当前位置:文档之家› 粘附分子概念及介绍

粘附分子概念及介绍

粘附分子概念及介绍
粘附分子概念及介绍

第一节粘附分子的种类和结构

目前按粘附分子的结构特点可将其分为以下四类:(1)粘合素家族(integrin family)的粘附分子;(2)免疫球蛋白超家族(immunoglobulin superfamily,IGSF)的粘附分子;(3)凝集素家族(selectin family);(4)钙离子依赖的细胞粘附素家庭(Ca2+-dependent cell adhesion molecule family)的粘附分子或称Cadherin。此外还有一些其它未归类的粘附分子。

一、粘合素超家族

国内将integrin译为粘合素、整合素等,本书暂命名为粘合素。integrin是最初在1986年提出的概念,描述一个膜受体家族,此家族的粘附分子主要介导细胞与细胞外基质的粘附,使细胞得以附着而形成整体(integration),故得名。此外,粘合素家族的粘附分子还介导白细胞与血管内皮细胞的粘附。

图2-1 integrin分子的结构(示意图)

注:a .integrin分子电镜下所见(模式图),黑区部分显示integrin分子α、β亚单位所组成的球部,为配体结合域;

b.integrin分子的结构模式图,显示出α亚单位的二价阳离子(Mg2+)结合区和α、β亚单位的重复序列。

(一)粘合素分子的基本结构

粘合素家族的粘附分子都是由α、β两条链由非共价键连接组成的异源双体(heterodimer),α、β链均为Ⅰ类穿膜蛋白。α链的分子量为120~210kKa,β链的分子量为90~130kDa,个别β链(如β4)分子量为220kDa。不同的α链(或称α亚单位)或β链(或称β亚单位)氨基酸序列有不同程度的同源性,在结构上有其共同的特点。α和β亚单位均由胞膜外区、胞浆区、穿膜区三部分组成。胞浆区一般较短,可能和细胞骨架相联。空膜区富含疏水氨基酸。β亚单位的胞膜外区含有4个富含半胱氨酸的重复序列,靠近外侧N端的40~50kDa的氨基酸残基通过链内二硫键紧密折叠在一起;α亚单位的胞膜外部分有7个同源重复序列,靠近外侧N端的3个或4个重复序列中含有

Asp-X-Asp-X-Asp-Gly-X-X-Asp或类似结构,与integrin分子结合二价阳离子(Mg2+)有关,并与β亚单位共同构成粘合素分子的配体结合部位,其中α亚单位的二价阳离子结合区与 integrin分子配体结合的特异性和亲和力有关。某些integrin分子的α亚单位在转录后被剪接为两段,一段为劳作膜部分,较小,约20~30kDa;另一段为胞膜外部分,较大,两者通过二硫键连接起来(图2-1)。电镜下可见integrin分子有一个球状头部,向下伸展有两条杆状结构穿过细胞膜的磷脂双层。

(二)粘合素超家族的组成

目前已知至少有14种α亚单位和8种β亚单位,除α7和αIEL外,其它粘合素分子亚单位均已基因克隆成功。α亚单位和β亚单位组合构成粘合素分子并不是随机的,多数α亚单位只能与一种β亚单位结合构成异源双体,但也有的α亚单位可与几种不同的β亚单位组合,如αV(CD51)可分别同β1、β3、β5、β6和β8亚单位组成integrin分子,而大部分β单位则可以结合数种不同的α亚单位。目前按β亚单位的不同可将粘合素家族分为8个不同的组,在同一组中的粘合素分子不同成员β链相同,α链不同。已知α链和β链有20种组合形式(表2-1),β1、β3、β4、α3和α6等亚单位的mRNA分子可有不同的剪接形式,更增加了粘合素分子的多样性。

(三)粘合素分子的分布

粘合素分子的体内分布很广泛,多数粘合素分子可以表达于多种组织细胞,如VLA组的粘合素分子在体内广泛分布于各种细胞细胞;而多数细胞可同时表达数种不同的粘合素分子,对体外哺乳动物来源的细胞系粘合素分子表达研究发现,每一种细胞系可同时一有达2~10种不同的粘合素分子,但不同类型的细胞表达粘合素分子的种类是不同的。某些粘合素分子的表达则具有明显的细胞类型特性,如gpⅡb/Ⅲa(Ⅱb/β3)主要表在宾巨核细胞和血小板;LAF-1、Mac-1、P150/95只表达在白细胞表面;α6β4特异性表达在上皮细胞。每一种细胞粘合素分子的表达可随其分化与生长状态的改变而变化。

(四)粘合素分子识别配体的短肽序列

粘合素分子在与配体结合时所识别的只是配体分子中由数个氨基酸组成的短肽序列。不同的粘合素分子可能识别相同的短肽序列或同一个配体中不同的短肽序列。由于同一短肽序列可以存在于几种不同的配体中,因此,每一种粘合素分子可能有几种细胞外间质成分做为配体,而每一种细胞外间质中的配体也可能被几种不同的粘合素分子所识别。

1.识别RGD序列的粘合素分子α5β1、αvβ1、αⅡbβ3、αvβ3、αvβ5、αv β6都可以识别配体分子中的RGD序列,多种细胞外间质成分(包括FN、VN、FB、vWF)都含有RGD序列,它们在体内的分布极为广泛。含有RGD序列的人工合成肽可以抑制上述粘合素分子与配体的结合。

2.识别非RGD序列的粘合素分子α2β1、α4β1、αxβ2、αⅡbβ3、α4β7可分别识别其配体分子中DGEA、EILDV、GPRP、KQAGDV、EILDV等短肽序列,其中KQAGDV具有

与RGD类似的结构。上述短肽序列可以与RGD序列在于同一个配体分子中,如FN分子中同时存在RGD和EILDN序列。

表2 -1 integrin家族及其相应配体

分组成员α/β亚单位分子

量(kDa)

亚单位结

分布配体

结合位

VLA组(β1组)VLA-1

210/130

(CD49a/CD29)

α1β1 广泛CA,LM

VLA-2

165/130

(CD49b/CD29)

α2β1 广泛CA,LM DGEA VLA-3

135+25/130

(CD49c/CD29)

α3β1 广泛FN,LM,CA RGD? VLA-4

150/130

(CD49d/CD29)

α4β1 白细胞Mo FN,VCAM-1 EILDV VLA-5

(FNR)

135+25/130

(CD49e/CD29

α5β1 广泛FN RGD VLA-6

(LNR)

120+30/130

(CD49f/CD29

α6β1 广泛LM

α7β1 α7β1 LM

α8β1 α8β1 ?

VNR-β1

150/130

(CD51/CD29

αvβ1 VN,FN RGD

白细胞粘附受体组(β2组)LFA-1

180/95

(CD11a/CD18)

αLβ2 白细胞

ICAM-1

ICAM-2

ICAM-3

Mac-1

165/95

(CD11b/CD18)

αMβ2

吞噬细胞

大颗粒细

C3bi,FB

X因子,

ICAM-1

P150,95

150/95

(CD11c/CD18

αXβ2

吞噬细胞

大颗粒细

FB,C3bi GPRP

血小板糖(β3组)gpⅡbⅢa

120+24/105

(CD41/CD61)

αⅡbβ3

血小板

En,Mo,

PMN

FB,FN,vWF

Thr,

RGD

KQAGDV VNR-β3

125+24/105

(CD51/CD61)

αvβ3 广泛

VN,FB,

vWE,Thr

FN,CA

RGD

β4组α6β4 120+30/105

(CD49f/CD104)

α6β4 表皮细胞LM

β5组 VNR-β5 125+25/110 αvβ5 广泛VN,FN RGD

(CD51/-)

β6组αvβ6 125+25/106

(CD51/-)

αvβ6 FN RGD

β7组α4β7

(LPAM-1)

150/-

(CD49d/-)

α4β7

αIELβ7

FN,VCAM-1

?

EILDV

β8组αvβ8 150/-

(CD51/-)

αvβ8 ?

注:FN(fibronectin,纤粘连蛋白)

LM(lamnin,层粘连蛋白)

Thr(thrombospondin,血栓海绵蛋白)

VLA(very alte appearingantigen,很晚出现的抗原)

CA(collagen,胶原蛋白)

VN(vitronectin,玻璃粘连蛋白)

FB(fibronogen,血纤维蛋白)

vWF(von Willebrand factor,von Willebrand 因子)

RGD:Arg-Gly-Asp(精-甘-天冬)

KQAGDV:Lys-Gln-Ala-Gsp-Val(赖-谷氨酰胺-丙-甘-天冬-缬)

DGEA:Asp-Gly-Glu-Ala(天冬-甘-谷-丙)

GPRP:Gly-Pro-Arg-Pro(甘-脯-精-脯)

EILDV:Glu-Ile-Leu-Asp-Val(谷-异亮-亮-天冬-缬)

ICAM-1:intercellular adhesion molecule-1,细胞间粘附分子-1

ICAM-2:intercellular adhesion molecule-2,细胞间粘附分子-2

ICAM-3:intercellular adhesion molecule-3,细胞间粘附分子-3

VCAM-1:vasccular cell adhesion molecule-1,血管细胞粘附分子-1

IEL:intraepithelial lymphocyte, 上皮内淋巴细胞

LPAM-1:leukocyte platelet adhesion molecule-1,白细胞血小板粘附分子-1

3.识别序列尚未明确的粘合素分子包括α1β1、α6β1、α7β1、α8β1、αLβ2、αMβ2、α6β4、αIELβ7、αvβ8等。

(五)纤维粘连蛋白

integrin分子的配体包括多种细胞外基质成份,其中纤粘连蛋白(fibronectin,FN)与β1、β3、β5、β6和β7等多组integrin分子受体结合,对细胞的生长、分化、活化、移动等过程具有重要的调节作用。

