当前位置:文档之家› 一种小波去噪方法的几点改进

一种小波去噪方法的几点改进

一种小波去噪方法的几点改进
一种小波去噪方法的几点改进

ISSN 100020054CN 1122223 N

清华大学学报(自然科学版)J T singhua U niv (Sci &Tech ),2002年第42卷第9期

2002,V o l .42,N o .935 37

126921272

 

一种小波去噪方法的几点改进

谢杰成, 张大力, 徐文立

(清华大学自动化系,北京100084)

收稿日期:2001206211

基金项目:清华大学“九八五”资助项目

作者简介:谢杰成(19752),男(汉),海南,博士研究生。通讯联系人:徐文立,教授,E 2m ail :xuw l @tsinghua .edu .cn

摘 要:M ihcak M .K ,IEEE Signal P rocessing L etters ,1996,6(12):300303提出了小波去噪方法LAWM L

(LAWM A P ),并得到了非常好的去噪效果。该文针对其过

保留小系数的特点提出了引入阈值处理以减少重建毛刺和提高去噪后信号的压缩率;根据小波系数子带能量分布的特点,提出对不同尺度不同子带选择不同邻域来提高方差估计的准确性;根据子带的方向选择性,提出用长方形代替正方形邻域的改进方案。通过实验证明了这些改进可以有效地弥补原先LAWM L (LAWM A P )方法的不足,得到更好的去噪效果。

关键词:小波去噪;小波萎缩;小波变换中图分类号:TN 911.73

文献标识码:A

文章编号:100020054(2002)0921269204

Severa l i m provem en ts for a wavelet

deno isi ng m ethod

XI E J ie che ng ,ZHANG D a li ,XU W enli

(D epart men t of Auto mation ,

Tsi nghua Un iversity ,Be ij i ng 100084,Chi na )

Abstract :T he recently p ropo sed w avelet deno ising m ethod,locally adap tive w indow 2based deno ising using m axi m um likelihood (LAWM L ),can be further i m p roved using three strategies p ropo sed here .F irst,a th resho ld is used to eli m inate s m all coefficients,w h ich leads to s moo ther reconstructi on and h igher comp ressi on .Secondly,the size of the neighbo r w indow w as varied based on the energy distributi on in different levels and different classes of subbands to p rovide mo re accurate esti m ates of the variance .F inally,a rectangular neighbo r w indow w as used instead of the square w indow.Experi m ents show ed that using these strategies,the modified LAWM L p rovided better perfo rm ance than the o riginal .Key words :w avelet

deno ising;

w avelet

shrinkage;

w avelet

transfo r m ati on

近年来,小波理论得到了迅猛的发展,而且由于其良好的时频特性,因而实际中应用也非常广泛。同

样在去噪领域中,小波理论也受到了许多学者的重视,他们应用小波进行去噪并获得了非常好的效

果[1,2]。具体来说,小波去噪方法的成功主要得益于小波变换的如下特点[3]:1)低熵性,小波变换后图像的熵明显降低;2)多分辨率,由于采用了多分辨率的方法,所以可以很好地刻画信号的非平稳特征,如边缘、尖峰、断点等;3)去相关性,小波变换可以对信号去相关,所以噪声在变换后有白化趋势,小波域比时空域更利于去噪;4)选基灵活性,小波变换可以灵活选择变换基,从而对不同应用场合和不同的研究对象,可以选用不同的小波母函数以获得最佳的效果。

目前经常使用的小波去噪方法有两大类,小波阈值萎缩法和小波比例萎缩法。前者将小于预定阈值的系数置零,保留较大系数(又称重要系数)并用以估计原来的小波系数,依估计方法还可以细分为软阈值萎缩法、硬阈值萎缩法、半软阈值萎缩法[4]。后者将每一个带噪系数乘以一个比例系数来对原系数进行估计[5,6]。

在目前提出的比例萎缩方法当中,M ihcak 等人提出的方法[5]LAWM L 和LAWM A P ,由于采用了局部适应性很强的系数模型,得到了较好的去噪效果,但是由于过多保留了小波系数因而造成重建图像毛刺现象严重,也不利于压缩,另外由于没有考虑小波图像的能量分布特征和子带方向选择性,因此该方法仍有很多改善的余地。本文尝试从这几个方面对此方法,提出改进,并通过实验验证其有效性。

