电容,降低极板电压。

(1) 设电容器两极板带有等量异号电荷q ;

(2) 求出两极板之间电场的分布,先求真空中电场0E ,再用0

r

E E e =求介质中 电场分布

(3) 计算两极板之间的电势差B

A B A

U U E dl -=?ò

r

r (关键)

(4) 根据电容器电容定义计算电容A B

q

C U U =-

9.3.3 电容器的串联和并联

电容器有两个性能指标:容量和耐压值,如80V ,50pF 。在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因。因此有必要根据需要把若干电容器适当地连接起

来。若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容。 1、 串联:

几个电容器的极板首尾相接(特点:各电容的电量相同)。

设A 、B 间的电压为B A U U -,两端极板电荷分别为+q ,-q ,由于静电感应,其它极板电量情况如图,每个极板上所带电量相等。

n

B A

C q C q C q C q U U ++++=

- 321 。 由电容定义有

n

B

A C C C C U U q C 11111++++=-=

结论:电容器串联时等效电容的倒数等于各分电容电容倒数和。 等效电容小于任何一个电容器电容,可提高电容耐压能力。

2、 并联:

每个电容器的一端接在一起,另一端也接 在一起。(特点:每个电容器两端的电压相同, 匀为B A U U -,但每个电容器上电量不一定相等) 等效电量为:

n q q q q q ++++= 321,

由电容定义有:

n B

n C C C C U U q q q q U U q

C ++++=-++++=-=

321321

结论:电容器并联时,等效电容等于各电容器电容之和。耐压要求符合得前提下,

需要大电容量时可采用并联。

例:半径为a 的二平行长直导线相距为d (d>>a ),二者电荷线密度为λ+,λ-,

试求(1)二导线间电势差;(2)此导线组单位长度的电容。

解:(1)如图所取坐标,P 点场强大小为:

)

(2200x d x E E E B A -+=

+=πελ

πελ

a

a d ln )a a d a a d ln(a

a

d x d x ln

a a d )]x d ln(x [ln dx ])

x d (x [Edx x d E U a d a

B

A

B

A

AB -=-?-=--=---=

-+==?=???-00000022222πελπελπελπελπελ

πελ

(2)a a d a a d U U q C B

A -=-?=-=ln ln 10

0πεπελλ

注意:(1)r

E 02πελ

=公式。

(2)此题的积分限,即明确导体静电平衡的条件。

9.3.5 电场能量

一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场。所以,通过外力做功可以把其它形式能量转变为电能,贮藏在电场中。使一个系统带电,就是建立电场、储存电能的过程,如电容器充电过程。使某个带电体放电,就是把电能转化为其他形式的能的过程,如电容器放电过程。

今以带电电容器为例进行讨论。给电容器充电过程,其实是电源将负极板上正电荷搬运到正极板上,增大极板电量,提高极板电势差,建立电场的过程。

如图所示,设t 时刻,两极板上电荷分 别为+q(t)和-q(t),A 、B 间电势差为:

()

q t U C

=

再把电量dq 从B 移到A ,外力做的功为

()

q t dA Udq dq C

==

当A 、B 上电量达到+Q 和-Q 时,外力做的总功为:

220

()111

222

Q

q t Q A dA dq CU QU C C =

====蝌

外力功全部转化为带电电容器贮藏的电能e W , ∴电容器储存的电能为:

22111

222

e Q W CU QU C ===

平行板电容器: ,S

U Ed C d

e ==

∴):(2

1

21212222电容器体积Sd V V E Sd E d E d S W e ====εεε

因为场强为匀强电场,e W 应均匀分布,故单位体积内能量,即能量密度为

DE E

W w e 112===ε

说明:

(1)22111

222e Q W CU QU C =

==适用于任何电容器; DE E V W w e 2

1212===ε适用于任何电场。

(2)对任一带电系统整个电场能量为 dV E dV )DE (dV w We V

V

V

e 2

212

1

ε???

