当前位置:文档之家› 第十章 静电场中的导体和电介质习题解讲解

第十章 静电场中的导体和电介质习题解讲解

第十章 静电场中的导体和电介质习题解讲解
第十章 静电场中的导体和电介质习题解讲解

第十章静电场中的导体和电介质

10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S,两板分别带正电Qa和Qb,每板表面电荷面密度

σ1σ2,σ3= σ4

解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。由电荷守恒定律得

σ1

Qa Qb

σ2 σ3 σ4

σ1S+σ2S=Qa (1)σ3S+σ4S=Qb (2)

设P,Q是分别位于二导体板内的两点,如图10-2所示,由于P,Q位于导板内,由静电平衡条件知,其场强为零,即

图10-1

Q

Q

σσσσ

EP=---=0 (3)

2ε02ε02ε02ε0

EQ=

σ1σ2σ3σ4

++-=0 (4)2ε02ε02ε02ε0

σ

2 σ

4

Q

由方程(1)~(4)式得

Q+Qb

(5)σ1=σ4=a

2S

Q-Q (6)σ2=-σ3=2S

1,4),带等量同号电荷。

图10-2

由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面10–2 如图10-3所示,在半径为R的金属球外距球心为a的D处放置点电荷+Q,球内一点P到球心的距离为r,OP与OD夹角为θ,感应电荷在P点产生的场强大小为,方向;P点的电势为。

图10-3

图10–

4

解:(1)由于点电荷+Q的存在,在金属球外表面将感应出等量的正负电荷,距+Q的近

端金属球外表面带负电,远端带正电,如图10-4所示。P点的场强是点电荷+Q 在P点产生的场强E1,与感应电荷在P点产生的场强E2的叠加,即

EP=E1+E2,当静电平衡时,EP=E1+E2=0,由此可得

E2=-E1=-

Q

4πε0(a+r-2arcosθ)

2

2

er

其中er是由D指向P点。

因此,感应电荷在P点产生的场强E2的大小为

101

E2=Q

4πε0(a+r-2arcosθ)22

方向是从P点指向D点。

(2)静电平衡时,导体是等势体。P点的电势VP等于球心O点的电势VO。而由电势叠加原理,球心O点的电势VO是由点电荷+Q在该点的电势V1和感应电荷在该点的电势V2的叠加,即

VP=VO=V1+V2

其中,点电荷+Q在O点的电势V1为

V1=Q 4πε0a

由于感应电荷是非均匀地分布在导体球外表面,设球面上面积元dS处的面电荷密度为σ,则它在球心的电势为

O点产生的电势为σdS,考虑球的半径是一常量,故整个球面上的感应电荷在球心4πε0R

V2= ??σdS1=S4πε0R4πε0R ??SσdS

由电荷守恒可知,感应电荷的代数和

V2= ??SσdS=0。因此??SσdS=0

QQ+0= 4πε0a4πε0a14πε0R所以,P点电势为 VP=VO=V1+V2=

10–3 如图10-5所示,三个无限长、半径分别为R1,R2,R3的同轴导体圆柱面。A和C接地,B带电量为Q,则B的内表面的电荷Q1和外表面的电荷Q2之比为。

解:三个导体圆柱面构成两个圆柱形电容器,电容分别为

QRCBA==2πε0Lln VB-VAR1CBC=RQ=2πε0Lln VB-VCR2

由于A和C接地,则VB-VA=VB-VC,因此

Rln2

Q1R1= R3Q2lnR2图10–5

10–4 一平行板电容器,充电后断开电源,然后使两极板间充满相对介电常数为εr 的各向同性均匀电介质,此时电场能量是原来的倍。如果在充入电介质时,电容器一直与电源相连,能量是原来的倍。

q2

解:一平行板电容器,充电后断开电源,其电荷量不变,根据电容器能量公式We=,2C可得电容器充入电介质后的能量W′与充入电介质前的能量W之比为

102

We'CC1=== WeC'εrCεr

1若电容器一直与电源相连,电容器电压不变,根据公式W=CV2,可得 2

We'C'εC===εr WeCC

10–5 一平行板电容器两极板间电压为V,其间充满厚度为d,相对介电常数为εr 的各向同性均匀电介质,则电介质中的电场能量密度we 。解:电介质内场强为E=V。故电介质中的电场能量密度为 d

2ε0εrV2121?V? we=εE=ε0εr ?=222d??2d

10–6 如图10-6所示,真空中有一点电荷q,旁边有一半径为R的球形带电导体,q距球心为d(d>R),球体旁附近有一点P,P在q与球心的连线上,静电平衡时,P点附近导体的面电荷密度为σ 。以下关于P点电场强度大小的答案中,正确的是[ ]。

A.σq+ 2ε04πε0(d-R)2

σq-B.2ε04πε0(d-R)σq+ ε04πε0(d-R)2

σq-D.ε04πε0(d-R)2C.

E.图10–6

σ ε0

F.以上答案全不对

解:导体处于静电平衡时,邻近导体表面P处的电场强度大小为σ /ε0,正确答案选(E)。 10–7 如图10-7所示,一半径为R的金属球接地,在与球心相距d=2R 处有一点电荷+q,则金属球上的感应电荷q′为[ ]。

A.+qq B.0 C.- D.由于感应电荷分布非均匀,因此无法求出 22

q 解:金属球面上感应电荷q′分布非均匀,设感应电荷的面电荷密度为σ,在导体球面面积元dS处的感应电荷为σdS,则它在球心的电势为σdS,故整个球面上4πε0R

q' 4πε0R感应电荷在球心O处产生的电势为 V1= ??σdS1=S4πε0R4πε0R

??SσdS=图10–7 电荷+Q在球心O处产生的电势为

103

V2=q 4πε0(2R)

由电势叠加原理,球心O处的电势由点电荷+q和导体表面的感应电荷q′在该处产生的电势的叠加,又由于金属球接地,于是

VO=V1+V2=q'q+=0 4πε0R4πε0(2R)