FN的分子量约为550kDa,由α、β两条多肽链构成,两条链在羧基端以二硫键相连。α链和β链的氨基酸组成和结构相似,α链略长。FN由成纤维细胞、血管内皮细胞、巨噬细胞等合成和分泌,通常以两种形式存在:(1)血浆FN,以二聚体形式存在,含量可高达300μg/ml;(2)存在于结缔组织有关的基底膜及多种细胞表面,为多聚体。两种形式的FN结构有所差异。不同种属的FN具有高度同源性,分子中均含有三类同源重复序列,每类重复序列有其特定的肽链折叠方式。①Ⅰ型重复序列(type I repeat):由约45个氨基酸残基构成,分布于FN分子的氨基端和羧基端;②Ⅱ型重复序列(type Ⅱ repeat):由约60个氨基酸组成,插入氨基端Ⅰ型重复序列之间;③Ⅲ型重复序列(type Ⅲ repeat):由约90个氨基酸构成,分布于肽链的中间部分(图2-2)。

不同细胞来源的FN分子结构亦略有差异,这是由于mRNA水平上不同的剪接方式造成的,表现为(1)分子中两个特定位置上Ⅲ型重复序列的存在或缺如;(2)位于FN分子羧基端的可变片段,全长为120个氨基酸残基;不同细胞来源的FN分子多肽链中具有此片段的全部或其中某一部分(图2-2)。在人体内其它分子中也可发现FN分子Ⅰ、Ⅱ、Ⅲ型重复序列的同源序列,如凝血因子Ⅻ分子中有Ⅰ型同源重复序列,凝血酶原中有Ⅱ型同源重复序列,IL-6受体胞外部分含有Ⅲ型同源重复序列。

图2-2 纤粘连蛋白分子结构模式图

纤维粘连蛋白分子可以结合多种分子,如胶原蛋白、肝素、血纤维蛋白及细胞表面受体,其中与细胞表面受体的结合主要是通过纤粘连蛋白分子中的RGD序列。

二、免疫球蛋白超家族

在参与细胞间相互识别、相互作用的粘附分子中,有许多分子具有与IgV区或C区相似的折叠结构,其氨基酸组成也有一定的同源性,属于免疫球蛋白超家族(immunoglobulin superfamily, IGSF)的成员。有关免疫球蛋白超家族分子的结构特点和基因结构参见第三章。免疫球蛋白超家族粘附分子的种类、分布及其配体见表2-2。免疫球蛋白超家族粘附分子的配体多为免疫球蛋白超家族的粘附分子或粘合素家族的分子。

有关CD2、CD4、CD8、CD28和CD58分子的结构和功能参见第一章“人白细胞分化抗原”,MHCⅠ类抗原和Ⅱ类抗原参见第六章“主要组织相容性复合体”。本节将简要介绍ICAM和VCAM-1分子的结构。

1.ICAM-1(intercellular adhesion molecule-1) ICAM-1是最早发现的免疫蛋白超家族粘附分子之一,以后又相继发殃了ICAM-2和ICAM-3,它们的免疫球蛋白结构域氨基酸序列具有同源性,且都可以结合LFA-1分子。不同的ICAM分子在体内的分布范围有较大差异,ICAM-1分子分布广泛,如淋巴结和扁桃体血管内皮细胞,胸腺树突状细胞,扁桃体和肾小球上皮细胞,白细胞,巨噬细胞和成纤维细胞等,IL-1、TNF-α、IFN和LPS可促进ICAM-1分子的表达;ICAM-2则分布较局限,主要表达的血管内皮细胞;而ICAM-3

只表达在血细胞。ICAM-1分子为单链跨膜糖蛋白,核心多肽为55kDa,由于不同种类细胞上ICAM-1分子所含寡糖分子数有所差别,ICAM-1分子量可在80~11kDa范围。ICAM-1分子胞膜外部分具有5个免疫球蛋白样结构域,第2和第3结构域之间有一段连接序列,富含脯氨酸,类似免疫球蛋白的绞链区,可发生扭曲。以此连接区为界,氨基端的D1和D2结构域可结合LFA-1分子和鼻病毒,而羧基端侧的D3结构域可以结合Mac-1分子(图

2-3)。ICAM-2和ICAM-3胞膜外部分分别有2个和5个免疫球蛋白结构域,ICAM-2分子2个结构域与ICAM-1N端2个结构域有34%同源性,ICAM-1D1结构域中结合LFA-1分子具有关键作用。

图2-3 ICAM-1分子的结构(模式图)

表2-2 免疫球蛋白超家族(IGSF)粘附分子的种类、分布和识别配体

IGSF粘附分子分布分子量

(kDa)

配体

LFA-2(CD2)T细胞,胸腺细胞,大颗粒淋巴

细胞

50 LFA-3(IHSF)

LFA-3(CD58)广泛40~65 LFA-2(IHSF)

ICAM-1(CD54)广泛80~114 LFA-1(integrin)

ICAM-2(CD102)内皮细胞60

LFA-1

(integrin)

ICAM-3(CD50)外周血静止白细胞140/108 LFA-1(integrin)

CD4 抑制细胞诱导亚群,辅助细胞诱

导亚群

55 MHC-Ⅱ(IGSF)

CD8 抑制性T细胞,杀伤性T细胞32/36 MHC-Ⅰ(IGSF)MHC-Ⅰ广泛44/12 CD8(IGSF)

MHC-ⅡB细胞,活化T细胞,活化内皮

细胞,巨噬细胞

32~

34/29~32

CD4(IGSF)

CD28 T细胞44 B7/BB1(IGSF)B7/BB1(CD80)活化B细胞,活化单核细胞60 CD28(IGSF)

NCAM-1(CD56)神经元,胚胎细胞,NK 120,140,

180

NCAM-1(IGSF)

VCAM-1(CD106)内皮细胞,上皮细胞,树突细胞,

巨噬细胞

100,110

VLA-4

(integrin)

PECAM-1

(CD31)

白细胞,血小板,内皮细胞140 PECAM-1(IGSF)

注:LFA:淋巴细胞功能相关抗原

VCAM:血管细胞粘附分子

NCAM:神经细胞粘附分子

ICAM:细胞间粘附分子

PECAM:血小板内皮细胞粘附分子

的氨基酸序列,并同样具有结合LFA-1分子的功能。

其它部分免疫球蛋白超家族粘附分子的结构将在本书有关章节中介绍。

2.VCAM-1(vascular cell adhesion molecule-1)血管细胞粘附分子,又称诱导性细胞粘附分子(vascular cell adhesion ,INCAM),意指在IL-1、TNF-α等细胞因子活化的血管内皮细胞上表达,分子量100kDa或110kDa,最近命名为CD106,VCAM-1的配体是分布在白细胞表面的VLA-4分子。

三、selectin家族

selectin家族最初被称为外源凝集素细胞粘附分子家族(lectin cell adhesion moleculefamily,LEC-CAM family).selectin是由select和lectin两词合并而来,目前国内尚无统一译法,选择凝集素一词似较为妥当。

(一)selectin分子的基本结构

selectin分子为Ⅰ型穿膜的糖蛋白,可分为胞膜外区、穿膜区和胞浆区。selectin

家族各成员胞膜外部分有较高的同源性,结构类似,均由三个结构域构成。(1)其外侧氨基端(约120个氨基酸残基)为钙离子依赖的C型外源凝集素结构域(calcium dependent lectin domain),可以结合碳水化合物基团,是selectin分子的配体结合部位;(2)紧邻外源凝集素结构域是表皮生长因子样结构域(epidermal growth factor-like domain),约含35个氨基酸残基,EGF样结构域虽不直接参加配体的结合,但对维持selectin分子的构型是必需的;(3)近胞膜部分是数个由约60个氨基酸残基构成的补体调节蛋白(complement regulatory protein)重复序列或称为补体结合蛋白(complementbinding protein)重复序列,它们与补体受体(如CR1、CR2等)和C4结合蛋白(C4bp)等结构同源。各种selectin分子的穿膜区和胞浆区没有同源性(见图2-4)。selectin分子的胞浆区与细胞内骨架相联,去除胞浆部分的selectin分子虽仍可结合相应配体,却失去其介导细胞间粘附的作用。

(二)selectin家族的组成

目前已发现selectin家族中有三个成员:L-selectin、P-selectin和E-selectin,L、P和E分别表示leukocyte,platelet和endothelium,是最初发现相应selectin分子的三种细胞,故得名。selectin家族成员的细胞分布和相应配体见表2-3。

图2-4 selectin分子的结构模式图

表2-3 selectin 家族的组成、分布及其相应配体

selectin家族成员分布分子量(kDa)

配体

L-selectin(CD62L,LECAM-1) 白细胞75~80 PNAd LAM Mel14(小鼠)S-Lewis x P-selectin 血管内皮细胞,血小板140 S-Lewis x

(CD62P,GMP-140,PADGEM) (凝血酶、组胺、白三烯刺激

后从α颗粒内与质膜融合而

表达在细胞表面)

CD15

E-selectin(CD62E,ELAM-1) 血管内皮细胞(主要在毛细血

管后静脉,IL-1,TNF活化后

表达)

115

S-Lewis x

S-Lewis x

CLA

注:LECAM:leukocyteendothelial cell adhesion molecule,白细胞内皮细胞粘附分子PNAd:peripheral lymphonode vascular addressin,外周淋巴结血管地址素

LAM:leukocyte adhesion molecule,白细胞粘附分子

GMP-140:granule membrane protein-140,颗粒膜蛋白-140

PADGEM:plateletactivation-dependent granule external membrane,血小板活化依赖性颗粒外膜

ELAM-1:endothelial leukocyteadhesion molecule-1,内皮细胞白细胞粘附分子-1 CLA:cutaneous lymphocyte associated antigen,皮肤淋巴细胞相关抗原(三)selectin分子识别的配体