1 LAWML 和LAWM AP 方法

这两种方法都是以双随机过程为小波系数模型。在此模型中,小波系数被看成互相独立的高斯变

量,另一方面,相邻系数方差变化缓慢,从而任一个

位置的小波系数,可以由其邻域的样本方差近似

:

其中Κm 为子带m 中方差经验分布(指数分布)的参数。在LAWM L 中我们已经得到了各系数方差的粗糙估计,通过对这些估计值求取平均然后取倒数就

可以得到Κm 的估计Κδm 。基于方差公式(4)的方法被称为LAWM A P 。

2 LAWML 和LAWM AP 的特点

同小波阈值萎缩方法相比,由于采用了局部适

应性强的系数模型,所以得到的比例系数能够很好地适应信号的局部特征,因而去噪后的重建误差通常比阈值萎缩法小。但是,由于比例萎缩保留了很多的小系数,而这些小系数一般多以噪声成分为主,经过反变换会出现小毛刺,所以通常无法象阈值萎缩法那样得到光滑的重建信号;另外,由于过多保留了系数,所以不利于后续的压缩,从而不利于此一方法在通讯领域或信号压缩领域的广泛应用。

下边将针对这种方法的不足,根据小波系数的分布规律提出几点改进。由于LAWM A P 是以LAWM L 为基础,所以,这里只限于讨论LAWM L 法的改进。

3 LAWML 法的几点改进

3.1 改进一——结合阈值萎缩法进行的改进

考虑到阈值萎缩法中,将较小的系数设置为0而为后续的压缩提供了很大的便利,所以在LAWM L 中加入萎缩策略,可以实现压缩率上的改进;另外,由于摈弃了一般都噪声成分居多的小系数,所以避免了重建信号的毛刺现象,改进后的重建误差也会有所减少。

在这个改进中如何选取合适的阈值是必须解决的问题。目前提出的阈值有通用阈值[7]T =Ρ2ln N (N 为图像、

信号、或其中某一子带的尺寸),和SU R E 阈值[8]以及B ayes 阈值[9]T bayes =Ρ2 ΡΒ(Ρ为噪声标准方差,ΡΒ为广义高斯分布的标准方差值)和M A P 阈值[10]T m ap =Κ(Κ为L ap lace 分布的参数值)。相比较而言,通用阈值偏大,尤其是在N 较大时,倾向于将所有细节子带的小波系数全置0,因此通过阈值处理,留下的系数很少,即使修正这些系数的预测方法,效果也不会很大,而SU R E 阈值和B ayes 阈值由于是为软阈值萎缩所设,所以可以保留较多的小波系数,在此基础上,对重要小波系数采用LAWM L 中的预测策略,可以获得较好的效果。在本文中,以SU R E 阈值为例,利用上述改进策略,对带噪图像L enna 512×512,T ank 512×512,B arbara 512×512(均为M A TLAB 中doub le 格式,灰度范围为0~1)分别进行了实验,并同原来

SU R E 软阈值去噪和LAWM L 去噪相比较。在实验中,我们采用了db 4作为小波变换基,并分解三层,

各个子带的邻域均取为3×3的正方形,其结果如表1所示。从表中的实验数据来看,改进一通过加入阈值处理,不仅重建误差比原来的两种方法减少了,而且压缩率还大大提高了。需要指出的是,小波去噪并未真正对信号进行了压缩,但是小波去噪的效果,直接关系到后续压缩性能。在本文中,在不会造成混淆的情况下,为了表述方便,将后续压缩过程的压缩比直接说成是小波去噪的压缩比(压缩率),并将0系数所占比例同压缩率等同起来。

3.2 改进二——结合小波系数的能量分布特点

在LAWM L 中,由于重要系数的判断和估计都是基于方差进行的,所以方差的估计至关重要,而在方差公式中,邻域大小N ,起着举足轻重的作用。增大N ,将会导致系数方差变小,甚至变成0,因而更多的小系数将会被置0,重建信号的平滑性会增加,

721清华大学学报(自然科学版)2002,42(9)

表1 改进一、LA WML和SURE方法的去噪效果比较

图像

噪声

方差Ρ

重建误差

SU R E LAWM L改进一

L enna 0.1

0.0013

(0.0927)

0.0024

(0.1996)

0.0013

(0.0844) 0.2

0.0029

(0.0351)

0.0051

(0.0544)

0.0028

(0.0317) 0.3

0.0050

(0.0240)

0.0071

(0.0242)

0.0048

(0.0229)

T ank 0.1

0.0019

(0.1464)