由此可求得导体表面上存在感应电荷为

qq'=- 2

故应选(C)。

10–8 下列说法正确的是[ ]。

A.高斯面上各点的D为零,则面内必不存在自由电荷

B.高斯面上各点的E为零,则面内自由电荷的代数和为零,极化电荷的代数和也为零

C.高斯面内不包围自由电荷,则面上各点D必为零

D.高斯面上各点的D仅与自由电荷有关

解:高斯面上各点的D为零,表明曲面内自由电荷的代数和一定为零;所以(A)说法错误。

由电介质的高斯定理??SD?dS=∑Qi和D=εE,可知高斯面上各点的E为零,则曲面内自由电荷的代数和一定为零。又由??SE?dS=ε0∑1qin=Qi+q',可知极化电荷∑ε01

的代数和也为零,所以(B)说法正确。

高斯面上的D由空间中所有电荷(包括自由电荷和极化电荷)的分布决定,通过高斯面的D的通量只由其中的自由电荷所决定,高斯面内不包围自由电荷,只能说明通过该高斯面的D的通量为零。所以(C)、(D)说法错误。故答案应选(B)。

10–9 极化强度P是量度介质极化程度的物理量,有一关系式为P = ε0(εr-1)E,电位移矢量公式为D = ε0E + P,则[ ]。

A.二公式适用于任何介质

B.二公式只适用于各向同性电介质

C.二公式只适用于各向同性且均匀的电介质

D.前者适用于各向同性电介质,后者适用于任何电介质

解:在电磁学中,为简化数学,D = ε0E + P是由一些特例得到的,对任何介质都适用,是一个一般结论,介质的特性由P与E的关系体现,对各向同性介质,才有P=ε0χeE,由此可得到P = ε0(εr-1)E,因此P = ε0(εr-1)E只适用于各向同性介质。故答案应选(D)。

10–10 空气平行板电容器保持电压不变,再在两极板内充满均匀介质,则电场强度大小E、电容C、极板上电量Q及电场能量W四个量与充入介质前比较,变化情况是[ ]。

A.E减小,C、Q、W增大 B.E不变,C、Q、W增大

C.E、W减小,C、W增大 D.E不变,C、Q、W减小

解:未插入介质前,设平行板电容器电容为C0,极板上的电量为Q0=C0U,插入介质后,电容C=εrC0增大,电容器接在电源上,两极板间的电势差V=V0仍不变,极板上的电 104

量Q=CU=εrC0U=εrQ0增大。

未插入介质前,电场强度E0=电场强度不变。

VV

,插入介质后,E=,因V,d不变,所以E=E0,

dd

111

未插入介质前,电场能量W0=C0V2,插入介质后,W=CV2=εrC0V2=εrW0增222大。

综上,正确答案是(B)。

10–11如图10-8所示,一球形导体A含有两个球形空腔,这导体本身的总电荷为零,但在两空腔中心分别有一个点电荷q1和q2,导体球外距导体球很远的r处有另一个点电荷q3。求:(1)球形导体A外表面所带电量;(2)A,q1,q2,q3所受的力。

解:(1)在导体内作一闭合曲面包围q1所在空腔。由于静电平衡时,导体内场强处处为零,因此闭合曲面的电通量为零。根据高斯定理,点电荷q1空腔壁上有电量-q1,同理,点电荷q2空腔壁上有电量-q2。已知导体本身的总电荷为零,根据电荷守恒,导体球A外表面所带电量为(q1+q2)。由于静电屏蔽效应,-

q1,-q2不受q3影响,在腔内均匀分布。

(2)由于点电荷q1所在球形空间被周围金属屏蔽,q1相当于只受空腔1内表面电荷的作用,又因q1处于带电空腔的中心,空腔表面上的感应电荷-q1均匀分布,则感应电荷-q1在q1处产生的场强E1=0,

图10–

8

因此,点电荷q1受到的作用力F1= q1E1=0。同理,点电荷q2受到的作用力

F2=0。

由于点电荷q3距导体球A很远,它对导体球外表面电荷的影响可忽略,因此,感应电荷在导体球A外表面上近似均匀分布,它在q3处产生的场强可等效看成是在球心的点电荷(q1+q2)激发

q+q

EA=

4πε0r2

因而导体球A近似地对q3产生的作用力为

q(q+q)

F3=q3EA=

4πε0r2

两空腔中心处的q1,q2对q3的作用受导体球A的屏蔽,对其无影响。q3对导体球A产生的作用力与F3大小相等,方向相反。

10–12 面电荷密度为σ1的无限大均匀带电平面B与无限大均匀带电导体平板A 平行放置,如图所示。静电平衡后,A板两面的面电荷密度分别为σ2,σ3。求靠近A板右侧面的一点P的场强大小。

解:方法一:利用场强叠加原理。

在导体平板A内任取一点P′,如图10-10所示。取向右为电场强度的正方向,根据静电平衡条件,P′点场强为

EP'=

σσ2

σ1

P

σ3σ2σ1

--=

0 2ε02ε02ε0

B

图10-9

105

由此可得

σ3=σ2+σ1 (1)

而靠近A板右侧面P点的场强可看成是三个无限大的均匀带电平面产生的电场的叠加,

2

σ1

σσσ

EP=+- (2)

2ε02ε02ε0

联立(1)(2)式得

P

σ

EP=

ε0

方法二:利用静电平衡时,导体表面附近任一点的场强大小与导体表面上对应点电荷面密度的关系,得

图10–10

σEP=

ε0

10–13 一导体球半径为R1,球外有一个内、外半径分别为R2,R3的同心导体球壳,此系统带电后内球电势为V1,外球所带总电量为Q。求此系统各处的电势和电场分布。

解:设内球带电为q,由于静电感应,则球壳内表面带电为–q,而球壳外表面带电为(q+Q),如图10-11所示。已知内球电势为V1,它可看作是三个同心带电球面在r=R1处产生的电势叠加,即

V1=

q4πε0R1

+

-qq+Q1qqq+Q

+=(-+)

4πε0R24πε0R34πε0R1R2R3

由此式可解得

q=

4πεRRRV-RRQ

R2R3+R1R2-R1R3

由高斯定理

??S

E?dS=

qin,可得各区域的电场分布

ε0

E1=0,(r

E2=

q4πε0r2q+Q4πε0r

2

,(R1

E3=0,(R2

E4=,(r>R3)