与其它粘附分子不同,selectin分子识别的配体都是一些寡糖基团。目前对于这种特殊的受体一配体结合的研究主要采用以下几种方法:(1)抗寡糖决定簇特异性单克隆抗体阻断试验;(2)外源性寡糖分子阻断试验;(3)纯化的内源性寡糖结合试验;(4)特异糖基转移酶改变相应寡糖结构后其结合能力的改变。在研究中可同时采用不同的实验

方法从不同的角度分析以期获得正确的结论。迄今为止发现的selectin分子的配体都是具有唾液酸化的路易斯寡糖(Sialyl-Lewis)或类似结构的分子(图2-5)。与蛋白质分子抗原不同,直接决定细胞表面某种寡糖表达的因素是与某些特定的糖基转移酶或碳水化合物修饰酶的作用有关,这些酶的作用可能与细胞的生长与代谢状态有着密切的关联。一种寡糖基团可以存在于多种糖蛋白或糖脂分子上,并分布于多种细胞表面,因此selectin 分子的配体在体内的分布较为广泛。如CD15分子可存在于LFA-1、Mac-1 、CR1等不同的糖蛋白分子上,白细胞、血管内皮细胞、某些肿瘤细胞表面及血清中某些糖蛋白分子上都存在有selectin分子识别的碳水化合物基团。

图2-5 路易斯寡糖的结构

注:Gal:半乳糖Fuc:岩藻糖Glc:葡萄糖NAc:N乙酰基NeuAc:唾液酸selectin分子对寡糖结构识别的特异性是相对的,它往往可以结合与其特异配体结构类似的寡糖,只是结合的亲和力较低。如P-selectin不仅可以结合CD15分子

(lacto-N-fucopen-taose,LNFⅢ的一种异构体LNFⅡ。

四、Cadherin家族

Takeichi最早发现一种介导细胞间相互聚集的粘附分子,在有Ca2+存在时可以抵抗蛋白酶的水解作用,以后又发现两种作用和特性均与其类似的粘附分子,它们的氨基酸序列也有同源性,遂将其命名为Cadherin(Ca2+dependent cell adhesion molecules family)家族。Cadherin家族的粘附分了对于生长发育过程中细胞的选择性聚集具有至关重要的作用。

(一)Cadherin分子的结构

Cadherin分子均为单链糖蛋白,约由723~748个氨基酸构成,不同的Cadherin分子在氨基酸水平上有43~58%的同源性。Cadherin分子为Ⅰ型膜蛋白,由胞膜外区、穿膜区和胞浆区三部分组成。胞膜外区有数个重复结构域,并含有由4~5个氨基酸残基组成的重复序列,近膜部位另有4个保守的半胱氨酸残基,分子外侧N端的113个氨基酸残基构成Cadherin分子的配体结合部位。此外胞膜外部分具有结合钙离子的作用(图2-6)。Cadherin分子的胞浆区高度保守,并与细胞内骨架相连,靠近C端的一半对于Cadherin 分子介导的细胞粘附可能具有重要作用,去除此部分的Cadherin分子虽可与配体结合却丧失介导细胞间粘附的作用。推测是由于Cadherin分子与细胞内骨架相连,当Cadherin 分子胞膜外区与相应配体结合后,向胞浆内部分传递信号,导致胞浆区与细胞骨架相接,稳定胞膜外区与配体的结合,发挥细胞粘附功能。

图2-6 Cadherin分子的结构模式图

注:图中黑区部分显示Cadherin分子内重复结构域;LDRE及DXNDN为重复序列。

(二)Cadherin家族的组成和分布

目前已知Cadherin家族共有3个成员:E-Cadherin、N-Cadherin和P-Cadherin。

E-Cadherin也被称作Uvomorulin、L-CAM或Cell-CAM120/80。不同的Cadherin分子在体内有其独特的组织分布,它们的表达随细胞生长、发育状态不同而改变。

表2-4 Cadherin家族的组成、分布及其配体

Cadherin家族成员分子量(kDa) 主要分布组织配体

E-Cadherin 124 上皮组织E-Cadherin

N-Cadherin 127 神经组织、横纹肌、心肌N-Cadherin

P-Cadherin 118 胎盘、间皮组织、上皮细胞P-Cadherin (三)Cadherin分子识别的配体

Cadherin分子以其独特的方式相互作用,其配体是与自身相同Cadherin分子(图2-7)。以这种方式相互作用的粘附分子除Cadherin家族的粘附分子外,还有属于免疫球蛋白超家族的CD31(PECAM)和CD56(NCAM)。

图2-7 Cadherin分子相互作用的模式图

五、其它未归类的粘附分子

除了上述四类粘附分子外,还有一些粘附分子目前尚未归类,包括一组做为selectin 分子配体的寡糖决定簇或载有这类寡糖决定簇的糖蛋白,如CD15、S-Lewis x、S-Lewis a;此外还有CD44、MAd、MLA等粘附分子。

(一)selectin分子结合的配体

1.CD15 CD15主要分布在粒细胞表面,是Lewis寡糖的异构体。在第五届白细胞分化抗原国际会议上,将唾液酸化的CD15命名为CD15s。S-Lewis x和S-Lewis a是唾液酸化的路易斯寡糖,两者互为异构体,S-Lewis x主要分布在白细胞、血管内皮细胞及某些肿瘤表面,S-Lewis a主要表达的某些肿瘤细胞。上述寡糖决定簇与多肽连接形成多种糖蛋白存在于某些细胞表面。

2.PNAd和CLA selectin分子的配体还包括有另外一些细胞表面的糖蛋白,包括PNAd 和CLA。PNAd(peripheral lymphonode addressin)是表达在外周淋巴结高静脉内皮细胞表面的一组糖蛋白,可与特异性抗L-selectin分子配体的单克隆抗体MECA-79发生反应,分子量在50~200kDa之间,分子上载有唾液酸化的寡糖决定簇。CLA(cutaneous lymphocyte associated antigen)是表达在定向归位于皮肤炎症部位的记忆T细胞表面的一种糖蛋白,分子上存在类似S-Lewis x结构的寡糖决定簇,可与血管内皮细胞表达的

E-selectin分子相结合。唾液酸酶处理可以去除PNAd、CLA与selectin分子的结合活性。

(二)CD44

1.CD44分子的结构和分布CD44是一种细胞表面糖蛋白,又称Pgp-1、Ly-24、细胞外基质受体Ⅲ(ECM-RⅢ)和Hermes。CD44分子的基因在转录时可取用不同的外显子使在mRNA 水平上有不同的拼接方式,翻译后糖基化的方式和程度也可以不同,导致成熟的CD44分子有多种变异体,按其分子量的不同可大致分为80~90kDa、110~160kDa和180~215kDa 三类,每种变异体有其相应的组织分布。仅由组成性外显子编码的氨基酸序列组成的CD44分子称为标准CD44分子(CD44S),有314个氨基酸,其中胞膜外区248个氨基酸,跨膜区21个氨基酸,胞浆区72个氨基酸,核心蛋白分子量为37.2kDa,经糖基化后为80~90kDa,与硫酸软骨素结合后分子量可达180~200kDa。CD44分子胞膜外区靠近N端约100氨基酸范围内有6个Cys,组成三个二硫键,形成一个球形结构,能被Hermes-1、KM-201单抗所识别,可能具有与透明质酸结合的功能。胞膜外有6个N-连接糖基化位点和7个O连接糖基化位点,此外还有4个硫酸软骨素连接位点。Hermes-3McAb识别CD44152~235间的84氨基酸肽段,此区域含有许多亲水氨基酸,折叠后暴露于分子的外侧,Hermes-3McAb能阻断CD44(淋巴细胞)与粘膜HEV上的地址素结合。CD44分子上的硫酸软骨素介导CD44与纤维连蛋白结合。CD44还可与细胞外基质胶原蛋白Ⅰ和Ⅳ及层粘蛋白结合。

CD44分子分布十分广泛,如T细胞、胸腺细胞、B细胞、粒细胞、神经胶质细胞、成纤维细胞和上皮细胞等。

图2-8 CD44分子的结构

注:●- N-连接的糖基化位点

○- ○-连接的糖基化位点

* 硫酸软骨素连接位点

2.CD44分子的变异体CD44多种变异体主要是由于CD44分子基因的不同拼接方式和翻译后不同修饰所造成的。

(1)CD44分子基因的不同拼接方式:人CD44基因定位于11号染色体短臂上,CD44基因有20个高度保守的外显子,每个外显子的长度从70bp到210bp不等,被长短不一的内含子所分隔。CD44基因的外显子按表达方式不同可分为以下两类:①10个组成型外显子(C1~C10),转录片段存在于所有CD44转录产物中。仅由组成型外显子编码的氨基酸序列组成的CD44分子称为标准CD44分子(CD44S)。体内造血细胞(haemopoietic cell)主要表达糖基化的CD44S,称为标准CD44H。②10个变异性拼接外显子(V区外显子,V1~V10),总长为1245bp。这10个V区外显子介于第5和第6个组成型外显子之间(图2-9),其转录产物位于CD44S分子第222个密码子的第一和第二个核苷酸之间。V区外显子可以多种不同的方式进行拼接。参加拼接的V区外显子可多可少,从而产生了不同大小的转录产物。人CD44基因中只有V2~V10外显子,不含V1外显子。含有V区外显子编码的氨基酸序列的CD44分子称为CD44V,目前发现的CD44V有10余种,如CD44V(V2~V10)、CD (V8~V10)、CD44V(V4~V7)、CD44V(V6、V7)、CD44V(V6)等。

(2)CD44分子的翻译后修饰:CD44分子是一种高度糖基化的蛋白,其翻译后修饰包括N-糖基化、O-糖基化和硫酸软骨素侧链的连接。CD44分子中组成性外显子和V区处显子的编码序列均含有糖基化位点和硫酸软骨素侧链的连接位点。CD44分子的胞膜外区N

