当前位置:文档之家› 静电场中的电介质

静电场中的电介质

静电场中的电介质
静电场中的电介质

9.6 静电场中的电介质

电介质是指在通常条件下导电性极差的物质,即绝缘体。

电介质的种类繁多,一切正常状态下的气体、纯水油类、玻璃、云母、塑料、橡胶、陶瓷等都是常见的电介质。

电介质的原子或分子中的电子和原子核的结合力很强,电子处于束缚状态,电介质内几乎没有自由电荷,所以导电能力很差。在静电问题中忽略电介质的微弱导电性,把它看作理想的绝缘体。

9.6.0 电介质的结构与分类

⑴ 微观结构

电介质内几乎不存在自由电荷;

当电介质处于外电场中时,电介质中的带电粒子在电场力作用下只能作微观的相对位移。 当达到静电平衡时,电介质内的场强不为零,这些是电介质和导体在静电场中表现不同之处。 ⑵ 微观模型

对于中性分子,由于其正电荷和负电荷的电量相等,所以一个分子就可以看成是一个由正、负点电荷相隔一定距离所组成的电偶极子。

在讨论电场中的电介质的行为时,可认为电介质是由大量的这种微小的电偶极子p ql =所组成的。 ⑶ 电介质的分类

按照电介质的分子内部的电结构的不同,可以把电介质分子分为两大类:无极分子和有极分子。 ① 无极分子:分子正、负电荷中心在无外电场时是重合的。 如:氢、甲烷、石蜡、聚苯乙烯等。N 2、O 2、He 、CO 2 这种分子没有固有的电偶极矩。

② 有极分子:分子正、负电荷中心在无外电场时也不是重合的。 如:水、有机玻璃、纤维素、聚氯乙烯等。H 2O 、SO 2、CO 。 这种分子的固有电偶极矩不为零。

9.6.1 电介质的极化

⑴ 无极分子的位移极化

当无极分子电介质放在静电场中时,在电场力的作用下,分子的正负中心将发生相对位移,形成电偶极子,电偶极子在介质内部沿外电场方向的有序排列,使介质在和外电场垂直的两表面层出现正、负极化电荷,这种极化称为位移极化。

⑵ 有极分子的取向极化

当有极分子电介质放在静电场中时,分子的固有电偶极矩在外电场的力矩作用下,力图转到与外电场一致的方向,这种极化称为取向极化。

由于分子的热运动,取向的程度决定于外电场的强弱和温度。

⑶ 极化及束缚电荷

虽然两种电介质受外场作用的效果都是使电介质内分子电偶极矩的矢量和不再为零,同时在电介质端面上出现只有正电荷或只有负电荷的电荷层。

如果电介质是非均匀的,电介质内部也会出现多余的正的或负的电荷。

① 出现在电介质表面或内部,但仍被束缚在分子中,不能随意转移的电荷叫做束缚电荷或称极化电荷。

② 在外电场作用下电介质内部或表面上出现束缚电荷的现象统称为电介质的极化。

9.6.2 极化规律

把各向同性的电介质放入原来为真空中的均匀电场,电场强度为0E (称为外电场),电介质被极化,极化电荷激发的电场为E ',则电介质内部的电场强度为0E E E '=+。

(实验表明,此时电介质内部空间的电场强度减小为E =E 0/εr ,仅为无电介质时的1/εr 。其中εr 叫做电介质的相对电容率。)

在电介质中任取一宏观小体积△V ,

在没有外电场时,电介质未被极化,此小体积内0p =∑;

存在外电场时,电介质将被极化,此小体积内0p ≠∑。外电场越强,p ∑越大。

⑴ 极化强度 p P V

?=

∑;单位:-2C m ?

① 用单位体积中分子电偶极矩的矢量和来表示电介质的极化程度。 ② 电介质中电极化强度处处相同,则称这种极化为均匀极化。 ⑵ 电极化强度与极化电荷面密度的关系

电介质极化时,极化的程度越高(即P 越大),电介质表面上的极化电荷面密度σ′ 也越大。

① 均匀介质极化时,q ′集中在介质的表面,其表面上某点的极化电荷面密度,等于该处电极化强度在外法线上的分量。n P n P σ'=?=

② 在电场中,穿过任意闭合曲面的极化强度通量等于该闭合曲面内极化电荷总量的负值。

i S

S

P dS q '?=-∑?