图10–11

方向沿径向。

由电势叠加原理,系统的电势V1可看作是三个同心带电球面在r处产生的电势叠加,各区域的电势分布为

当r

V1==

R1

R2

R3

?0

E1?dr++

?R1

E2?dr+

?R2

E3?dr+

?R3E4?dr

q4πε0R1-qq+Q1qqq+Q

+=(-+

)

4πε0R24πε0R34πε0R1R2R3

106

同理,当R1

V2=q-qq+Q1qqq+Q++=(-+) 4πε0r4πε0R24πε0R34πε0rR2R3

q-qq+Qq+Q++= 4πε0r4πε0r4πε0R34πε0R3

q-qq+Qq+Q++= 4πε0r4πε0r4πε0r4πε0r当R2R3时 V4=

10–14 如图10-12所示,半径为r1,r2(r1

(1)外球的电荷量及电势;

(2)把外球接地后再重新绝缘,外球的电荷量及电势;

(3)然后把内球接地,内球的电荷量及外球的电势的改变。

解:(1)外球壳内表面的感应电荷量为-q,由于外球原来没有

电荷,根据电荷守恒,外球壳外表面感应电荷量为+q,且均匀分布。

由电势叠加原理,外球的电势V1是内球电荷电场在外球壳处的电势

V1=q

4πε0r2

(2)外球壳接地后,其外表面电荷为零。重新绝缘后,由高斯

定理,外球壳的内表面电荷仍为-q,外球电势V2为

V2=q

4πε0r2+-q=0 4πε0r2图10–12

(3)内球接地后,它的电势为零。设内球电量为q′,则外球壳的内表面带-q′,球壳外表面带电(-q+ q′),由电势叠加原理,内球电势为

V3=q'-q'q'-q++=0 4πε0r4πεr4πεr10202

rq'=q r2由此解得

此时,外球壳电势变为

V4=-r)qq'-q'q'-q(r++=12 24πε0r24πε0r24πε0r24πε0r2

外球电势的改变量为

(r-r)q(r-2r)qq?V=V4-V1=-= 224πεr4πε0r24πε0r202

结果表明,导体接地时,其电荷未必是零。导体接地时唯一可确定的条件是它的电势为零。

10–15 如图10-13所示,由半径分别为R1=5cm,R2=10cm的两个很长的共轴金属圆柱面构成一个圆柱形电容器。将它与一个直流电源相接。今将电子射入电容器中,如图(b)

, 107

电子的速度沿其半径为r(R1

力提供,由牛顿定律有

v2

F=eE=me r(a)

图10–

13 (b)解:电子在圆柱形电容器中垂直于轴线的平面上作圆周运动,则其所受的向心力由静电

由此可得

mev2

E= er

电容器极板间的电压为

R2mev2mev2R21mev2R2 V=E?dr=dr=dr=lnR1R1erR1reeR1?R2??

=9.1?10-31?(3?106)2

1.6?10-19ln10V=35.5 V 5

10–16 如图10-14所示,半径分别为R1,R2的两个金属导体球A,B,相距很远,求:

(1)每个球的电容;

(2)若用细导线将两球连接后,利用电容的定义求此系统的电容;

(3)若系统带电,静电平衡后,两球表面附近的电场强度之比。

解:(1)由于两球相距很远,可将两球看成是孤立导体球。球A的电容为

C1=4πε0R1

球B的电容为

C2=4πε0R2 R1 A B

(2)设两球组成的系统带电Q,细导线将两球连接后,两球分别带电量Q1,Q2,则

Q1+Q2=Q (1)图10–14 R2

两球的电势分别为

V1=Q (2)4πε0R1

108

V2=

Q (3)

4πε0R2

两球相连后电势相等,V1=V2,则有

Q1Q2

=

4πε0R14πε0R2

由此可得

QQQ+QQ=== R1R2R1+R2R1+R2

Q1=Q2=

RQ

R1+R2R2Q

R1+R2

代入(2)式和(3)式得

V=V2=V1=

Q1Q

=

4πε0R14πε0(R1+R2)

由电容定义

C=

Q

=4πε0(R1+R2) V

Q1Q2

(3)两球表面附近的电场强度分别为

σ1E1=1=

ε0

ε04πR12

σ1E2=2=

ε0

ε04πR22

E1σ1Q1R22R2

===

E2σ2Q2R12R1

10–17 两根平行的长直导线,两线中心线相距为b,它们的横截面半径都等于a,并且b>>a,求单位长度上的电容。

解:如图10-15所示,假设两根导线单位长度上的电荷分别为+λ,-λ,因b>>a,电荷在导线上均匀分布,在两导线中心连线上距离带正电荷导线中心为x处的P 点的电场强度的大小为

E=

a

U x

O

b-x P E

O′ -λ

a

λλ

+ 2πε0x2πε0(b-x)

b-a

x

方向沿x轴正方向。两导线之间的电势差为

V==

?lE?dl=?a

Edx

?a

b-a?

?λλ

+ ?dx 2πεx2πε(b-x)00??

图10–15

109

=λb-aλaλb-aln-ln=ln 2πε0a2πε0b-aπε0a

q,可得单位长度的电容为 V

C=πε0πε0q=≈ Vln(b-a)-lnalnb-lna由电容器电容的定义式C=

10–18 将一个电容为4μF的电容器和一个电容为6μF的电容器串联起来接到200V 的电源上,充电后,将电源断开并将两电容器分离。在下列两种情况下,每个电容器的电压各变为多少?

(1)将每一个电容器的正板与另一个电容器的负板相连;

(2)将两电容器的正板与正板相连,负板与负板相连。

解:当电容器C1=4μF与C2=6μF串联接到U=200V的电源时,它们的总电容为C=CC4?6=μF=2.4μF C1+C24+6

由于是串联充电,所以两电容器带有相同的电荷量Q,其值为

Q=CV=2.4?200μC=480μC

(1)当每个电容器的正板与另一个电容器的负板相连时,正负电荷将等量中和,总电量为零,电容器的电压都变为零。

(2)将两电容器同极相连时,此时两电容器为并联,总电容为

C'=C1+C2=(4+6)μF=10μF

总电量为

Q'=2Q=2?480μC=960μC

两电容器的电压相等,均是

V'=Q'960V=96V =C'10

10–19 平行板空气电容器的空气层厚1.5×10–2m,两极间电压为40kV时,电容器是否会被击穿(设空气的击穿场强为3×103 kV/m)?再将一厚0.3cm,相对电容率为7.0,介电强度为10MV/m的玻璃片插入电容器中,并与两极板平行,这时电容器是否会被击穿?