端部分有5个N-糖基化位点,另有一个N-糖基化位点位于近胞膜部位。CD44分子胞膜外

区近胞膜部位富含丝氨酸和苏氨酸,是O-连接糖基化位点,在此区域内还存在有丝氨酸-甘氨酸二聚肽结构,被认为是硫酸软骨素连接位点(图2-8)。含V区外显子编码序列的CD44分子经糖基化后分子量可达110~160kDa,而CD44分子与硫酸软骨素分子的连接可使其分子量达180~215kDa。

图2-9 CD44分子的基因结构

3.CD44分子的主要功能CD44是细胞表面的粘附分子,主要参与细胞-细胞,细胞-基质之间的粘附。

(1)CD44分子的配体为细胞外基质,主要有透明质酸、层粘连蛋白、纤粘连蛋白和胶原蛋白等多种配体,不同的CD44分子识别的配体有所差别。如85kDa的CD44分子可结合透明质酸分子的硫酸软骨素侧链可与纤粘连蛋白羧基末端的肝素结合区结合。因此连接有硫酸软骨素侧链的CD44分子可以结合纤粘连蛋白。

(2)CD44分子作为淋巴细胞“归巢”受体(lymphocyte homing receptor)与高内皮静脉(HEV)结合,参与淋巴细胞归位到淋巴组织。

(30)参与T细胞的活化,抗CD44抗体可促进T细胞对抗CD2和CD3抗体的应答,某些抗CD44抗体可提高CD2/LFA-3依赖的T细胞与单核细胞的粘附作用。

(4)与细胞骨架蛋白结合,参与细胞伪足形成和迁移运动。CD44分子胞浆区丝氨酸和苏氨酸磷酸化后,与细胞膜内侧的锚蛋白(ankyrin)结合的亲和力增加,通过锚蛋白与细胞骨架发生连接。

云计算的概念及特点

云计算概念 云计算是近5年兴起的一种网络应用模式。该应用的独特性在于它是完全建立在可自我维护和管理的虚拟资源层上的。使用者可以按不同需求动态改变需要访问的资源和服务的种类和数量。对于云计算的理解,分为狭义和广义的两类。 狭义云计算是指狭义云计算是指IT基础设施的交付和使用模式;广义云计算是指服务的交付和使用模式。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务,它具有超大规模、虚拟化、可靠安全等独特功效。 云计算特点 (1)计算资源集成提高设备计算能力 云计算把大量计算资源集中到一个公共资源池中,通过多主租用的方式共享计算资源。虽然单个用户在云计算平台获得服务水平受到网络带宽等各因素影响,未必获得优于本地主机所提供的服务,但是从整个社会资源的角度而言整体的资源调控降低了部分地区峰值荷载提高了部分荒废的主机的运行率,从而提高资源利用率。 (2)分布式数据中心保证系统容灾能力 分布式数据中心可将云端的用户信息备份到地理上相互隔离的数据库主机中,甚至用户自己也无法判断信息的确切备份地点。该特点不仅仅提供了数据恢复的依据,也使得网络病毒和网络黑客的攻击失去目的性而变成徒劳,大大提高系统的安全性和容灾能力。 (3)软硬件相互隔离减少设备依赖性 虚拟化层将云平台上方的应用软件和下方的基础设备隔离开来。技术设备的维护者无法看到设备中运行的具体应用。同时对软件层的用户而言基础设备层透明的,用户只能看到虚拟化层中虚拟出来的各类设备。这种架构减少了设备依赖性,也为动态的资源配置提供可能。 (4)平台模块化设计体现高可扩展性 目前主流的云计算平台均根据SPI架构在各层集成功能各异的软硬件设备和中间件软件。大量中间件软件和设备提供针对该平台的通用接口,允许用户添加本层的扩展设备。部分云与云之间提供对应接口,允许用户在不同云之间进行数据迁移。类似功能更大程度上满足了用户需求,集成了计算资源,是未来云计算的发展方向之一。(5)虚拟资源池为用户提供弹性服务 云平台管理软件将整合的计算资源根据应用访问的具体情况进行动态调整,包括增大或减少资源的要求。因此云计算对于在非恒定需求的应用,如对需求波动很大、阶段性需求等,具有非常好的应用效果。在云计算环境中,既可以对规律性需求通过事先预测事先分配,也可根据事先设定的规则进行实时公台调整。弹性的云服务可帮助用户在任意时间得到满足需求的计算资源。 (6)按需付费降低使用成本 作为云计算的代表按需提供服务按需付费是目前各类云计算服务中不可或缺的一部分。对用户而言,云计算不但省去了基础设备的购置运维费用,而且能根据企业成长的需要不断扩展订购的服务,不断更换更加适合的服务,提高了资金的利用率。 1

构建《高中生物学概念图》必修一第二章:组成细胞的分子

构建《生物学概念图》——让记忆更加系统 玉溪师院附中:李荣凯 第二章组成细胞的分子 (1)本章核心概念 1)大量元素(macroelement):细胞内含量较多的元素,如:C、H、O、N、P、K、Ca、 Mg等。 2)微量元素(microelement):细胞内含量较少的元素,如:Fe、Mn、Zn、Cu、B、Mo等。 3)糖类(carbohydrate):又称“碳水化合物”,由C、H、O三种元素构成。是主要的能源物 质;主要分为单糖、二糖和多糖等。 4)脂质(lipids):脂肪和类似脂肪物质的统称。组成脂质的化学元素主要是C、H、O,有 些脂质还含有P和N。 5)蛋白质(protein):生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通 过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。蛋白质是组成细胞的有机物中含量最多的物质。蛋白质是生命活动的主要承担者。 6)核酸(nucleic acid):由核苷酸或脱氧核苷酸通过3′,5′-磷酸二酯键连接而成的一类生 物大分子。是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。 7)水(water):氢和氧的化合物,化学式为H2O。细胞内的水有两种形式存在:自由水和结 合水。自由水和结合水是可以相互转化的,如血液凝固时,部分自由水转化为结合水。 自由水/结合水的值越大,新陈代谢越活跃。结合水约4.5%,是细胞结构的重要组成成分。水在细胞内的生理功能有:①、良好溶剂;①、参与多种化学反应;①、运送养料和代谢废物。 8)无机盐(inorganic salts):无机化合物中盐类的统称。细胞中大多数无机盐以离子的形式 存在。无机盐在细胞内的生理功能有:①、构成某些重要的化合物,如:叶绿素中含有Mg2+、血红蛋白中含有Fe2+等;①、维持生物体的生命活动(如动物缺钙会抽搐);①、

高中生物专题复习:细胞的分子组成

细胞的分子组成 一、选择题 1.下列关于核酸的叙述,错误的是( ) A.核酸分子多样性取决于核酸中核苷酸的数量和排列顺序 B.RNA具有传递信息、催化反应、转运物质等功能 C.双链DNA分子的每个脱氧核糖上均连着一个磷酸和一个碱基 D.叶绿体与线粒体中含有三种RNA 答案:C 2.如表所示是糖类、脂肪主要组成元素的质量分数.分析数据得出的下列结论中,不正确的是( ) 种类 质量分数/% C H O 脂肪73~77 11~12.5 9.0~12 糖类52~58 7.0~8.0 40~45 A. B.质量相同的脂肪和糖类被彻底分解时,脂肪产生的能量多 C.脂肪、糖类在体内代谢的共同代谢终产物是CO2和H2O D.脂肪是生物体进行生命活动的主要能源物质 答案:D 3.(北师大附中测试)下列关于细胞中化合物的叙述,正确的是( ) A.磷脂属于脂肪,是细胞膜的组成成分 B.胃蛋白酶属于蛋白质,是传递信息的物质 C.糖原属于多糖,是植物细胞内的储能物质 D.DNA属于核酸,是大多数生物的遗传物质 答案:D 4.细胞的膜蛋白具有物质运输、信息传递、免疫识别等重要生理功能.下列图中,可正确示意不同细胞的膜蛋白及其相应功能的是( ) 答案:D 5.如图为C、H、O、N、P等元素构成大分子物质甲~丙及结构丁的示意图.下列相关叙述中,不正确的是( )

A.若图中物质甲能与碘液发生蓝色反应,则单体3为葡萄糖 B.若图中丁是一种细胞器,则单体1为氨基酸,单体2为核糖核苷酸 C.若图中丁能被碱性物质染成深色,则物质丙可控制物质乙的合成 D.若图中物质丙在细胞增殖过程中出现加倍现象,则丁也会同时加倍 答案:D 6.(东北三省三校联考)有关生物体内水和无机盐的叙述,正确的是( ) A.镁是所有光合色素的组成成分 B.植物蒸腾作用失去的水是自由水 C.秋冬季节,植物体内结合水与自由水比例下降 D.骨骼和牙齿中的钙主要以离子形式存在 答案:B 7.结合下列曲线,分析有关无机物在生物体内含量的说法,错误的是( ) A.曲线①可表示人一生中体内自由水与结合水的比值随年龄变化的曲线 B.曲线②可表示细胞由休眠转入旺盛代谢过程中自由水与结合水比值的变化 C.曲线③可以表示一粒新鲜的玉米种子在烘箱中被烘干的过程中,其内无机盐的相对含量变化 D.曲线①可以表示人从幼年到成年体内含水量的变化 答案:C 8.下列有关无机盐的说法,错误的是( ) A.菠菜中铁的含量较高,所以缺铁性贫血患者可以多吃些菠菜 B.含氮无机盐能促进植物细胞的分裂和生长,使枝叶长得繁茂 C.玉米与人体相比,人体内钙的含量较高,其主要原因是人体骨骼、牙齿的重要成分是钙盐 D.用含有少量钙的生理盐水灌注,蛙心脏可持续跳动数小时,否则,蛙心脏则不能维持收缩,说明钙盐为蛙心脏的持续跳动提供能量 答案:D 9.(江西重点中学联考)番茄叶一旦被昆虫咬伤后,会释放出系统素(一种由18个氨基酸组成的多肽链)与受体结合,激活蛋白酶抑制剂基因,抑制害虫和病原微生物的蛋白酶活性,限制植物蛋白的降解,从而阻止害虫的取食和病原菌繁殖.下列关于系统素的描述,正确的是( )