——极化强度与极化电荷分布间的普遍关系。

i S

q '∑为S 面内包围的极化电荷总和。

*⑶ 电介质的极化规律

实验表明:在各向同性的电介质中,任意点的极化强度P 与该处总场强E 的方向相同,且大小成正比,即0P E χε=。

式中比例系数χ称为电介质的电极化率。

① 它表征电介质材料的性质,与电场强度E 无关。其单位为1。

② 对各向同性均匀介质,电介质中各点的χ值相同,χ是一个常数;如果是不均匀电介质,则χ是电介质各点位置的函数,电介质中不同点的χ值不同。

③ 电介质的电极化率和相对电容率同是描述电介质特性的物理量,其关系为χ=εr -1。

9.6.3 有介质时的高斯定理

现在把真空中的高斯定理推广到有电介质存在时的情况。

有介质时,介质内的总场强0E E E '=+,在介质内取一高斯面S ,

1

1

1

1

()i i i

S

E dS q q q q q εεεε''?=

=

+=

+

∑∑∑∑∑?

i S

S

P dS q '?=-∑?

, ∴ 0S

S

E dS P dS q ε?+?=∑??,即:0()S

E P dS q ε+?=∑?

定义电位移矢量:0D E P ε=+,则:

S

D dS q ?=∑?

——有介质时的高斯定理。

表明:在静电场中通过任意闭合面的电位移通量等于闭合面内自由电荷的代数和。 ⑴ 电位移矢量

电位移矢量定义式:0D E P ε=+

① 在国际单位制中,电位移的单位是库仑·米-2,符号为C·m -2,这也是电荷面密度的单位。 ② D 只是一个辅助物理量,真正有物理意义的是电场强度E 。设0q 为电场中的一个电荷,决定它受力的是E 而不是D 。

③ 对各向同性均匀电介质有0P E χε=,1χε+=称为相对电容率(或称为相对介电常数)。 ∴0000(1)r D E E E E E εχεχεεεε=+=+==,即:0r D E E εεε== 相对电容率εr 与真空电容率ε0的乘积ε0εr =ε叫做④ 电位移矢量线起于正自由电荷,止于负自由电荷;静电场电场线起于正电荷,止于负电荷。 ⑵ 电介质中的场强

① 电介质中的电场0E E E '=+,与外电场0E 同向。极化电荷激发的电场E '与0E 反向,∴

00E E E E '=-<。

② 无介质时:0D E ε=;有介质时:0r D E E εεε==,∴ 00r E E εεε=,

即有:0r E E ε=;00001

r

r r

E E E E E E εεε-'=-=-=

静电场中的电介质

3.1 填空题 3.1.1 电介质的极化分为( )和( )。 3.1.2 分子的正负电荷中心重合的电介质叫做( )电介质;在外电场作用下,分子的正负电荷中心发生相对位移形成( )。 3.1.3 如果电介质中各点的( )相同,这种介质为均匀电介质;满足( )关系的电介质称为各向同性电介质。 3.1.4 平行板电容器两极板间相距为0.2 mm ,其间充满了相对介电常数r ε=5.0的玻璃片,当 两极间电压为400 V 时,玻璃面上的束缚电荷面密度为( )。 3.1.5 一平行板电容器充电后断开电源,这时储存的能量为0w ,然后在两极板间充满相对介电常数为r ε的电介质,则电容器内储存的能量变为( )。 3.1.6 一平行板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为r ε的 各向同性均匀电介质,这时两极板上的电量是原来的( )倍;电场强度是原来的( )倍;电场能量是原来的( )倍。 3.1.7 两个电容器1和2,串联以后接上电动势恒定的电源充电。在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差( ),电容器1极板上的电量( )(填增大、减小、不变)。 3.1.8 一平行板电容器两板充满各向同性均匀电介质,已知相对介电常数为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D =( ),电场强度的大小E =( )。 3.2 选择题 3.2.1 两个相距很近而且等值异号的点电荷组成一个( )。 A :重心模型; B :电偶极子; C :等效偶极子; D :束缚电荷。 3.2.2 可以认为电中性分子中所有正电荷和所有负电荷分别集中于两个几何点上,这称为分 子的( ) A :电介质; B :电偶极子; C :重心模型; D :束缚电荷。 3.2.3 电偶极子的电偶极矩定义为( ) A :E p M ?=; B :l q p =; C :l q p ?=; D :l q p ?= 3.2.4 在电场E 的作用下,无极分子中正负电荷的重心向相反方向作微小位移, 使得分子偶 极矩的方向与场强E 一致,这种变化叫做( ) A :磁化; B :取向极化; C :位移极化; D :电磁感应。 3.2.5 在真空平行板电容器的中间平行插一片介质,当给电容器充电后,电容器内的场强为( ) A :介质内的电场强度为零; B :介质内与介质外的电场强度相等; C :介质内的场强比介质外的场强小; D :介质内的场强比介质外的场强大。 3.2.6 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。则下列说法中不正确的是( ) A :介质中的场强为真空中场强的r ε1 倍;