解:未插入玻璃片时,电容器内的电场强度为

E=V40==2.7?103 kV/m d1.5?10-2

因空气的击穿场强Eb=3×103kV/m,E

设空气中的场强为E1,当所加电压不变时,插入厚度为d2的玻璃片,玻璃片中场强为

EEE2== εr7.0

于是

E2d2+E1(d-d2)=V

由此可得

E1=V40= kV/m= 3.2×103kV/m (d-d2)+d2/εr(1.5?10-0.3?10)+0.3?10/7.0

110

由于E1>Eb=3?103kV/m,因此,空气层首先被击穿。空气层被击穿后,40kV电压全部加到玻璃片上,此时玻璃片内的场强增大到

E2=V40=kV/m=13.3 MV/m d0.3?10-2

因玻璃的击穿场强为10MV/m,E2>Eb'=10MV/m,因此,玻璃片也相继被击穿,整个电容器被击穿。

10–20 如图10-16所示,三块平行金属板A,B,C,面积均为0.02m2,A与B相距4.0mm,A与C相距2.0mm,B和C两板都接地。若A板带正电荷Q=3.0×10–7C,不计边缘效应,求:

(1)若平板间为空气(εr=1.00),求B板、C板上的感应电荷及A板的电势;(2)若在A,C平板间充以另一εr=6的均匀电介质,求B板、C板上的感应电荷及A板的电势。

解:(1)A板上的电荷Q分布于它的两个侧面上。设右侧面电量为Q1,左侧面电量为Q2,则

Q=Q1+Q2 (1)由高斯定理和静电平衡条件,可得B板内侧面上感应电荷

为-Q1,C板内侧面上感应电荷为-Q2,因此,A,B两板间场

强和A,C两板间场强分别为

σQEAB== ε0ε0S

σQEAC== ε0ε0S

VAB=VAC 图10–16 由于B,C板同时接地,电势都为零,所以A,B两板间和A,C两板间电势差相等,

VAB=EABdAB=VAC=EACdAC=Qd ε0SABQd ε0SAC

由此可得

QQdAB=dAC ε0Sε0S

QdAC= (2) Q2dAB

联立方程(1)式和(2)式,可得

QdAC3.0?10-7?2.0?10-3

C=1.0×10–7

C Q1==dAB+dAC4.0?10-3+2.0?10-3

111

Qd3.0?10-7?4.0?10-3

C=2.0×10–7C Q2==dAB+dAC4.0?10-3+2.0?10-3

所以,B板上感应电荷为-Q1= -1.0×10–7C,C板上感应电荷为Q2= -2.0×10–7C。A板的电势

Q1.0?10-7

103V VA=VAB=EABdAB=dAB=?4.0?10-3V=2.3×ε0S8.85?10-12?0.02

(2)解法同(1)

A板上的电荷Q分布于它的两个侧面上。设右侧面电量为Q1′,左侧面电量为

Q2′,则

Q=Q1'+Q2' (3)

A,B两板间和A,C两板间电势差相等,即

'=VAC' VAB

Q1''=E'VABd=d ABABε0SAB

在A,C平板间充以另一εr=6的均匀电介质,则

'=E'VACACdAC=d ε0εrSAC'Q由此可得

'Q1'Q2dAB=dAC ε0Sε0εrS

dQ'= (4)'εrdABQ2

联立方程(3)(4),可得

-7-3QdAC3.0?10?2.0?10C=2.3×10–8C Q1'==dAC+εrdAB2.0?10-3+6?4.0?10-3 Q2'=Qεd3.0?10-7?6?4.0?10-3

C=2.8×10–7C =dAC+εrdAB2.0?10-3+6?4.0?10-3

所以,B板上感应电荷为-Q′10–8C,C板上感应电荷为-Q′10–7C。A板1= -

2.3×2= -2.8×的电势

Q'2.3?10-8''=EAB'dAB=102V VA=VABdAB=?4.0?10-3V=5.2×ε0S8.85?10-

12?0.02

10–21 两个同心的薄金属球壳,内、外球壳半径分别为R1=0.02m,R2=0.06m。球壳间充满两层均匀电介质,它们的相对介电常数分别为εr1=6和εr2=3。两层电介质的分界面半径R=0.04m。设内球壳带电量Q= -6×10–8C,求

(1)D和E的分布,并画D-r,E-r曲线;

(2)两球壳之间的电势差;

(3)贴近内金属壳的电介质表面上的面束缚电荷面密度。

112

解:(1)以r为半径,与球壳同心的球面为高斯面,由电介质的高斯定理

??SD?dS=∑Qi及关系式D=εE=ε0εrE得

当r

D1=0,E1=0

E,D O

当R1

D2=

Q4πr

2

er,E2=

Q4πε0εr1r

Q4πε0εr2rQ4πr

2

e

2r

当R

D3=

Q4πr

图10–

17

er,E3=

e 2r

当r>R2时,有

D4=

er,E4=

Q4πε0r

e r

D-r,E-r曲线如图10-17所示。(2)两球壳之间的电势差为 V1-V2= R2

R

R2

R

?R1

E?dl=

?R1

E2?dl+

?R

E3?dl=

?R14πε0εr1r2

Q

r+

?R

R2Q4πε0εr2r

2

r

=

?11?Q?11?Q?1111?

-+- -?+ -?= ?