细胞粘附因子

细胞粘附因子 前言 细胞粘附分子(cell adhesion molecule,CAM)是参与细胞与细胞之间及细胞与细胞外基质之间相互作用的分子。细胞粘附指细胞间的粘附,是细胞间信息交流的一种形式。而信息交流的可溶递质称细胞粘附分子(cell adhesion molecule,CAM)。CAM是一类独立的分子结构,是通过识别与其粘附的特异性受体而发生相互间的粘附现象。 细胞粘附分子的组成 细胞粘附分子都是跨膜糖蛋白,分子结构由三部分组成:①胞外区,肽链的N端部分,带有糖链,负责与配体的识别;②跨膜区,多为一次跨膜;③胞质区,肽链的C端部分,一般较小,或与质膜下的骨架成分直接相连,或与胞内的化学信号分子相连,以活化信号转导途径。 细胞粘附分子的分类 可大致分为五类:钙粘素、选择素、免疫球蛋白超家族、整合素及透明质酸粘素。 一、钙粘素 钙粘素(cadherin)属亲同性CAM,其作用依赖于Ca2+。至今已鉴定出30种以上钙粘素,分布于不同的组织。 钙粘素分子结构同源性很高,其胞外部分形成5个结构域,其中4个同源,均含Ca2+结合部位。决定钙粘素结合特异性的部位在靠N末端的一个结构域中,只要变更其中2个氨基酸残基即可使结合特异性由E-钙粘素转变为P-钙粘素。钙粘素分子的胞质部分是最高度保守的区域,参与信号转导。 钙粘素通过不同的连接蛋白质与不同的细胞骨架成分相连,如E-钙粘素通过α-、β-、γ-连锁蛋白(catenin)以及粘着斑蛋白(vinculin)、锚蛋白、α辅肌动蛋白等与肌动蛋白纤维相连;桥粒中的desmoglein及desmocollin则通过桥粒致密斑与中间纤维相连。 钙粘素的作用主要有以下几个方面: 1.介导细胞连接,在成年脊椎动物,E-钙粘素是保持上皮细胞相互粘合的主要CAM,是粘合带的主要构成成分。桥粒中的钙粘素就是desmoglein 及desmocollin。 2.参与细胞分化,钙粘素对于胚胎细胞的早期分化及成体组织(尤其是上皮及神经组织)的构筑有重要作用。在发育过程中通过调控钙粘素表

软件定义网络SDN(特点、实现途径与展望)

软件定义网络SDN(特点、实现途径与展望) 2013/7/19 10:19:04 SDN软件定义网络简介 软件定义网络(SDN,Software Defined Network),是由美国斯坦福大学clean slate研究组提出的一种新型网络创新架构,其核心技术OpenFlow通过将路由器和交换机中的控制平面分离出数据平面,这个控制平面是开放的,并且受到集中控制,同时将命令和逻辑发送回硬件的数据平面。从而实现了网络流量的灵活控制,为核心网络及应用的创新提供了良好的平台。相关的概念还有:软件定义环境、软件定义存储、软件定义数据中心、OpenDaylight 开源SDN项目。 软件定义网络目的是将网络控制与物理网络拓扑分离,从而摆脱硬件对网络架构的限制。这样的话,企业就可以通过软件对网络架构修改,获得企业对网络的需求,达到底层交换机和理由器等硬件无需替换,为企业节省成本。软件定义网络能够从路由器和交换机中的控制平面分离出数据平面,这个控制平面原本是专有的,只有开发它们的供应商知道,而在SDN 中,控制平面将是开放的,并且受到集中控制,同时将命令和逻辑发送回硬件(路由器或交换机)的数据平面。 SDN软件定义网络强调两方面的能力: 1、控制转发分离:传统网络设备紧耦合的网络架构,被分拆成控制和转发两个平面。同时,在控制平面,增加集中控制器进行整体调度,将命令和逻辑发送回硬件(路由器或交换机)的数据转发平面。 2、开放API及软件定义:即通过基于SDN技术的对外开放的API进行软件编程,实现整个网络集中的管理能力,而不需要在每个路由器或交换机上分别以设备为中心进行管理。 软件定义网络的特点 简单化,可以实现中心控制,可以使得很多复杂的协议处理得到简化; 快速部署与维护; 灵活扩展,从一个机柜大的网络还可以扩展到像大的运营商的网络,也可以从一个控制器得到控制; 开放性,因OpenFlow是其重要的组成部分,它的数据转发功能和网络控制功能是分离的,由于这种分离可以分别由交换机来处理,分别由网络控制器处理,从而简化了网络的管理,由此可以使用户有更多的选择自定义网络节省他的投资,使用户选择多家设备共存,打破垄断。用户根据自己的需求和需要在任何时候方便升级。 软件定义网络的安全优势 拥有了自由移动的SDN软件定义网络后,工程师将能够通过快速且高水平地查看网络的所有区域以及修改网络来改变规则。 这种自由和控制还能为你的系统带来更好的安全性。通过快速限制以及从中央视角查看网络内部的能力,管理人员可以有效地作出更改。例如,如果你的网络中爆发了恶意软件,通过SDN软件定义网络和OpenFlow,你将能够迅速地从集中控制平面阻止这种流量来限制这种爆发,而不需要访问多个路由器或交换机。 快速对网络作出调整的能力使管理人员能够以更安全的方式来执行流量整形和数据包QoS.这种能力现在已经存在,但速度和效率不好,当管理人员在试图保护网络安全时,这将限制他们的能力。

软件定义网络(SDN)的国内外研究与发展现状

题目:软件定义网络(SDN)的国内外研究与发展现状一、背景 Software Defined Networking是Kate Greene创造的一个词,在大约2009年提出的。它是指网络的控制平面与实际的物理上的拓扑结构互相分离。这种分离可以使控制平面用一种不同的方式实现,比如分布式的实现方式;另外,它还可以改变控制平面的运行环境,比如不再运行在传统交换机上的那种低功耗CPU上。 所以SDN的关键所在就是控制层与网络数据层是分离的,并不是传统的嵌入关系。并且这种关系在物理实现上也是分离的,这意味着控制层与网络数据在不同的服务器与路由器上操作。而连接两者的“协议”就是OpenFlow,OpenFlow的要点就是相当于给路由器安装一个小软件OpenFlow(后文详细论述),然后研究人员就可以很容易的改变路由器的路由规则等等,从而改善网络质量。而且这是看似没有新意的主意最大的新意就是大大开放了接口权限,所以面向众很广,门槛也比较低。 近年来,伴随着云计算、大数据的迅速兴起,人们对数据业务的流量要求越来越大。而相比于互联网日新月异,不断创新多变的应用层,网络层的发展却越来越跟不上步伐,显得愈发死板不够兼容灵活。而网络层日益落伍的根源则是控制网络运行的软件都是内嵌入路由器或是交换机中,并且交换器或是路由的软件操作标准又是不太一致的,所以就造成了路由器/交换机的复杂度大大提高,造成了很大的流量阻塞和资源浪费。所以SDN的作用不是由嵌入到路由器和交换机内部的软件来控制网络流量,而是来自设备外部的软件接手了这部分的工作。网络布局,或者说网络的形态分布,不再是植入在物理端。它将对实时的系统需求非常灵活且可调节。如果SDN实行得当的话,这意味着一个运行在云端自身内部的应用程序可以接管引导网络流量的任务。或者说一个第三方云端管理应用程序将能够完成这项任务。这样可以简化许多工作,诸如跨服务器装载平衡设备,以及自动地调节网络构造来适时给出最快最高效的数据路径。 二、文献引述 文献[1]主要重在介绍讨论了SDN在数据层、控制层以及应用层的一些关键技术,并从SDN的诞生背景引入,详细说明了SDN的发展历程。在文献[1]中在SDN的层次结构中,文章重点针对了其中的一致性、可用性以及容错性进行分析,并结合SDN的一些热门特性探讨未来的发展之路和新的潜力点。 文献[2]是一篇研究综述,主要阐述了SDN中的关键技术OpenFlow。并详细介绍了

云计算的概念和特点

云计算的概念和特点 “云计算”面世以来,在IT产业界和学术界掀起了巨大的波澜,不少企业及专家都将云计算看作是未来IT产业的发展方向,并开始全力投入其中。从政策层面来看,云计算己经进入我国中央政府的中长期发展规划,国务院发布了《关于加快培育和发展战略性新兴产业的决定》,确定我国现阶段将重点培育和发展节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料、新能源汽车这七大战略性新型产业,作为新一代信息技术的重点发展领域,云计算将成为新一代信息技术产业中的支柱领域之一。可以说,良好的政策环境将保证云计算技术能够获得持续的政策利好和充足、稳定的资本投入,具有诱人的发展前景。 通俗的来讲,云计算就是让计算变成像水、电、煤气一样的基础设施,人们可以像购买水、电、煤气一样购买计算服务,因此可以说云计算重新定义了IT软硬件资源的设计和购买的方式,从而可能引发IT产业的大规模变革。 云计算主要分为四类:公共云、私有云、社区云及混合云。公共云是利用互联网,面向公众提供云计算服务;私有云是利用企业内网和专网,面向单一企业或组织提供云计算服务,这些服务是不提供于公众使用的;社区云是利用内网、专网及VPN,为多家关联部门提供云计算服务;混合云是上述两种或三种云的组合