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

电介质中电场

第九章 导体和电介质中的静电场 §9-1静电场中的导体 一.导体的静电平衡条件 1.静电感应现象 a.静电感应:外电场的作用导致导体中电荷重新分布而呈现出带电的现象 b.静电平衡状态:导体内部和表面上都没有电荷的定向移动状态 2.导体的静电平衡条件 (1).静电平衡条件: a.导体内部任何一点的场强为零 b.导体表面上任何一点的场强方向垂直于该点的表面 (2).等价条件: 静电平衡时,导体为等势体. 证:设a 和b 为静电平衡导体上任意两点 单位正电荷由a 移到b ,电场力的功为 b a b a U U l d E -=?? U ?= (1).a 、b 在导体内部: 0=E 0=?∴U (2).a 、b 在导体表面: l d E ⊥0=?∴l d E 即0=?U ----静电平衡的导体是等势体 二.静电平衡导体的电荷分布 1.导体处于静电平衡时,导体内部没有净电荷,电荷只能分布在导体表面上 证:在导体内任一点P 处取一任意小的高斯面S 静电平衡导体内0≡E ?=?∴S S d E 0 →0=∑内 S i q ----体内无净电荷 即电荷只能分布在导体表面上 2.有空腔的导体:设空腔导体带电荷Q 空腔内没有电荷时:导体内部和空腔内表面上都没有净电荷存在,电荷只分布在导体外表面 证:在导体内作一包围空腔的高斯面 S 导体内0≡E ?=?∴S S d E 0 导体的静电感应过程 静电平衡状态 + + + +

即 0=∑内 S i q ----S 内无净电荷存在 问题:会不会出现空腔内表面分布有等量 异号电荷的情况呢? 空腔内有电荷q 时:空腔内表面感应出等值异号电量-q ,导体外表面的电量为导体原带电量Q 与感应电量q 的代数和 由高斯定理和电荷守恒定律可证 3.静电平衡导体,表面附近场强的大小与 该处表面的电荷面密度成正比 证:过紧靠导体表面的P 点作垂直于导体 表面的小圆柱面,下底△S ’在导体内部 ??S S d E ???=S S d E S E ?=0 εσS ??= εσ= ∴E 4.静电平衡导体,表面曲率越大的地方,电荷面密度越大 以一特例说明: 设有两个相距很远的导体球,半径分别 为R 和r (R >r ),用一导线将两球相连 R Q U R 041πε= R R R 02 44πεσπ= εσR R = r q U r 041 πε=r r r 0244πεσπ= 0εσr r = r R R r =∴ σσ 三.导体静电平衡特性的应用 1.尖端放电 年美富兰克首先发明避雷针 2.静电屏蔽 静电屏蔽:隔绝电的相互作用,使内外互不影响的现象. a.对外电场的屏蔽 ++ ++ +

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

静电场中的电介质

静电场中的电介质 (一)要求 1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义 2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系 3、掌握有介质时场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别 4、了解静电场的能量及能量密度 5、演示实验:介质对电容器电容的影响 (二)要点 1、电介质的极化 (1)电介质的电结构 (2)电介质的极化 2、极化强度矢量 (1)极化强度矢量 (2)极化电荷 (3)极化电荷体密度与面密度 3、有介质时的静电场方程 (1)电位移矢量