0.0022

(0.5702)

0.0019

(0.1186) 0.2

0.0033

(0.0364)

0.0047

(0.4429)

0.0033

(0.0339) 0.3

0.0044

(0.0259)

0.0058

(0.2852)

0.0042

(0.0243)

Barbara 0.1

0.0024

(0.1981)

0.0022

(0.5570)

0.0021

(0.1680) 0.2

0.0050

(0.0591)

0.0052

(0.4145)

0.0048

(0.0537) 0.3

0.0070

(0.0251)

0.0074

(0.2652)

0.0069

(0.0237)

(括号中的数据为非零系数所占比例)

但N过大也会导致重要系数的的估计准确度下降,导致重建误差增大;适当减小N可以提高重要系数的估计准确度,但是在信噪比较小时,会增加重要系数的误报率(即将小系数误认为重要系数)。因此, N的设定,跟信噪比及原信号的平滑度相关。通常,对于较为平滑的信号,其细节子带的系数一般都较小,所以可适当增加N,这样可尽可能多摈弃主要由噪声组成的小波系数,而对于边缘等特征较多的图像,可适当减小N;同时,N的设定也跟SN R信噪比相关,当SN R较小时,为了保证在式(1)中对噪声能量的估计NΡ2更准确,N应取较大的值,当SN R较大时,则应减小N。

M层小波变换将图像分解成3M+1子带,其中3M个子带对应于高频部分,余下一个子带则对应于低频部分。3M个子带可以分成3类,HL, L H,HH,分别对应水平低频竖直高频、水平高频竖直低频、水平高频竖直高频子带,如图1所示。

HL1HH1

HL2HH2

LL2L H2

L H1

图1 图像小波分解

一般的,小波系数层的尺度越大,信噪比越大,而同一层中,HH子带中的信噪比则较HL,L H 小。因此,可以对LAWM L提出另一改进,邻域大小

N随着尺度增大而逐渐减小,在同一尺度层中,HH 子带对应的N可以加大。

根据上述策略,对HL1,L H1采用7×7,HL2, L H25×5,HL3,L H33×3,HH19×9,HH27×7,HH35×5,对上边3幅图像进行去噪,结果如表2所示。

表2 改进二的去噪效果

图像Ρ=0.1Ρ=0.2Ρ=0.3

L enna

0.0011

(0.5181)

0.0027

(0.2972)

0.0046

(0.1121)

T ank

0.0017

(0.6862)

0.0032

(0.4221)

0.0042

(0.1456)

Barbara

0.0018

(0.6338)

0.0039

(0.3781)

0.0062

(0.1453)

从实验结果看,改进二在重建误差上全面优于表1中所有方法,从这也可以看出,调整邻域的大小N可以大大改善去噪效果。

3.3 改进三——结合小波子带的方向选择性

在3个子带中,HL主要由水平低频竖直高频信息,即水平边缘构成,所以,在信噪比较低时,如需增加N的大小,可以改原来正方形邻域为长方形,保持宽(水平方向)不变,增加高度(竖直方向),这样就可以在扩大邻域的同时,更好地摈弃边缘附近小系数(假设增加宽度,则在边缘信息附近,有可能因为包括过多重要系数而导致方差增大,从而小系数会因此得以保留);对于L H,可以作相反的修正。事实上,邻域还可以采取更复杂的形状,只不过如何在一个更系统的框架下进行尚需探讨。

基于改进三,将HL1,HL2,HL3,L H1,L H2, L H3,HH1,HH2,HH3的邻域尺寸分别设为3×9,3×9,3×9,9×3,9×3,9×3,5×5,5×5, 5×5,由此得到的去噪效果如表3所示。表3中的结果表明改进三,无论从重建误差还是压缩率均有所改善,由于3×9和5×5邻域的面积大小相差极小,因此改善应是改进三的结果。但在重建误差上的改善不如改进二显著,而压缩率上不如改进一。

最后,综合上述的3个改进策略,即取HL1, HL2,HL3,L H1,L H2,L H3,HH1,HH2,HH3的邻域为7×9,5×7,3×5,9×7,7×5,5×3, 9×9,7×7,5×5,并加上阈值处理最后得到如表4的去噪结果(即改进四)。

1721

谢杰成,等: 一种小波去噪方法的几点改进

表3 改进三的去噪效果

图像噪声方差Ρ方形邻域改进三

L enna 0.1

0.0012

(0.5162)

0.0012

(0.5109) 0.2

0.0030

(0.3369)