=

==。 (3)能量存在是由于电荷的存在,电荷是能量的携带者,但(2)式表明,能量是

存在于电场中,电场是能量的携带者。在静电场中能量究竟是电荷的携带的还是电场携带的,是无法判断的。因为在静电场中,电场和电荷是不可分割地联系在一起的,有电场必有电荷,有电荷必有电场,而且电场与电荷之间有一一对应关系,因而无法判断能量是属于电场还是属于电荷。但是,在电磁波情形下就不同了,电磁波是变化的电磁场的传播过程,变化的电场可以离开电荷而独立存在,没有电荷也可以有电场,而且场的能量能够以电磁波的形式传播,这一事实证实了能量是属于电场的,而不是属于电荷的。

例:无限长圆柱形电容器是由半径为1R 的导体圆柱和同轴的导体组成的,(1)电

容器上具有的电场能量;(2)证明:C

Q We 2

21=,Q 、C 分别为l 长导体

上电量及l 长电容器电容。

解:如图所取坐标,原点在圆柱轴线为r 轴。由题已知,其场是轴对称的,由高斯定理知,介质内任一点 P 的场强大小为

r

D

E πελ

ε2=

=

(介质外E=0)

在半径为r ,厚为dr ,高为l 的薄圆筒内,电场能量为

dr r

l rRdr r rRdr E dV w dWe e πελπεπλεπε4242122

12

2

2222

=?=?=

= 所求能量为:12

22442

1

R R ln

l dr r l dV w We R R

e πελπελ===??。 证明:

1

22122212

1R R ln dr r r d E U U R R R R πελ

πελ==?=-??

1

2122

1ln 2ln 2R R l R R l U U Q C πεπελλ==-=

We R R l R R l l C Q ==?=1221

2

2

2ln 4ln 21)(2121πελπελ

例:有一个均匀带电荷为Q 的球体,半径为R ,试求电场能量。 解:由高斯定理知,场强为

??????

?><=)(4)(42030R r r

Q R r r R

Q

E πεπε 在半径为r ,厚为dr 的球壳内,能量为:

dr r E dr r E dr

r w dV w dWe e e 2

202202242

14πεπεπ=?===

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

大学物理知识总结习题答案(第四章)静电场

第四章 静电场 本章提要 1.电荷的基本性质 两种电荷,量子性,电荷首恒,相对论不变性。 2.库仑定律 两个静止的点电荷之间的作用力 12122 2 04kq q q q r r = = F r r πε 其中 9 2 2 910(N m /C )k =?? 12 2-1 -2 018.8510 (C N m ) 4k -= =??επ 3.电场强度 q = F E 0q 为静止电荷。由 10102 2 04kq q q q r r == F r r πε 得 112 2 04kq q r r = = E r r πε 4.场强的计算 (1)场强叠加原理 电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。 i = ∑E E (2)高斯定理 电通量:在电场强度为E 的某点附近取一个面元,规定S ?=?S n , θ为E 与n 之间的夹角,通过S ?的电场强度通量定义为

e cos E S ?ψ=?=??v S θ 取积分可得电场中有限大的曲面的电通量 ψd e s S = ??? E 高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。即 i 0 1 d s q = ∑?? E S 内 ε 5.典型静电场 (1)均匀带电球面 0=E (球面内) 2 04q r πε= E r (球面外) (2)均匀带电球体 3 04q R πε= E r (球体内) 204q r πε= E r (球体外) (3)均匀带电无限长直线场强方向垂直于带电直线,大小为 02E r λ πε= (4)均匀带电无限大平面场强方向垂直于带电平面,大小为 2E σ ε= 6.电偶极矩 电偶极子在电场中受到的力矩 =?M P E 思考题 4-1 02 0 4q q r = = πεr 与F E E 两式有什么区别与联系。

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0 。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答: 必须注意以下两点: (1) 这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6 为什么不能使一个物体无限制地带电? 答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答: 当施感电荷Q 接近于一导体时,导体上出现等量异号的感应电荷±q ′。其分布一方面与导体的表面形状有关,另一方面与施感电荷