云计算的服务模式有三种:(1)软件即是服务(Soft as a Service,简称SaaS),对应的用户主要是直接使用应用软件的终端用户,提供的服务是终端用户所需要的应用软件,终端用户不用购买和部署这些应用软件,而是通过向SaaS提供商支付软件使用或租赁费的方式来 使用部署在云端的应用软件。(2)平台即是服务(Platform as a Service,简称PaaS),对应的用户主要是使用开发工具的应用软件 开发商,提供的服务是开发商所需要的部署在云端的开发平台及针对该平台的技术支持服务。(3)基础设施即是服务(Infrastructure as a Service简称IaaS),对应的用户主要是使用需要虚拟机或存储资源 的应用开发商或IT系统管理部门;提供的服务是开发商或IT系统管 理部门能直接使用的云基础设施,包括计算资源、存储资源等部署在云端的虚拟化硬件资源。 云计算的特点和好处主要有以下几点: 1.低成本 云计算将建设成本转化为运营成本,用户不需要为峰值业务购置设施,不需要大量的软硬件购置和维运成本就可以享用各种IT应用 和服务。 2.灵活性 云计算可以快速灵活的构建基础信息设施,并可以根据需求灵活的扩容IT资源。云计算提供给用户短期使用IT资源的灵活性(例如:

细胞概念与分子基础

第二章细胞概念与分子基础 一、选择题 1.生命物质分子结构的中心元素(即细胞中最重要的元素)是_________ A.H B.O C.N D.C E.P 2.细胞中的生物小分子是_________ A.蛋白质 B.酶 C.核酸 D.糖 E.胆固醇 3.细胞中的生物大分子是_________ A.氨基酸 B.无机盐 C.过氧化氢酶 D.胆固醇 E.葡萄糖 4.人体生命活动的基本结构与功能的单位是_______ A.细胞膜 B.细胞核 C.细胞器 D.细胞 E.核糖体 5.构成蛋白质分子和酶分子的基本单位是_______ A.核苷酸

C.氨基酸 D.磷酸 E.乳酸 6.关于蛋白质的叙述,下列有误的是______ A.是细胞中含量最多的有机分子 B.是由20余种氨基酸缩合而成的生物大分子 C.决定细胞的形态和结构 D.细胞所有的生命活动和代谢反应都离不开蛋白质E.蛋白质分子和酶分子的基本结构单位不同 7.关于蛋白质的一级结构,下列叙述有误的是_________ A.是指一种蛋白质中所含氨基酸的数目、种类和排列顺序B.是决定蛋白质空间结构的基本结构 C.不同的蛋白质,其一级结构不同 D.主要靠氢键和二硫键维持 E.每种蛋白质都在一级结构基础上形成特定空间结构8.维持蛋白质一级结构的主要化学键是________ A.氢键 B.离子键 C.疏水键 D.二硫键 E.肽键 9.关于蛋白质的空间结构,下列叙述有误是_________ A.所有蛋白质都有四级结构 B.空间结构可分为二级、三级和四级 C.蛋白质的空间结构又可称为构象 D.空间结构是由多种化学键维持的 E.空间结构由一级结构决定 10.蛋白质分子的β折叠是________

第二章 组成细胞的分子(单元测试,含答案)

第二章组成细胞的分子单元测试 一.选择题: 1.下述各组元素中,占细胞总量97%的一组是 ( ) A.C、H、O、N、P、S B.C、Fe、K、Ca、B C.N、P、S、K、Ca、Mg D.Fe、Mn、B、Zn、Cu、Co 2.在细胞内含量极少,但对维持生命活动必不可少的元素有 ( ) A.Fe、Mn、Zn、Mg B.Zn、Cu、Fe,Ca C.Zn、Cu、B、Mn D. K、Mn、Cu、Mo 3.生物大分子在生物体的生命活动中具有重要作用。就组成生物体的蛋白质、核酸、糖类、脂肪而言,其核心的组成元素是 ( ) A.C B.H C.O D.N 4.生活在沙漠中的仙人掌的细胞中含量最多的化合物是 ( ) A.蛋白质 B.糖类 C.水D.无机盐 5.下列关于实验操作步骤的叙述,正确的是 ( ) A.用于鉴定还原糖的斐林试剂甲液和乙液,可直接用于蛋白质的鉴定 B.在脂肪的鉴定实验中,需要用显微镜才能看到被染成橘黄色的脂肪滴 C.鉴定还原糖时,先加入斐林试剂甲液摇匀后,再加入乙液 D.用于鉴定蛋白质的双缩脲试剂A液与B液要混合均匀后,再加入含样品的试管中,且必须现用现混 6.在生物组织中还原糖、脂肪、蛋白质的鉴定实验中,材料选择否军碜的是 ( ) A.甘蔗茎的薄壁组织、甜菜的块根含较多糖且近于白色,可用于鉴定还原糖 B.花生种子含脂肪多且子叶肥厚,是用于脂肪鉴定的理想材料 C.大豆种子蛋白质含量多,是进行蛋白质鉴定的理想材料 D.鸡蛋清含蛋白质多,是进行蛋白质鉴定的动物材料 7.下列关于蛋白质的叙述,不正确的是( ) A.各种蛋白质的基本组成单位都是氨基酸 B.一切生命活动都离不开蛋白质 C.蛋白质是构成细胞和生物体的重要物质 D.组成每种蛋白质的氨基酸都有20种 8.下列选项中,属于构成生物体蛋白质的氨基酸的是 ( ) 9.人体中某蛋白质的一条肽链上有201个肽键,则形成该多肽的氨基酸分子数及它们相互缩合过程中生成的水分子数分别是 ( ) A.201个、202个 B.202个、202个 C.201个、201个 D.202个、201个10.能正确表示蛋白质分子由简到繁的结构层次的是 ( ) ①氨基酸②C、H、O、N等化学元素③氨基酸分子相互结合④多肽⑤肽链⑥形成具有一定的空间结构的蛋白质分子 A.①②③④⑤⑥ B.②①④③⑥⑤ C.②①④③⑤⑥ D.②①③④⑤⑥

细胞粘附分子的定义

细胞粘附分子的定义 细胞粘附分子(cell adhesion molecule,CAM)是参与细胞与细胞之间及细胞与细胞外基质之间相互作用的分子。 细胞粘附指细胞间的粘附,是细胞间信息交流的一种形式。而信息交流的可溶递质称细胞粘附分子(cell adhesion molecule,CAM)。CAM是一类独立的分子结构,是通过识别与其粘附的特异性受体而发生相互间的粘附现象。 组成 细胞粘附分子都是跨膜糖蛋白,分子结构由三部分组成:①胞外区,肽链的N端部分,带有糖链,负责与配体的识别;②跨膜区,多为一次跨膜;③胞质区,肽链的C端部分,一般较小,或与质膜下的骨架成分直接相连,或与胞内的化学信号分子相连,以活化信号转导途径。 多数细胞粘附分子的作用依赖于二价阳离子,如Ca2+,Mg2+。细胞粘附分子的作用机制有三种模式(图11-16):两相邻细胞表面的同种CAM分子间的相互识别与结合(亲同性粘附);两相邻细胞表面的不同种CAM分子间的相互识别与结合(亲异性粘附);两相邻细胞表面的相同CAM分子借细胞外的连接分子相互识别与结合。 分类 可大致分为五类:钙粘素、选择素、免疫球蛋白超家族、整合素及透明质酸粘素。 钙粘素 钙粘素(cadherin)属亲同性CAM,其作用依赖于Ca2+。至今已鉴定出30种以上钙粘素,分布于不同的组织。 钙粘素分子结构同源性很高,其胞外部分形成5个结构域,其中4个同源,均含Ca2+结合部位。决定钙粘素结合特异性的部位在靠N末端的一个结构域中,只要变更其中2个氨基酸残基即可使结合特异性由E-钙粘素转变为P-钙粘素。钙粘素分子的胞质部分是最高度保守的区域,参与信号转导。 钙粘素通过不同的连接蛋白质与不同的细胞骨架成分相连,如E-钙粘素通过α-、β-、γ-连锁蛋白(catenin)以及粘着斑蛋白(vinculin)、锚蛋白、α辅肌动蛋白等与肌动蛋白纤维相连;桥粒中的desmoglein及desmocollin则通过桥粒致密斑与中间纤维相连。 钙粘素的作用主要有以下几个方面: 1.介导细胞连接,在成年脊椎动物,E-钙粘素是保持上皮细胞相互粘合的主要CAM,是粘合带的主要构成成分。桥粒中的钙粘素就是desmoglein及desmocollin。 2.参与细胞分化,钙粘素对于胚胎细胞的早期分化及成体组织(尤其是上皮及神经组织)的构筑有重要作用。在发育过程中通过调控钙粘素表达的种类与数量可决定胚胎细胞间的相互作用(粘合、分离、迁移、再粘合),从而通过细胞的微环境,影响细胞的分化,参与器官形成过程。 3.抑制细胞迁移,很多种癌组织中细胞表面的E钙粘素减少或消失,以致癌细胞易从瘤块脱落,成为侵袭与转移的前提。因而有人将E钙粘素视为转移抑制分子。 选择素

云计算技术的产生概念原理应用和前景

云计算技术的产生、概念、原理、应用和前景 赛迪网:2006年谷歌推出了“GoogieOl计划”,并正式提出云”的概念和理论。随后亚马逊、微软、惠普、雅虎、英特尔、IBM 等公司都宣布了自己的“云计划”云安全、云存储、内部云、外部云、公共云、私有云……一堆让人眼花 缭乱的概念在不断冲击人们的神经。那么到底什么是云计算技术呢?对云计算技术的产生、概念、原理、应用和前景又在哪里? 、云计算思想的产生 传统模式下,企业建立一套IT 系统不仅仅需要购买硬件等基础设施,还有买软件的许可证,需要专门的人员维护。当企业的规模扩大时还要继续升级各种软硬件设施以满足需要。对于企业来说,计算机等硬件和软件本身并非他们真正需要的,它们仅仅是完成工作、提供效率的工具而已。对个人来说,我们想正常使用电脑需要安装许多软件,而许多软件是收费的,对不经常使用该软件的用户来说购买是非常不划算的。可不可以有这样的服务,能够提供我们需要的所有软件供我们租用?这样我们只需要在用时付少量“租金,即可“租用,到这些软件服务,为我们节省许多购买软硬件的资金。我们每天都要用电,但我们不是每家自备发电机,它由电厂集中提供;我们每天都要用自来水,但我们不是每家都有井,它由自来水厂集中提供。这种模式极大得节约了资源,方便了我们的生活。面对计算机给我们带来的困扰,我们可不可以像使用水和电一样使用计算机资源?这些想法最终导致了云计算的产生。 中国云计算网https://www.doczj.com/doc/ca6999493.html,/ 云计算的最终目标是将计算、服务和应用作为一种公共设施提供给公众,使人们能够像使用水、电、煤气和电话那样使用计算机资源。云计算模式即为电厂集中供电模式。在云计算模式下,用户的计算机会变的十分简单,或许不大的内存、不需要硬盘和各种应用软件,就可以满足我们的需求,因为用户的计算机除了通过浏览器给“云,发送指令和接受数据外基本上什么都不用做便可以使用云 服务提供商的计算资源、存储空间和各种应用软件。这就像连接“显示器”和“主