(2)介质中的高斯定理 (3)介质中的电场方程 *4、静电场的边值关系 5、静电场的能量和能量密度 (三)难点 求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等 § 3-1电介质的极化 一、介质中的电场强度 实验表明,电容器中填充介质后电容增大,增大程度由填充介质的相对介电常数£决定。由于引入外电场后,电介质表面出现电荷,产生附加电场比方向与外电场方向相反,削 弱了电介质内部的外电场,这样

f f f 4 E=E^ + E f 但 E t丰E‘,辰工On 二、电介质的极化 在外电场作用下电介质表面出现电荷的现象叫做电介质的极化,在表面出现的这种电荷叫极化电荷(束缚电荷)。 由于极化电荷比自由电荷少得多,极化电场比感应电场也小得多,因此介质内部合场强不为零但要注意极化电荷与自由电荷、极化电场与感应电场的区别。 §3-2极化强度矢量 一、极化的微观机制1无极分子的位移极化 在外电场作用下,无极分子正负电荷“中心”发生相对位移而出现极化电荷的现象,称为位移极化。 2、有极分子的取向极化 在外电场作用下,有极分子的电偶极矩受到电场的力矩而转向外电

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

大学物理练习题 静电场中的电介质

练习八 静电场中的电介质 一、选择题 1. 极化强度P v 是量度介质极化程度的物理量,有一关系式为()E P v v 1r 0?=εε,电位移矢量公 式为P E D v v v +=0ε,则 (A ) 二公式适用于任何介质。 (B ) 二公式只适用于各向同性电介质。 (C ) 二公式只适用于各向同性且均匀的电介质。 (D ) 前者适用于各向同性电介质,后者适用于任何电介质。 2. 电极化强度P v (A ) 只与外电场有关。 (B ) 只与极化电荷产生的电场有关。 (C ) 与外场和极化电荷产生的电场都有关。 (D ) 只与介质本身的性质有关系,与电场无关。 3. 真空中有一半径为R ,带电量为Q 的导体球,测得距中心O 为r 处的A 点场强为() 30π4r r Q E A εv v =,现以A 为中心,再放上一个半径为ρ,相对电容率为ε r 的介质球,如图所示,此时下列各公式中正确的是 (A ) A 点的电场强度r εA A E E v v =′。 (B ) ∫∫=?S Q S D v v d 。 (C ) ∫∫?S S E v v d =Q /ε0。 (D ) 导体球面上的电荷面密度σ = Q /(4πR 2)。 4. 在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所 在处为球心作一球形闭合面,则对此球形闭合面: 电介质 (A ) 高斯定理成立,且可用它求出闭合面上各点的场强。 (B ) 高斯定理成立,但不能用它求出闭合面上各点的场强。 (C ) 由于电介质不对称分布,高斯定理不成立。 (D ) 即使电介质对称分布,高斯定理也不成立。 5. 关于高斯定理,下列说法中哪一个是正确的? (A ) 高斯面内不包围自由电荷,则面上各点电位移矢量D r 为零。 (B ) 高斯面上处处D r 为零,则面内必不存在自由电荷。 (C ) 高斯面的D r 通量仅与面内自由电荷有关。 (D ) 以上说法都不正确。 6. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A ) 起自正电荷,止于负电荷,不形成闭合线,不中断。 (B ) 任何两条电位移线互相平行。 (C ) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交。 (D ) 电位移线只出现在有电介质的空间。 7. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: (A ) ε0E 。 (B ) ε0εr E 。 (C ) εr E 。 (D ) (ε0εr ?ε0)E 。

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 0 0εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

第三章静电场中的电介质

第 三 章 静电场中的电介质(6学时) 一、目的要求 1.掌握电介质极化机制,熟悉极化强度、极化率、介电常数等概念。 2.会求解极化强度和介质中的电场。 3.掌握有介质时的场方程。 4.理解电场能量、能量密度概念,会求电场的能量 。 二、教学内容与学时分配 1.电介质与偶极子( 1学时) 2.电介质的极化(1学时) 3.极化电荷(1学时) 4.有电介质时的高斯定理(1学时) 5.有介质的场方程(1学时) 6.电场的能量(1学时) 三、本章思路 本章主要研究电介质在静电场中的特性,其基本思路是:电介质与偶极子→电介质的极化→电介质的极化规律 →有介质的静电场方程 →静电场的能量。 四、重点难点 重点:有介质的静电场方程 难点:电介质的极化规律。 五、讲授要点 §3.1 电介质与偶极子 一、教学内容 1.电介质概述 2.电介质与偶极子 3.偶极子在外电场中受到的力矩 4.偶极子激发的静电场 二、教学方式、 讲授 三、讲课提纲 1.电介质概述 电介质是绝缘材料,如橡胶、云母、玻璃、陶瓷等。 特点:分子中正负电荷结合紧密,处于束缚状态,几乎没有自由电荷。 当导体引入静电场中时,导体对静电场有很大的影响,因静电感应而出现的感应电荷 产生的静电场在导体内部将原场处处抵消,其体内00='+=E E E ,且表现出许多特性,如导体是等势体、表面是等分为面、电荷只能分布在表面等;如果将电介质引入电场中情况又如何呢?实验表明,电介质对电场也有影响,但不及导体的影响大。它不能将介质内