0.0029

(0.3325) 0.3

0.0049

(0.1654)

0.0048

(0.1598)

T ank 0.1

0.0018

(0.6469)

0.0018

(0.6453) 0.2

0.0036

(0.4470)

0.0034

(0.4409) 0.3

0.0045

(0.2131)

0.0044

(0.2069)

Barbara 0.1

0.0019

(0.6086)

0.0019

(0.6043) 0.2

0.0042

(0.4096)

0.0041

(0.4065) 0.3

0.0064

0.1998

0.0063

(0.1945)

表4 综合改进一、二、三后的去噪效果

图像Ρ=0.1Ρ=0.2Ρ=0.3

L enna

0.0011

(0.0789)

0.0027

0.0324

0.0048

(0.0231)

T ank

0.0017

(0.1328)

0.0032

(0.0337)

0.0042

(0.0240)

Barbara

0.0019

(0.1681)

0.0045

(0.0497)

0.0069

(0.0234)

从表4中,综合改进后的重建误差比表2中稍差,这是因为考虑了改进压缩率导致的,事实上,由于噪声极其不规则,所以带噪信号经过去噪后,肯定会带来更高的压缩率。但当去噪重建误差足够小之后,将会要求保留足够多的小波系数,这时,要进一步提高压缩率就比较困难,这时,两者变成了一对矛盾。在改进四中正是牺牲了很少的重建误差,换来压缩率的巨大改善。因此在通讯领域,改进四更吸引人,而在主要强调重建误差的应用场合中,改进二(或结合改进三)更具优势。改进四同表1中任何一种方法相比,无论是从重建效果还是从压缩率来说,改进四的去噪效果都有改善,这说明,阈值萎缩和比例萎缩通过取长补短,可以得到更为满意的去噪方案。4 结束语

本文提出了基于LAWM L(LAWM A P)方法的几点改进方案,实验表明,通过阈值处理和比例萎缩两种策略的互相补充,可以在保证较小的重建误差的同时,还可以得到压缩率上的改善。

如何在重建误差和压缩率之间达到最好的平衡是个复杂的问题,如何更理论、更系统地解决这个问题,需要定制合适的准则,然后对此准则进行寻优求解。而如何定制合适的准则,可以求助于信息理论的一些准则,如最小描述长度准则(M DL,M in i m um D escri p ti on L ength),A I C(A kaike Info rm ati on C riteri on)和最小消息长度准则(MM L,M in i m um M essage L ength)等。

参考文献 (References)

[1]Ching P C,So H C,W u S Q.O n w avelet deno ising and its

app licati ons to ti m e delay esti m ati on[J].IE E E T rans

S ig na l P rocessing,1999,47(10):28792882.

[2]Gunaw an D.D eno ising i m ages using w avelet transfo r m[A].

P roceedings of the1999IEEE Pacific R i m Conference on

Comm unicati ons,Computers and Signal P rocessing[C].

V icto ria BC,1999.8385.

[3]V idakovic B,L ozoya C B.O n ti m e2dependent w avelet

deno ising[J].IE E E T rans S ig na l P rocessing,1998,

46(9):25492551.

[4]B ruce A G,Gao HongYe.U nderstanding w aveshrink:

variance and bias esti m ati on[EB OL].h ttp: www.

m ath https://www.doczj.com/doc/bc6327667.html,.

[5]M ihcak M K,Kozintsev I,R am chandran K,et al.

L ow2comp lexity i m age deno ising based on statistical

modeling of w avelet coefficients[J].IE E E S ig na l

P rocessing L etters,1999,6(12):300303.

[6]M alfait M,Roo se D.W avelet2based i m age deno ising using a

M arkov random field a p ri o ri model[J].IE E E T rans Im g ae

P rocessing,1997,6(4):549565.

[7]Donoho D L,Johnstone I M.Ideal spatial adap tati on via

w avelet shrinkage[J].B io m etrika,1994,81:425455. [8]Donoho D L,Johnstone I M.A dap ting to U nknow n

s moo thness via w avelet sh rinkage[J].J A m S ta t A ss,1995,

90:12001224.

[9]Chang S G,Yu B in,V etterli M.A dap tive w avelet

th resho lding fo r i m age deno ising and comop ressi on[J].

IE E E T rans Im ag e P rocessing,2000,9(9):15321546. [10]M oulin P,L iu Juan.A nalysis of m ultireso luti on i m age

deno ising schem es using generalized2Gaussian and comp lexity

p ri o rs[J].IE E E T rans Inf orm ation T heory,1999,45:909

919.