软件定义网络(SDN)

软件定义网络(Software-Defined Network—SDN) 目录 背景—VMWare 12.6亿美金收购Nicira (1) 网络虚拟化—互联网的下一波革命 (2) Nicira引领网络虚拟化 (6) 附件:SDN—应对云计算与网络管理新思路 (8) SDN (8) 常见专有SDN (9) OpenFlow SDN与应用 (11) SDN商业价值应用展望 (14) SDN发展挑战 (16) 背景—VMWare 12.6亿美金收购Nicira 2009 年,Cisco、EMC 与VMware 共同成立“虚拟计算环境联盟”,同时推出Vblock 虚拟化基础架构包,以Cisco的网络硬件和VMware 的服务为基础,希望在面向企业用户的数据中心虚拟化和私有云技术市场中有所斩获。 日前,VMware 以12.6 亿美元的大手笔收购了一家小型初创公司Nicira。VMware 之所以看中Nicira,是因为它的SDN技术。这个技术能够无视网络交换机在物理层面上的差别,创建出虚拟网络与机器相连,让网络资源的分配更加灵活。这也意味着,当Nicira 的技术被VMware 大规模应用之后,VMware 的软件将减少对硬件的依赖,为企业提供更加灵活的解决方案。什么牌子的路由器,将不是“企业虚拟化”的必选项,这有利于VMware 拓展市场。 ComputerWord 今年三月撰文指出,VMware的产品面临微软Hyper-V 有力的竞争。Gartner 认为2012 年,Hyper-V 的市场份额将为27%,同时占中小企业市场的85%。它还指出,VMware 中低端产品多为免费,无法带来收入,前景是危险的。

第三节粘附分子的功能

第三节粘附分子的功能 网络 第三节粘附分子的功能 在体内,一种细胞可能同时表达多种粘附分子,一种粘附分子也可以表达于多种不同的组织细胞,而细胞间的相互粘附作用又可能由多对粘附分子受体/配体共同参与,单从某一对粘附分子的作用难于了解细胞粘附作用的全过程。本节着重从粘附分子参与的体内某些生理或病理过程来介绍粘附分子的功能,并简述其分子基础。 一、炎症过程中白细胞与血管内皮细胞的粘附 炎症过程的一个重要特征就是白细胞粘附、穿越血管内皮细胞,向炎症部位渗出。这一过程一个重要的分子基础是白细胞与血管内皮细胞粘附分子的相互作用,表2-7例举了参与这一过程的粘附分子。不同白细胞的渗出过程或渗出过程的不同阶段所涉及的粘附分子不尽相同。 1.不同粘附分子在粘附过程不同阶段所起的作用在体内由于血液处于不断流动状态,白细胞与血管内皮细胞的粘附作用是在血液流动产生的切力作用下进行的,因此白细胞与血管内皮细胞的相互粘附作用有其特殊性。体内白细胞与血管内皮细胞的粘附作用包括白细胞沿血管壁流动的最初粘附作用,以及随后的加强粘附和穿越内皮细胞的过程。为了模拟体内血液流动状态,在体外研究白细胞与血管内皮细胞的粘附作用时,采用了特殊的实验装置,使培养液中的中性粒细胞不断流动通过培养状态的单层内皮细胞。实验表明,在流体产生的切力作用下,CD11/CD18与其配体ICAM-1对于中性粒细胞与血管内皮细胞的最初粘附几乎不起作用。相比之下,L-seletin分子与其配体E-selectin的结合则发挥重要的作用,抗L-selectin 分子的单克隆抗体可明显阻断这种最初的粘附作用。在随后发生的中性粒细胞与血管内皮细

软件定义网络SDN文献综述

软件定义网络SDN研究 文献综述 1.引言 现有的网络设备(如交换机、路由器等)都是设备制造商在专门的硬件系统基础上高度集成大量网络协议、配备专用的设备控制系统,构成的一个相对独立封闭的网络设备[1]。在近几十年的发展过程中,云计算、移动互联网等相关技术的兴起和发展加快了网络技术的变革历程[2]。网络带宽需求的持续攀升、网络业务的丰富化、个性化等都给新一代网络提出了更高的要求。面对日益复杂的网络环境,这种紧耦合大型主机式的发展限制了IP网络创新技术的出现,更多的是通过不断增长的RFC数量对现行网络进行修修补补,造成了交换机/路由器设备控制功能的高度复杂。网络研究人员想要在真实网络中基于真实生产流量进行大规模网络实验几乎是不可能的,因为网络设备是封闭的,没有提供开放的API,无法对网络设备进行自动化配置和对网络流量进行实时操控。 为了适应今后互联网业务的需求,业内形成了“现在是创新思考互联网基本体系结构、采用新的设计理念的时候”的主流意见[3],并对未来网络的体系架构提出了新的性质和功能需求[4]。软件定义网络[5]SDN的出现为人们提供了一种崭新的思路。 本文从SDN的起源和概念出发,分析了SDN的逻辑架构与技术特点、描述了SDN 的标准化进程,梳理了国内外的研究进展与最新动态,在此基础上提出了SDN技术在未来的发展中面临的挑战并总结了可能的研究方向。 2.起源与概念 2.1起源 2006 年,斯坦福大学启动了名为“Clean-Slate Design for the Internet”项目,该项目旨在研究提出一种全新的网络技术,以突破目前互联网基础架构的限制,更好地支持新的技术应用和创新。通过该项目,来自斯坦福大学的学生Martin Casado 和他

云计算的概念及分类

云计算的概念及分类 云计算是计算机发展的未来,是革命性的变化,所谓云计算就像水和电一样,打开开关或者拧开水龙头就可以了。但究竟什么是云计算,它对我们又意味着什么?它在企业信息化建设中有什么样的重要地位?下面对其进行简要剖析。 1云计算的由来 云计算这个概念其实并不像它的名字一样凭空出现的,而是IT产业发展到一定阶段的必然产物。在云计算概念诞生之前,很多公司就可以通过互联网发送诸多服务,比如订票、地图、搜索,以及其他硬件租赁业务,随着服务内容和用户规模的不断增加,对于服务的可靠性、可用性的要求急剧增加,这种需求变化通过集群等方式很难满足要求,于是通过在各地建设数据中心来达成。对于像Google和Amazon这样有实力的大公司来说,有能力建设分散于全球各地的数据中心来满足各自业务发展的需求,并且有富余的可用资源,于是Google、Amazon 等就可以将自己的基础设施能力作为服务提供给相关的用户,这就是云计算的由来。在云计算的概念诞生后,从IBM、Google、Amazon到Dell、微软等,这些公司都在不遗余力地推进云计算的发展,并且都从各自的角度诠释着云计算以及相关的应用。 早在20世纪60年代麦卡锡(John McCarthy)就提出了把计算能力作为一种像水和电一样的公共事业提供给用户。云计算的第一个里程碑是1999年https://www.doczj.com/doc/ca6999493.html,提出的通过一个网站向企业提供企业级的应用的概念;另一个重要进展是2002年亚马逊(Amazon)提供一组包括存储空间、计算能力甚至人力智能等资源服务的Web Service;2005年亚马逊又提出了弹性计算云(Elastic Compute Cloud),也称亚马逊EC2的Web Service,允许小企业和私人租用亚马逊的计算机来运行它们自己的应用。到2008年,几乎所有的主流IT厂商开始谈论云计算,这里既包括硬件厂商(IBM、HP、Intel、思科、SUN等)、软件厂商(微软、Oracle、VMware等),也包括互联网服务提供商(Google、亚马逊、Salesforce等)和电信运营商(中国移动、中国电信、AT&T等),当然还有一些小的IT企业也将云计算作为企业发展战略。这些企业覆盖了整个IT产业链,也

走进细胞、组成细胞的分子练习题含答案

《走进细胞》、《组成细胞的分子》练习题 一、选择题(每小题3分,共60分) 1.下列四种疾病的病原体不具有细胞结构的是() A.肺结核B.破伤风C.甲型流感D.细菌性痢疾 2.病毒、细菌和酵母菌都具有的物质或结构是() A.细胞壁B.细胞质C.细胞膜D.核酸 3.细胞学说的创立具有很重要的意义,但不能说明() A.细胞是一切生物的基本单位 B.生物之间有一定的亲缘关系 C.细胞是动植物的基本单位 D.把动物和植物统一到细胞的基础上 4.下列各项组合中,能正确体现生命系统由简单到复杂层次的是() ①病毒②上皮细胞③消化道的上皮④蛋白质 ⑤胃⑥一只狼⑦同一片森林中所有的狼⑧一片森林 A.④①③⑤⑥⑧B.②③⑤⑥⑦⑧C.④②③⑤⑥⑧D.②③④⑦⑧⑥5.从生命活动的角度理解,人体的结构层次为() A.原子、分子、细胞器、细胞 B.细胞、组织、器官、系统 C.元素、无机物、有机物、细胞 D.个体、种群、群落、生态系统 6.若该图代表与生命系统相关概念的范围,其中正确的是() 供选项a b c A生物大分子细胞组织 B个体种群群落 C生态系统群落种群 D组织系统器官 7.下列有关叙述错误的是() A.一切生物的生命活动都是在细胞内或在细胞参与下完成的 B.SARS病毒没有细胞结构,也能独立完成生命活动 C.除病毒外,一切生物体都是由细胞构成的,细胞是构成生物体的基本单位 D.单细胞生物依靠单个细胞就能完成各种生命活动