4πε0εr1?R1R?4πε0εr2?RR2?4πε0?εr1R1εr1Rεr2Rεr2R2?Q

=9?109?(-6?10-8)(

1111

-+-)V= -3750V

6?0.026?0.043?0.043?0.06

Q4πε0εr1r

(3)贴近内金属壳的电介质表面上的面束缚电荷面密度为

σ'=P?n=ε0(εr1-1)E2?n=ε0(εr1-1)

e?n r

贴近内金属壳的电介质表面处,er与n反向,且r=R1,由上式,得

'=ε0(εr1-1)σin

Q4πε0εr1R12

cosπ=-(εr1-1)

Q4πεr1R12

=-(6-1)

-6?10-84?3.14?6?0.022

C/m2=9.95×10–6 C/m2

10–22 半径为R的介质球,相对电容率为εr,其电荷体密度ρ=ρ0 1-

?

?r?

?,式中ρ0为R?

常量,r是球心到球内某点的距离。试求:(1)介质球内的电位移和场强分布;(2)在半径r多大处的场强最大?

解:由电荷分布的球对称性,取与介质球同心,半径为r(r

??SD?dS=∑Qi得

??S

D?dS=

?V

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

大学物理知识总结习题答案(第四章)静电场

第四章 静电场 本章提要 1.电荷的基本性质 两种电荷,量子性,电荷首恒,相对论不变性。 2.库仑定律 两个静止的点电荷之间的作用力 12122 2 04kq q q q r r = = F r r πε 其中 9 2 2 910(N m /C )k =?? 12 2-1 -2 018.8510 (C N m ) 4k -= =??επ 3.电场强度 q = F E 0q 为静止电荷。由 10102 2 04kq q q q r r == F r r πε 得 112 2 04kq q r r = = E r r πε 4.场强的计算 (1)场强叠加原理 电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。 i = ∑E E (2)高斯定理 电通量:在电场强度为E 的某点附近取一个面元,规定S ?=?S n , θ为E 与n 之间的夹角,通过S ?的电场强度通量定义为

e cos E S ?ψ=?=??v S θ 取积分可得电场中有限大的曲面的电通量 ψd e s S = ??? E 高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。即 i 0 1 d s q = ∑?? E S 内 ε 5.典型静电场 (1)均匀带电球面 0=E (球面内) 2 04q r πε= E r (球面外) (2)均匀带电球体 3 04q R πε= E r (球体内) 204q r πε= E r (球体外) (3)均匀带电无限长直线场强方向垂直于带电直线,大小为 02E r λ πε= (4)均匀带电无限大平面场强方向垂直于带电平面,大小为 2E σ ε= 6.电偶极矩 电偶极子在电场中受到的力矩 =?M P E 思考题 4-1 02 0 4q q r = = πεr 与F E E 两式有什么区别与联系。

电场中的导体练习题(附答案)

三、电场中的导体练习题 一、选择题 1.用一根跟毛皮摩擦过的硬橡胶棒,靠近不带电验电器的金属小球a(图1),然后用手指瞬间接触一下金属杆c后拿开橡胶棒,这时验电器小球A和金箔b的带电情况是[ ] A.a带正电,b带负电 B.a带负电,b带正电 C.a、b均带正电 D.a、b均带负电 E.a、b均不带电 2.在绝缘板上放有一个不带电的金箔验电器A和一个带正电荷的空腔导体B,下列实验方法中能使验电器箔片张开的是[ ] A.用取电棒(带绝缘柄的导体棒)先跟B的内壁接触一下后再跟A接触 B.用取电棒先跟B的外壁接触一下后再跟A接触 C.用绝缘导线把验电器跟取电棒的导体部分相连,再把取电棒与B的内壁接触 D.使验电器A靠近B 3.在一个导体球壳内放一个电量为+Q的点电荷,用E p表示球壳外任一点的场强,则[ ] A.当+Q在球壳中央时,E p=0 B.不论+Q在球壳内何处,E p一定为零 C.只有当+Q在球心且球壳接地时,E p=0 D.只要球壳接地,不论+Q在球壳内何处,E p一定为零 4.一个不带电的空心金属球,在它的球心处放一个正点荷,其电场分布是图2中的哪一个[ ] 5.一带正电的绝缘金属球壳A,顶部开孔,有两只带正电的金属球B、C用金属导线连接,让B球置于球壳A的空腔中与内表面接触后又提起到图3位置,C球放A球壳外离A球较远,待静电平衡后,正确的说法是[ ]

A.B、C球都带电 B.B球不带电,C球带电 C.让C球接地后,B球带负电 D.C球接地后,A球壳空腔中场强为零 6.如图4所示,把一个架在绝缘支架上的枕形导体放在正电荷形成的电场中,导体处于静电平衡时,下叙说法正确的是[ ] A.A、B两点场强相等,且都为零 B.A、B两点的场强不相等 D.当电键K闭合时,电子从大地沿导线向导体移动. 二、填空题 7.如图5所示,导体棒AB靠近带正电的导体Q放置.用手接触B端,移去手指再移去Q,AB带何种电荷______.若手的接触点改在A端,情况又如何______.

导体和电介质习题

第六章静电场中的导体与电介质 6 -1 将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将() (A)升高(B)降低(C)不会发生变化(D)无法确定

分析与解不带电的导体B相对无穷远处为零电势。由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。 6 -2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。若将导体N的左端接地(如图所示),则() (A)N上的负电荷入地(B)N上的正电荷入地 (C)N上的所有电荷入地(D)N上所有的感应电荷入地

分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d q v E 04,0πε= = (B )d q v d q E 02 04,4πεπε= = (C )0,0==v E (D )R q v d q E 02 04,4πεπε= =

分析与解达到静电平衡时导体内处处各点电场强度为零。点电荷q在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O点的电势等于点电荷q在该处激发的电势。因而正确答案为(A)。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关

第十章 静电场中的导体与电介质(答案)讲解

姓名 __________ 学号 ____________ 《大学物理Ⅰ》答题纸第十章 一、选择题 [ B ]1(基础训练2 )一“无限大”均匀带电平面A,其附近放一+σ2 与它平行的有一定厚度的“无限大”平面导体板B,如图所示.已知A上的 电荷面密度为+σ ,则在导体板B的两个表面1和2上的感生电荷面密度为:(A) σ 1 = - σ,σ 2 = + σ.(B) σ 1 = - (C) σ 1 = -11σ,σ 2 =+σ.22A11σ,σ 1 = -σ.(D) σ 1 = - σ,σ 2 = 0. 22 【提示】“无限大”平面导体板B是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B内部的场强为零,由场强叠加原理得: σσσ+1-2=0 2ε02ε02ε0 σσ 联立解得:σ1=-σ2= 22 [ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电 荷,丙球不带电。已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F;现用带 绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为: (A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4.