2721清华大学学报(自然科学版)2002,42(9)

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

最新小波去噪matlab程序.优选

[转帖]小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换[coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2);

energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

基于小波变换的去噪方法

文章编号:1006-7043(2000)04-0021-03 基于小波变换的去噪方法 林克正 李殿璞 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘 要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法 用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关 键 词:小波变换;去噪;奇异性检测;多尺度分析 中图分类号:TN911.7 文献标识码:A Denoising Method Based on Wavelet Transform Lin Ke-zheng Li Dian-pu (Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China ) Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective. Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis 提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号 效果最明显[2-5] ,并且在概念上也有别于其它方 法,其主要思想有局部极大值阈值法、全局单一阈 值法[3]和局部SURE 多阈值法[4] .在此基础上,本文首先分析了信号和噪声在小波变换下的不同特 性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法. 1 小波分析基础 1.1 信号的小波变换 [1] 设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t ) 定义为!a , 6(t )=1! a !(t -6 a )(1)式中,6"R ,a "R -{0}. 函数f (t )" 2 (R ) 的小波变换W a ,6(f )定义为 W a ,6(f )==1!a # - f (t )!(t -6 a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2 (R ) 在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件 !=# 0I ^!(")I 2" d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f ) 重构f (t )的小波逆变换# 收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理. 第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。

一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

小波图像去噪及matlab分析

小波图像去噪及matlab实例 图像去噪 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。 小波去噪 随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。具体来说,小波能够去噪主要得益于小波变换有如下特点: (1)低熵性。小波系数的稀疏分布,使图像变换后的熵降低。意思是对信号(即图像)进行分解后,有 更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原 始信号。 (2)多分辨率特性。由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。(3)去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。(4)基函数选择灵活。小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波 包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。 根据基于小波系数处理方式的不同,常见去噪方法可分为三类: (1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)

(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪 小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。 阈值函数选择 阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。(1)硬阈值 当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即: (2)软阈值 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即: 如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。硬阈值函数在|w| = λ处是不连续的,容易造成去噪后图像在奇异点附近出现明显的伪吉布斯现象。 阈值大小的选取 阈值的选择是离散小波去噪中最关键的一部。在去噪过程中,小波阈值λ起到了决定性作用:如果阈值太小,则施加阈值后的小波系数将包含过多的噪声分量,达不到去噪的效果;反之,阈值太大,则去除了有用的成分,造成失真。小波阈值估计方法很多,这里暂不介绍。 小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号s到第N层的分解。

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

小波去噪三种方法

小波去噪常用方法 目前,小波去噪的方法大概可以分为三大类:第一类方法是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。基于这一思想,在众多小波系数中,把绝对值较小的系数置为零,而让绝对值较大的系数保留或收缩,得到估计小波系数,然后利用估计小波系数直接进行信号重构,即可达到去噪的目的。 1:小波变换模极大值去噪方法 信号与噪声的模极大值在小波变换下会呈现不同的变化趋势。小波变换模极大值去噪方法,实质上就是利用小波变换模极大值所携带的信息,具体地说就是信号小波系数的模极大值的位置和幅值来完成对信号的表征和分析。利用信号与噪声的局部奇异性不一样,其模极大值的传播特性也不一样这些特性对信号中的随机噪声进行去噪处理。 算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,非常适合于低信噪比的信号去噪。这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。 2:小波系数相关性去噪方法 信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关

matlab小波函数

Matlab小波函数 一、Matlab小波去噪基本原理 1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频 信号。利用多层小波,将高频噪声信号从混合信号中分解出来。 2、选择合适的阈值对图像的高频信号进行量化处理 3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信 号来重构图像的信息。 二、第二代小波变换 1、构造方法特点: (1)继承了第一代小波的多分辨率的特性。 (2)不依赖fourior变换,直接在时域完成小波变换。 (3)变换之后的系数可以是整数。 (4)图像恢复质量与变换是边界采用何种延拓方式无关。 2、优点:算法简单,速度快,适合并行处理。对内存需求量小,便于DSP 芯片实现、可用于本位操作运算。 3、提升原理:构造紧支集双正交小波 (1)步骤:分裂—预测—更新 (2)分解与重构 三、matlab小波函数库 1、matlab小波通用函数: (1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】 wavemngr(‘add’,FN,FSN,WT,NUMS,FILE) wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B) % 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示 无尺度函数的复小波。 小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串 FILE表示文件名 B=[lb ub]指定小波有效支撑的上下界 wavemngr(‘del’,N) %删除小波 wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波 OUT1= wavemngr(‘read’) %返回小波族的名称 OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称 OUT1= wavemngr(‘read_asc’) %读取wavelets.asc文件并返回小波信息 (2)scal2frq函数【尺度转换频率】 F=scal2frq(A,’wname’,DELTA) %返回由尺度A,小波函数“wname”和采样周期DELTA决定的准 频率。 (3)orthfilt函数【正交小波滤波器组】