部的原场处处抵消,而只能削弱。介质内的电场00≠'+=E E E 。 2.电介质与偶极子 (1)电介质的电结构 电介质原子的最外层电子不像金属导体外层电子那样自由,而是被束缚在原子分子上,处于事缚状态。一般中性分子的正负电荷不止一个,且不集中于一点,但它们对远处一点的影响可以等效为一个点电荷的影响,这个等效点电荷的位置叫做电荷“重心”。分子中电荷在远处一点激发的场近似等于全部正负电荷分别集中于各自的“重心”时激发的场,正负电荷“重心”重合在一起的称无极分子,如 H ,N ,CO 等。正负电荷“重心”不重合在一起的称有极分子,像SO ,H O,NH 等。这样一个分子等效为一个偶极子。 (2)偶极子 两个相距很近,带等量异号电量的电荷系统叫做偶极子 ①偶极子在外场中受到的力矩 均匀外场中,0=∑F 但受到一个力矩:θθθsin sin *2*sin *2*qLE L F L F T =+= 定义:L q P = 称为偶极子的偶极矩,上式可写为: E P T ?= 满足右手螺旋关系 Q 、L 可以不同。但只要其乘积qL 相同,力矩便相同。此力矩总是企图使偶极距转到 外电场的方向上去; 非均匀外场中,0≠∑F ∑≠0T 如摩擦事的笔头吸引纸屑,其实质就是纸屑在笔头电荷的非均匀电场中被极化,等效为偶极子,偶极子受到非均匀电场的作用力(指向场强增大的方向)而向笔头运动。 ②偶极子的场 中垂面上一点的场强:场点到的距离相等,产生的场强大小相等为: 但它们沿垂线方向分量互相抵消,在平行于连线方向分量 相等,故有: 延长线上一点的场强 向右,向左,故总场强大小为 偶极子在空间任一点的场强 4 412 20l r q E E + = =-+πε2322 )4(41 2l r ql COS E E πεθ+==+⊥20)2(41l r q E -= +πεE =-3 02220220//42]) 4 (241 )2(1 )2(1 [4r P l r qlr l r l r q E E E πεπεπε≈-=+--=-=-+ 图3-3 图3-4 +q -q 图3-1 图 3-2

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

第十章 静电场中的电介质

第九章 静电场中的导体 9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为 (A) 3 2r U R . (B) R U 0. (C) 2 0r RU . (D) r U 0 . [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离 板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ A ] 9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(4 R d q -πε. [ D ] 9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此 点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变. [ B ] 9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:

(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. [ B ] 9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ?-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布. (2) 面上感生电荷的总电荷.

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

大学物理课后答案第七章静电场中的导体和电介质(精)

习题7 27-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与 C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少? 解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ 2 题7-2图 (1)∵ UAC=UAB,即 ∴ EACdAC=EABdAB ∴ σ1EACdAB===2 σ2EABdAC qA S且σ1+σ2= 得σ2=qA2q, σ1=A 3S3S 而 qC=-σ1S=-2qA=-2?10-7C 3 qB=-σ2S=-1?10-7C (2) UA=EACdAC= σ1dAC=2.3?103V ε0 7-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势

题7-3图 U=?∞ R2 ∞E?dr=?qdrq= R24πεr24πε0R0 (2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生: U=q 4πε0R2-q4πε0R2=0 (3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且 UA=q' 4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2 得 q'= 外球壳上电势 R1q R2 -q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+ 7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势U O=0 7-4图

相关主题
文本预览
相关文档 最新文档