【提示】设原来甲乙两球各自所带的电量为q,则F=q2 4πε0r2; ?q??3q???3q3q24=F 丙球与它们接触后,甲带电,乙带电,两球间的静电力为:F'=244πε0r28 [ C ]3(基础训练6)半径为R的金属球与地连接。在与球心O相 距d =2R处有一电荷为q的点电荷。如图所示,设地的电势为零,则球上的感 生电荷q'为: (A) 0. (B) qq. (C) -. (D) -q. 22【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电势可用电势叠加 法求得: q'dq'q1qq'qq+=0=-∴q'=-,,,其中d = 2R, dq'=- ??4πεR4πεdRd24πε0R04πε0d000 q' [ C ]4(基础训练8)两只电容器,C1 = 8 μF,C2 = 2 μF,分 别把它们充电到 1000 V,然后将它们反接(如图所示),此时两极板间的电 势差为: 姓名 __________ 学号 ____________ 《大学物理Ⅰ》答题纸第十章 (A) 0 V . (B) 200 V. (C) 600 V. (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 Q=Q1-Q2=CU-C2U=(8-2)?10-6?1000=6?10-6C 1 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为C'=C1+C2=10-5F,电势差为U'=Q=600(V)。 C' [ B ]5(自测提高4)一导体球外充满相对介电常量为εr的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度σ0为 (A) ε0E.(B) ε0εrE .(C) εrE.(D) (ε0εr-ε0)E 【提示】导体外表面附近场强E= σ0σ0,∴σ0=ε0εrE. =εε0εr [ D ]6(自测提高5)一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示。当球壳中心处再放一电荷为q的点电荷时,则导体球壳 的电势(设无穷远处为电势零点)为 (A) q 4πε0R14πε0R2

电场中的导体练习题

电场中的导体练习题 第4节电场中的导体 1.导体处于静电平衡时,下列说法正确的是( ) A.导体内部没有电场 B.导体内部没有电荷,电荷只分布在导体外表面 .导体内部没有电荷的运动 D.以上说法均不对 答案:D 2.如图所示,某同学在桌上放两摞书,然后把一块洁净的玻璃板放在上面,使玻璃板离开桌面2~3,在宽约0.5的纸条上画出各种舞姿的人形,用剪刀把它们剪下,放在玻璃板下面,再用一块硬泡沫塑料在玻璃上回擦动,此时会看到小纸人翩翩起舞.下列哪种做法能使实验效果更好( ) A.将玻璃板换成钢板 B.向舞区哈一口气 .将玻璃板和地面用导线连接 D.用一根火柴把舞区烤一烤 答案:D 3.每到夏季,我省各地纷纷进入雨季,雷雨等强对流天气频繁发生.当我们遇到雷雨天气时,一定要注意避防雷电.下列说法正确的是( )

①不宜使用无防雷措施的电器或防雷措施不足的电器及水龙头 ②不要接触天线、金属门窗、建筑物外墙,远离带电设备 ③固定电话和手提电话均可正常使用 ④在旷野,应远离树木和电线杆 A.①②③B.①②④ .①③④ D.②③④ 答案:B 解析:表面具有突出尖端的导体,在尖端处的电荷分布密度很大,使得其周围电场很强,就可能使其周围的空气发生电离而引发尖端放电.固定电话和手提电话的天线处有尖端,易引发尖端放电造成人体伤害,故不能使用.4.金属球壳原带有电荷,而验电器原不带电,如图所示,现将金属球壳内表面与验电器的金属小球相连,验电器的金属箔( ) A.不会张开 B.一定会张开 .先张开后闭合 D.可能会张开 答案:B 5.(2009•长沙市一中高二检测)如图所示,棒AB 上均匀分布着正电荷,它的中点正上方有一P点,则P点的场强方向为( )

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

第十章 静电场中的导体和电介质

l. 一带电量为Q、半径为R1的金属球, 放在内、外半径分别为R2和R3的金属球壳内, 若用导线把球与球壳连接后,则金属球的电势. ( ) 2.A、B、C为带电导体表面上的三点, 如图所示, 静电平衡时, 比较三点的面电荷密度、电势及表面附近的场强,下述说法中错误的是:( ) 第十章静电场中的导体与电介质课后练习十九

3. 如图所示,两同心导体球壳,初始时刻给内球壳所带电量为+q,给外球壳所带电量为-2q。那么静电平衡时,外球壳的内表面所带电荷量为;外表面所带电荷量为。

4. 一真空中平板电容器,极板面积为S,极板间距为d,则电容C0 = ;当充入εr 的电介质,则电容 C = ;C与C0之比为。 5. 半径分别为R1和R2(R2>R1)的两个同心导体薄球壳, 分别带电量Q1和Q2, 今将内球壳用细导线与远处的半径为r 的导体球相连, 导体球原来不带电, 试求相连后导体球所带电量q.

6. A、B、C 三个平行板面积均为200cm, A、B之间相距4mm,A、C 之间相距2mm,B、C 两板接地,若使A板带正电3.0×10-7C, 求(1) B、C 两板上的感应负电荷各为多少? (2) A板电势为多大?

第十章静电场中的导体与电介质课后练习十九 1. 一空气平行板电容器充电后与电源断开, 然后在两极板间充满各向同性均匀电介质, 则场强的大小E、电容C、电势差U、电场能量We 四个量各自与充入介质前相比较. 增大(用↑表示)或减小(用↓表示)的情形为( ) (A) E↓C ↑U ↑We ↑ (B) E↑C↓U ↓We ↑ (C) E↓C ↑U ↑We ↓ (D) E↓C↑U ↓We ↓ 2. 平行板电容器极板面积为S, 间距为d, 充电到电压U0 , 然后断开电源, 把相对电容率为εr的均匀电介质充满电容器的一半空间, 如图. 则两极板间电压变为