小波变换去噪

小波变换的图像去噪方法 一、摘要 本文介绍了几种去噪方法,比较这几种去噪方法的优缺点,突出表现了小波去噪法可以很好的保留图像的细节信息,性能优于其他方法。 关键词:图像;噪声;去噪;小波变换 二、引言 图像去噪是一种研究颇多的图像预处理技术。一般来说, 现实中的图像都是带噪图像。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。 三、图像信号常用的去噪方法 (1)邻域平均法 设一幅图像f (x, y) 平滑后的图像为g(x, y),它的每个象素的灰度值由包含在(x, y)制定邻域的几个象素的灰度值的平均值决定。将受到干扰的图像模型化为一个二维随机场,一般噪声属于加性、独立同分布的高斯白噪声。可见,邻域平均所用的邻域半径越大,信噪比提高越大,而平滑后图像越模糊,细节信息分布不明显。 (2)时域频域低通滤波法 对于一幅图像,它的边缘、跳跃部分以及噪声都为图像的高频分量,而大面积背景区和慢变部分则代表图像低频分量,可以设计合适的低通滤波器除去高频分量以去除噪声。 设f(x,y)为含噪图像,F(x,y)为其傅里叶变换,G(x,y)为平滑后图像的傅里叶变换,通过H,使F(u,v)的高频分量得到衰减。理想的低通滤波器的传递函数满足下列条件: 1 D(u,v)≤D H(u,v)= 0 D(u,v)≤D 式中D0非负D(u,v)是从点(u,v)到频率平面原点的距离,即,即D(u, v) = u2 + v2 (3)中值滤波 低通滤波在消除噪声的同时会将图像中的一些细节模糊掉。中值滤波器是一种非线性滤波器,它可以在消除噪声的同时保持图像的细节。 (4)自适应平滑滤波 自适应平滑滤波能根据图像的局部方差调整滤波器的输出。局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f*(x,y) 与原始图f(x,y) 的均方误差 e2 = E ( f (x, y) ? f *(x, y))2 最小。自适应滤波器对于高斯白噪声的处理效果比较好. (5)小波变换图像信号去噪方法 小波变换去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声信息分散。对信号进行小波分解,就是把信号向L2 ( R) ( L2 ( R) 是平方可积的实数空间) 空间各正交基分量投影,即求信号与各小波基函数之间的相关系数,亦即小波变换值。“软阈值化” ( soft-thresholding) 和“硬阈值化”( hard-thresholding) 是对超过阈值之上的小波系数进行缩减的两种主要方法。一般说来,硬阈值比软阈值处理后的图像信号更粗糙,所以常对图像信号进行软 阈值的小波变换去噪。如图2 所示,横坐标代表信号( 图像) 的原始小波系数,纵坐标

五种常用小波基含MATLAB实现

1.给出五种常用小波基的时域和频域波形图。 与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数(t)ψ 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等5种。 (1)Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简答的一个小波函数,它是支撑域在[0,1]∈t 围的单个矩形波。 Haar 函数的 定义如下:其他 1212 1 001-1(t)≤≤≤≤?????=ψt t Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点,如: 计算简单; (t)ψ不但与t)2(j ψz][j ∈正交,而且与自己的整数位移正交。 因此,在2j a =的多分辨率系统中Haar 小波构成一组最简单的正交归一的小波 族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j

Haar 小波的时域和频域波形图 -1.5 -1 -0.5 0.5 1 1.5 t haar 时域 x 10 5 1 2 3 4 5 6 75 f haar 频域 i=20; wav = 'haar'; [phi,g1,xval] = wavefun(wav,i); subplot(1,2,1); plot(xval,g1,'-r','LineWidth',1.5); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(1,2,2);plot(g3); xlabel('f') title('haar 频域')

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

相关主题
文本预览
相关文档 最新文档