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

第十章 静电场中的导体与电介质(答案)讲解

姓名 __________ 学号 ____________ 《大学物理Ⅰ》答题纸第十章 一、选择题 [ B ]1(基础训练2 )一“无限大”均匀带电平面A,其附近放一+σ2 与它平行的有一定厚度的“无限大”平面导体板B,如图所示.已知A上的 电荷面密度为+σ ,则在导体板B的两个表面1和2上的感生电荷面密度为:(A) σ 1 = - σ,σ 2 = + σ.(B) σ 1 = - (C) σ 1 = -11σ,σ 2 =+σ.22A11σ,σ 1 = -σ.(D) σ 1 = - σ,σ 2 = 0. 22 【提示】“无限大”平面导体板B是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B内部的场强为零,由场强叠加原理得: σσσ+1-2=0 2ε02ε02ε0 σσ 联立解得:σ1=-σ2= 22 [ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电 荷,丙球不带电。已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F;现用带 绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为: (A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4.

【提示】设原来甲乙两球各自所带的电量为q,则F=q2 4πε0r2; ?q??3q???3q3q24=F 丙球与它们接触后,甲带电,乙带电,两球间的静电力为:F'=244πε0r28 [ C ]3(基础训练6)半径为R的金属球与地连接。在与球心O相 距d =2R处有一电荷为q的点电荷。如图所示,设地的电势为零,则球上的感 生电荷q'为: (A) 0. (B) qq. (C) -. (D) -q. 22【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电势可用电势叠加 法求得: q'dq'q1qq'qq+=0=-∴q'=-,,,其中d = 2R, dq'=- ??4πεR4πεdRd24πε0R04πε0d000 q' [ C ]4(基础训练8)两只电容器,C1 = 8 μF,C2 = 2 μF,分 别把它们充电到 1000 V,然后将它们反接(如图所示),此时两极板间的电 势差为: 姓名 __________ 学号 ____________ 《大学物理Ⅰ》答题纸第十章 (A) 0 V . (B) 200 V. (C) 600 V. (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 Q=Q1-Q2=CU-C2U=(8-2)?10-6?1000=6?10-6C 1 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为C'=C1+C2=10-5F,电势差为U'=Q=600(V)。 C' [ B ]5(自测提高4)一导体球外充满相对介电常量为εr的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度σ0为 (A) ε0E.(B) ε0εrE .(C) εrE.(D) (ε0εr-ε0)E 【提示】导体外表面附近场强E= σ0σ0,∴σ0=ε0εrE. =εε0εr [ D ]6(自测提高5)一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示。当球壳中心处再放一电荷为q的点电荷时,则导体球壳 的电势(设无穷远处为电势零点)为 (A) q 4πε0R14πε0R2

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

大学物理课后答案第七章静电场中的导体和电介质

大学物理课后答案第 七章静电场中的导 体和电介质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为 2σ 题7-2图 (1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ 且 1σ+2σS q A = 得 ,32S q A = σ S q A 321=σ 而 711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV

3 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势 题7-3图 ? ? ∞ ∞==?=2 2 020π4π4d d R R R q r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 0π4' π4'π4'2 02 01 0=+-+ - = R q q R q R q U A εεε

第6章 静电场中的导体和电介质习题讲解

第6章静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪 一种情况? [ ] (A) 对球壳内外电场无影响 (B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图 (D) 球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 T6-1-5图

5. 一点电荷q放在一无限大导体平面附近, 相距d, 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) qq (B) - (C) q (D) -q 22 6. 在一个绝缘的导体球壳的中心放一点电荷q, 则球壳内、外表面上电荷均匀分布.若 使q偏离球心, 则表面电荷分布情况为 [ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m, 小球半径为n, 当静电平衡后, 两球表面的电荷密度之比σ m/σ n 为 mnm2n2 [ ] (A) (B) (C) 2 (D) 2 nmnm 8. 真空中有两块面积相同的金属板, 甲板带电q, 乙板带电Q.现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) - q+Qq+Q (D) 22 T6-1-8图 9. 在带电量为+q的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q/3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq 测得它所受力为F.若考虑到q不是足够小, 则此时F/q比P点未放q 时的场强 [ ] (A) 小 (B) 大 (C) 相等 (D) 大小不能确定 10. 在一个带电量为Q的大导体附近的P点, 置一试验电荷q, 实验