最新《大学物理AⅠ》静电场中的导体和电介质习题、答案及解法(.6.4)

静电场中的导体和电解质习题、答案及解法 一.选择题 1.一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的距离为a 处放一点电荷q +,如图1所示。用导线把球壳接地后,再把地线撤去。选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A ) a q 02πε; (B )0 ; (C )R q 04πε-; (D ) ??? ??-R a q 1140πε。 参考答案:)1 1(4)11( 4400 2 0R a q a R q dl R q Edl V R a R a -=--===?? πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为 (A )1 ; (B )2 ; (C )3 ;(D )4 。 [ B ] 解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 12 21d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为 [ B ] (A ) 2 04r q πε,0 ; (B )0, 2 04r q πε ; (C )0,r q 04πε ; (D )0,0 。 1 r 2 r O P Q +q +a O R 1 d 2 σ2 d 1 σ

参考答案:??? ? ??= ??? ? ? ?-∞-==?+?=?=????∞ ∞∞2 020 201 411441 22 2 r Q r Q dr r Q l d E l d E l d E U r r r r p p πεπεπε 4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零; (D ) 导体内任一点与其表面上任一点的电势差等于零。 参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。 5.两个同心薄金属球壳,半径分别为) (和2121R R R R <,若内球壳带上电荷Q ,则两者的电势分别为2 21 14R 4R Q V Q V πεπε= = 和,(选无穷远处为电势零点)。现用 导线将两球壳相连接,则它们的电势为 [ D ] (A )1V (B )()2121V V + (C )21V V + (D )2V 参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势 面。 6.当平行板电容器充电后,去掉电源,在两极板间充满电介质,其正确的结果是[ C ] (A ) 极板上自由电荷减少 (B ) 两极板间电势差变大 (C ) 两极板间电场强度变小 (D ) 两极板间电场强度不变

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。试求: (1) 球壳内外表面上的电荷; (2) 球心O 点处,由球壳内表面上电荷产生的电势; (3) 球心O 点处的总电势。 习题10-1图 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。 (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 0d 4q q U a πε-= ?a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= 04q r πε= 04q a πε- 04Q q b πε++ 01114()q r a b πε=-+04Q b πε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。试求: (1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。 习题10-2图 解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为 . 在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理, ()22 0cos 024P q E r b θσ επε⊥= +=+ ∴ () 2 /32 22/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ( ) 32 2 2d d d //Q S qbr r r b σ==-+ q Q a b O r

大学物理练习题 静电场中的导体

练习六 静电场中的导体 一、选择题 1. 以下说法中正确的是 (A ) 电场强度相等的地方电势一定相等。 (B ) 电势梯度绝对值大的地方场强的绝对值也一定大。 (C ) 带正电的导体上电势一定为正。 (D ) 电势为零的导体一定不带电。 2. 以下说法中正确的是 (A ) 场强大的地方电位一定高。 (B ) 带负电的物体电位一定为负。 (C ) 场强相等处电势梯度不一定相等。 (D ) 场强为零处电位不一定为零。 3. 如图所示,真空中有一点电荷Q 及空心金属球壳A ,A 处于静电平衡,球内有一点M ,球壳中有一点N ,以下说法正确的是 ?Q q (A ) E M ≠ 0,E N = 0,Q 在M 处产生电场,而在N 处不产生电场。 (B ) E M = 0,E N ≠ 0,Q 在M 处不产生电场,而在N 处产生电场。 (C ) E M = E N = 0,Q 在M 、N 处都不产生电场。 (D ) E M ≠ 0,E N ≠ 0,Q 在M 、N 处都产生电场。 (E ) E M = E N = 0,Q 在M 、N 处都产生电场。 4. 如图所示,原先不带电的金属球壳的球心处放一点电荷q 1,球 外放一点电荷q 2,设q 2、金属内表面的电荷、外表面的电荷对q 1的 作用力分别为1F v 、2F v 、3F v ,q 1受的总电场力为F v ,则 (A ) F 1 = F 2 = F 3 = F =0。 (B ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = 0,F = F 1。 (C ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = ? q 1 q 2 /(4πε0d 2)(即与1F v 反向),F = 0。 (D ) F 1 = q 1q 2/(4πε0d 2),与 2F v 3F v 的合力与1F v 等值反向,F = 0。 (E ) F 1= q 1q 2 /(4πε0d 2),F 2 = ? q 1q 2/(4πε0d 2)(即与1F v 反向),F 3 = 0,F = 0。 5. 如图所示,一导体球壳A ,同心地罩在一接地导体B 上,今给A 球带负电?Q ,则B 球 Q (A ) 带正电。 (B ) 带负电。 (C ) 不带电。 (D ) 上面带正电,下面带负电。 6. A 、B 是两块不带电的导体,放在一带正电导体的电场中,如图所示。设无限远处为电势零点,A 的电势为 U A ,B 的电势为U B ,则: (A ) U B > U A ≠ 0。 (B ) U B < U A = 0。 (C ) U B = U A 。 (D ) U B < U A 。 7. 半径分别为R 和r 的两个金属球,相距很远。用一根长导线将两球连接,并使它们带电。在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为: (A ) R /r 。

导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 0 0εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

10第十章 静电场中的导体与电介质作业答案

一、选择题 [ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它 平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷 面密度为+σ ,则在导体板B 的两个表面 1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得: 02220 2010=-+εσεσεσ 联立解得: 122 2 σ σ σσ=- = [ C ]2(基础训练6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图所示,设地的电势为零,则球上的感生电荷q ' 为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电 势可用电势叠加法求得: 000'044q dq q R d πεπε' +=?, 00' 01'44q q dq R d πεπε=-?, 'q q R d =-,其中d = 2R ,'2q q ∴=- [ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把 它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差 为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 661212(82)101000610Q Q Q C U C U C --=-=-=-??=? 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为 512C'10C C F -=+=,电势差为'600()' Q U V C = =。 [ D ]4(基础训练10)两个完全相同的电容器C 1和C 2,串联后与电源连接。现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. 【提示】(A) C 1↑,1/C=(1/C 1)+(1/C 2),∴C ↑ (B) 串联,Q 1=Q 2 (C) U 1=Q/C 1,U 2=Q/C 2 ,∴U 1

第十章 静电场中的电介质

第九章 静电场中的导体 9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为 (A) 3 2r U R . (B) R U 0. (C) 2 0r RU . (D) r U 0 . [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离 板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ A ] 9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(4 R d q -πε. [ D ] 9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此 点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变. [ B ] 9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:

(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. [ B ] 9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ?-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布. (2) 面上感生电荷的总电荷.

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的 电位为零,上边盖板的电位为,求槽内的电位函数。 解 根据题意,电位满足的边界条件为 ① ② ③ 根据条件①和②,电位的通解应取为 由条件③,有 故得到槽内的电位分布 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。 上板和薄片保持 电位,下板保持零电位,求板间电位的解。设在薄 片平面上,从到,电位线性变 化, 故得到 求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。并按定出边缘电容。 解 在导体板()上,相应于的电荷面密度 则导体板上(沿方向单位长)相应的总电荷 相应的电场储能为 其边缘电容为 如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。 两边同乘以,并从 0 到对积分,得到 解 应用叠加原理,设板间的电位 为 其中,为不存在薄片的平行 位,即;是两个电位为零的 位,其边界条件为: ① ② ③ 根据条件①和②, 由条件 ③有 两边同乘以,并从 无限大导体平面间(电压为)的电 平行导体板间有导体薄片时的电 可设的通 0到对积分,得到 解为 y

解根据题意,电位满足的边界条件为 ① ② ③根据条件①和②,电位的通解应取为 由条件③,有两边同乘以,并从0 到对积分,得到 故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位, 体积内填充密度为 题图 的电荷。求体积内的电位。 解在体积内,电位满足泊松方程 (1) 长方体表面上,电位满足边界条件。由此设电位的通解为 代入泊松方程(1),可得 由此可得 或 (2) 由式(2),可得 故 如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。求板间的电位函数。解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。而在的分界面上,可利用函数将线电荷表示成电荷面密度。 电位的边界条件为 题图

13静电场中的导体和电介质习题详解(精)

第1页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1和 r2的金属球壳。设无穷远处为电势零点,则球壳内半径为r的P点处的场强和电势为[] (A)E= Q4πε0r 2 , U=Q4πε0r Q4πε0r ; (B)E=0, U=(D)E=0, U= Q4πε0r1 Q4πε0r2 ;(C)E=0, U=; 。 答案:D 解:由静电平衡条件得金属壳内E=0;外球壳内、外表面分别带电为-Q和+Q,根据电势叠加原理得

U= Q4πε0r + -Q4πε0r + Q4πε0r2 = Q4πε0r2 2.半径为R的金属球与地连接,在与球心O相距d=2R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上的感应电荷q'为[] (A)0;答案:C 解:导体球接地,球心处电势为零,即U0=球心的距离相等,均为R),由此解得q'=- 3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(OP=r)的场强和电位移的大小分别为[](A)E=(C)E=答案:C 解:由高斯定理得电位移 D= 4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半 Q4πr 2 (B) q2 ;(C)- q2 ;(D)-q。 q4πε0dRd +q2 q'4πε0R =0(球面上所有感应电荷到 q=- 。

Q4πε0εrr 2 ,D= Q4πε0r 2 ;(B)E= Q4πεrr 2 ,D= Q4πr 2 ; Q4πε0r 2 ,D= Q4πr 2 ;(D)E= Q4πε0r 2 ,D= Q4πε0r 2 。 ,而 E= D ε0 = Q4πε0r 2 。 第2页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 为空气,如图所示。当两极板带上恒定的等量异号电荷时,有一个 质量为m、带电量为+q的质点,在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[]

大学物理学第四章静电场中的导体与电介质自学练习题

导体与电介质部分 自学练习题 一、选择题: 1.将一带正电的物体A 从远处移到一个不带电的导体B 附近,导体B 的电势将:( ) (A )升高; (B )降低; (C )不会发生变化; (D )无法确定。 【提示:相当于将B 从无穷远移到A 附近,电势升高】 2.将一带负电的物体M 靠近一个不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷,若将导体N 的左端接地,则:( ) (A )N 上的负电荷入地; (B )N 上的正电荷入地; (C )N 上的所有电荷入地; (D )N 上所有的感应电荷入地。 【提示:N 上感应出来的正电荷被M “吸住”,负电荷入地】 3.如图所示,将一个电荷量为q 的点电荷放在一个半径为R 的不带电导体球附近,点电荷距导体球球心为d ,设无限远处为电势零点,则导体球心O 点的场强和电势为:( ) (A )0E =,04q V d πε= ;(B )2 04q E d πε= ,04q V d πε= ; (C )0E =,0V =; (D )2 04q E d πε=,04q V R πε= 。 【提示:静电平衡状态下,导体球内部不会有电场线;导体球是一个等势体,电势由所在的电场分布决定】 4.如图所示,绝缘带电导体上a 、b 、c 三点, 电荷密度是( ); 电势是( ): (A )a 点最大; (B )b 点最大; (C )c 点最大; (D )一样大。 【提示:在静电平衡状态下,孤立导体在曲率较大处电荷面密度和场强的值较大;导体是等势体】 5.当一个带电导体达到静电平衡时:( ) (A )表面上电荷密度较大处电势较高; (B )表面上曲率较大处电势较高; (C )导体内部的电势比导体表面电势高;(D )导体内任一点与其表面上任一点的电势差为零。 【见上题提示】 6.一个半径为R 带有电量为Q 的孤立导体球电容的决定式为:( ) (A )04Q C R πε= ; (B )2 04Q C R πε= ;(C )0 4C R επ= ;(D )04C R πε=。 【提示:孤立导体球的电势为04Q V R πε= ,利用 Q C V =,有04C R πε=】 7.对于带电的孤立导体球: ( ) (A )导体内的场强与电势大小均为零。(B ) 导体内的场强为零,而电势为恒量。 (C )导体内的电势比导体表面高。 (D )导体内的电势与导体表面的电势高低无法确定。 【见上题提示】

ch7-静电场中的导体和电介质-习题及答案

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳内表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳内表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

相关主题
文本预览
相关文档 最新文档