第十章 静电场中的导体和电介质

l. 一带电量为Q、半径为R1的金属球, 放在内、外半径分别为R2和R3的金属球壳内, 若用导线把球与球壳连接后,则金属球的电势. ( ) 2.A、B、C为带电导体表面上的三点, 如图所示, 静电平衡时, 比较三点的面电荷密度、电势及表面附近的场强,下述说法中错误的是:( ) 第十章静电场中的导体与电介质课后练习十九

3. 如图所示,两同心导体球壳,初始时刻给内球壳所带电量为+q,给外球壳所带电量为-2q。那么静电平衡时,外球壳的内表面所带电荷量为;外表面所带电荷量为。

4. 一真空中平板电容器,极板面积为S,极板间距为d,则电容C0 = ;当充入εr 的电介质,则电容 C = ;C与C0之比为。 5. 半径分别为R1和R2(R2>R1)的两个同心导体薄球壳, 分别带电量Q1和Q2, 今将内球壳用细导线与远处的半径为r 的导体球相连, 导体球原来不带电, 试求相连后导体球所带电量q.

6. A、B、C 三个平行板面积均为200cm, A、B之间相距4mm,A、C 之间相距2mm,B、C 两板接地,若使A板带正电3.0×10-7C, 求(1) B、C 两板上的感应负电荷各为多少? (2) A板电势为多大?

第十章静电场中的导体与电介质课后练习十九 1. 一空气平行板电容器充电后与电源断开, 然后在两极板间充满各向同性均匀电介质, 则场强的大小E、电容C、电势差U、电场能量We 四个量各自与充入介质前相比较. 增大(用↑表示)或减小(用↓表示)的情形为( ) (A) E↓C ↑U ↑We ↑ (B) E↑C↓U ↓We ↑ (C) E↓C ↑U ↑We ↓ (D) E↓C↑U ↓We ↓ 2. 平行板电容器极板面积为S, 间距为d, 充电到电压U0 , 然后断开电源, 把相对电容率为εr的均匀电介质充满电容器的一半空间, 如图. 则两极板间电压变为

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。试求: (1) 球壳内外表面上的电荷; (2) 球心O 点处,由球壳内表面上电荷产生的电势; (3) 球心O 点处的总电势。 习题10-1图 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。 (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 0d 4q q U a πε-= ?a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= 04q r πε= 04q a πε- 04Q q b πε++ 01114()q r a b πε=-+04Q b πε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。试求: (1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。 习题10-2图 解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为 . 在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理, ()22 0cos 024P q E r b θσ επε⊥= +=+ ∴ () 2 /32 22/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ( ) 32 2 2d d d //Q S qbr r r b σ==-+ q Q a b O r

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

10第十章 静电场中的导体与电介质作业答案

一、选择题 [ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它 平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷 面密度为+σ ,则在导体板B 的两个表面 1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得: 02220 2010=-+εσεσεσ 联立解得: 122 2 σ σ σσ=- = [ C ]2(基础训练6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图所示,设地的电势为零,则球上的感生电荷q ' 为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电 势可用电势叠加法求得: 000'044q dq q R d πεπε' +=?, 00' 01'44q q dq R d πεπε=-?, 'q q R d =-,其中d = 2R ,'2q q ∴=- [ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把 它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差 为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 661212(82)101000610Q Q Q C U C U C --=-=-=-??=? 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为 512C'10C C F -=+=,电势差为'600()' Q U V C = =。 [ D ]4(基础训练10)两个完全相同的电容器C 1和C 2,串联后与电源连接。现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. 【提示】(A) C 1↑,1/C=(1/C 1)+(1/C 2),∴C ↑ (B) 串联,Q 1=Q 2 (C) U 1=Q/C 1,U 2=Q/C 2 ,∴U 1

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

第十章 静电场中的电介质

第九章 静电场中的导体 9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为 (A) 3 2r U R . (B) R U 0. (C) 2 0r RU . (D) r U 0 . [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离 板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ A ] 9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(4 R d q -πε. [ D ] 9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此 点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变. [ B ] 9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:

(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. [ B ] 9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ?-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布. (2) 面上感生电荷的总电荷.

相关主题
文本预览
相关文档 最新文档