8.下列关于生物类别的叙述正确的是() A.细菌包括真细菌、古细菌和放线菌三类 B.幽门螺旋杆菌和霉菌都是原核生物 C.酵母菌和黏菌都是真核生物 D.衣原体和支原体属于类病毒 9.下列有关原核细胞与真核细胞的叙述中,错误的是() A.蓝藻和水绵细胞中都含有核糖体 B.它们都有染色体 C.最大的区别是原核细胞没有核膜包围的细胞核 D.原核细胞具有与真核细胞相似的细胞膜和细胞质 10.下列关于高倍镜使用的叙述,错误的是() A.把视野调亮,图像才清晰 B.先在低倍镜下看清楚,再转至高倍镜 C.先用粗准焦螺旋,再用细准焦螺旋调节 D.高倍镜缩小了观察的视野,放大了倍数 11、2015·上海联考下列有关人体内物质的功能叙述,不正确的是() A.Na+和Cl-是决定细胞外液渗透压的主要物质 B.自由水在体内的流动有利于细胞的新陈代谢 C.胰岛素等蛋白类激素能调节机体的生命活动 D.淀粉、糖原和脂肪都是人体细胞内的储能物质 12、下列材料、仪器或试剂,与应用匹配的是() A.西瓜汁──斐林试剂──检测生物组织中的还原性糖 B.嫩绿的菠菜叶──层析液──分离和提取光合色素 C.口腔上皮细胞──健那绿染液──观察DNA在细胞中的分布 D.新鲜菠菜叶──高倍显微镜──观察叶绿体 13.2015·德州期末关于细胞中元素和化合物的描述,正确的是() A.构成血红蛋白的元素均为大量元素 B.核酸中只有DNA能携带遗传信息 C.蔗糖和麦芽糖水解的产物都是葡萄糖

细胞间黏附分子

细胞间黏附分子 1在体外循环肺损伤中的作用及参麦注射液的干预效果 [ 09-08-04 14:57:00 ] 编辑:studa20 作者:王俊王良荣胡明伦陈菲菲缪剑霞林丽娜 【摘要】目的:观察细胞间黏附分子 1( ICAM 1)在体外循环肺损伤中的作用,探讨参麦注射液(SM)肺保护的作用机制。方法:选择心脏瓣膜置换术患者30例,随机分为对照组和观察组,各15例,观察组在体外循环(CPB)转机前将参麦注射液0.6 ml/kg加入250 ml生理盐水静脉滴注完毕,对照组在同一时间予生理盐水250 ml静脉滴注,其余麻醉维持方法两组相同。分别于麻醉诱导前(T0)、CPB停机后0.5小时(T1)、2小时(T2)、6小时(T3)、24小时(T4),取桡动脉血进行血气分析,记录PO2、PCO2、FiO2,计算肺泡-动脉血氧分压差[P(A a)DO2]以及呼吸指数(RI),并留取血清测定细胞间黏附分子 1(ICAM 1)浓度,同时记录CPB时间和主动脉阻断时间。结果:P(A a)DO2、RI、 ICAM 1在体外循环停机后明显升高(P<0.05或P<0.01);与对照组比较,观察组此三项指标均明显降低(P<0.05或 P<0.01)。结论: ICAM 1的高低与体外循环肺损伤程度密切相关;参麦注射液可能通过抑制细胞间黏附分子 1的分泌而起到肺保护作用。 【关键词】体外循环肺损伤参麦注射液细胞间黏附分子 1 体外循环会引起不同程度的肺损害。而在肺功能损害中炎症起主要作用。细胞间黏附分子 1 ( intercellular adhension mole lue 1,ICAM 1)是机体免疫球蛋白超家族的重要成员之一,其主要作用是促进炎症细胞黏附、聚集,促进补体激活等一系列生化反应,而引起组织损伤。已有文献报道参麦注射液对器官损伤有一定保护作用,本研究探讨参麦注射液对肺损伤的保护作用及可能机制。 1 临床资料 选择择期行瓣膜置换术患者30例,男13例,女17例,年龄25~60岁。单瓣置换21例,双瓣置换9例,心功能Ⅱ~Ⅲ级,术前左室射血分数均>0.5,心胸比<0.7,血流动力血稳定,无感染征象,无慢性肺脏疾患,无肝肾功能异常,无感染征象,术前均未长期使用免疫调节药物。 2 试验方法 2.1 给药 30例患者随机分成对照组和观察组,每组15例。常规麻醉后在体外循环(CPB)下行心脏瓣膜置换术,观察组于CPB转机前将参麦注射液(10 ml/支,雅安三九药业有限公司,批号:Z51021845)0.6 ml/kg加

SDN软件定义光网络技术与发展

软件定义光网络技术与发展 软件定义光 网络技术与发展
Software ft Defined fi d Optical ti l Networks t k
张杰,纪越峰 北京邮电大学 中国/北京 中国/北京,2014年5月21日 年 月 日
BUPT—Jie Zhang
1 2014中国光网络研讨会

主要内容 1. 光联网与SDON理念
软件定义 光网络 SDON
2. SDON若干关键技术 3 863-AONI 项目进展 3. 4. SDON发展几点思考
BUPT—Jie Zhang
2
2014中国光网络研讨会

光联网的趋势与挑战
信息时代的标签:ABC
应用(Application)
大数据(Big Data)
云(Cloud)
光联网发展趋势之一 高速/宽带/长距 容量 提升 挑战
? ? ?
光联网发展趋势之二 动态/弹性/灵活 智能 增强 挑战
? ? ?
Gbps能力(多业务接入) Tbps能力(多复用传输) Pbps能力(多粒度交换)
高突发—D 能力(动态适应) 变带宽 —E 能力 ( 弹性调节 ) 大规模 —F 能力 ( 灵活扩展 )
永恒主题 非“光”莫属 永恒主题,非“光”莫属
BUPT—Jie Zhang
3
价值追求 “光”有可为 价值追求,“光”有可为
2014中国光网络研讨会

大容量光网络:交换点重心下移, 光联网作用凸显
2000年 至今
RrR结构
基于Router 分组级转发
RmR结构
基于MSTP 电路级交叉
RoR结构
基于OTN 子波级调度
RwR结构
基于WDM 波长级交换
数字洪流的出现迫切需要大带宽交换 联网能力向光层迁移 数字洪流的出现迫切需要大带宽交换,联网能力向光层迁移
BUPT—Jie Zhang
4 2014中国光网络研讨会

粘附分子概念及介绍

第一节粘附分子的种类和结构 目前按粘附分子的结构特点可将其分为以下四类:(1)粘合素家族(integrin family)的粘附分子;(2)免疫球蛋白超家族(immunoglobulin superfamily,IGSF)的粘附分子;(3)凝集素家族(selectin family);(4)钙离子依赖的细胞粘附素家庭(Ca2+-dependent cell adhesion molecule family)的粘附分子或称Cadherin。此外还有一些其它未归类的粘附分子。 一、粘合素超家族 国内将integrin译为粘合素、整合素等,本书暂命名为粘合素。integrin是最初在1986年提出的概念,描述一个膜受体家族,此家族的粘附分子主要介导细胞与细胞外基质的粘附,使细胞得以附着而形成整体(integration),故得名。此外,粘合素家族的粘附分子还介导白细胞与血管内皮细胞的粘附。 图2-1 integrin分子的结构(示意图) 注:a .integrin分子电镜下所见(模式图),黑区部分显示integrin分子α、β亚单位所组成的球部,为配体结合域; b.integrin分子的结构模式图,显示出α亚单位的二价阳离子(Mg2+)结合区和α、β亚单位的重复序列。 (一)粘合素分子的基本结构

粘合素家族的粘附分子都是由α、β两条链由非共价键连接组成的异源双体(heterodimer),α、β链均为Ⅰ类穿膜蛋白。α链的分子量为120~210kKa,β链的分子量为90~130kDa,个别β链(如β4)分子量为220kDa。不同的α链(或称α亚单位)或β链(或称β亚单位)氨基酸序列有不同程度的同源性,在结构上有其共同的特点。α和β亚单位均由胞膜外区、胞浆区、穿膜区三部分组成。胞浆区一般较短,可能和细胞骨架相联。空膜区富含疏水氨基酸。β亚单位的胞膜外区含有4个富含半胱氨酸的重复序列,靠近外侧N端的40~50kDa的氨基酸残基通过链内二硫键紧密折叠在一起;α亚单位的胞膜外部分有7个同源重复序列,靠近外侧N端的3个或4个重复序列中含有 Asp-X-Asp-X-Asp-Gly-X-X-Asp或类似结构,与integrin分子结合二价阳离子(Mg2+)有关,并与β亚单位共同构成粘合素分子的配体结合部位,其中α亚单位的二价阳离子结合区与 integrin分子配体结合的特异性和亲和力有关。某些integrin分子的α亚单位在转录后被剪接为两段,一段为劳作膜部分,较小,约20~30kDa;另一段为胞膜外部分,较大,两者通过二硫键连接起来(图2-1)。电镜下可见integrin分子有一个球状头部,向下伸展有两条杆状结构穿过细胞膜的磷脂双层。 (二)粘合素超家族的组成 目前已知至少有14种α亚单位和8种β亚单位,除α7和αIEL外,其它粘合素分子亚单位均已基因克隆成功。α亚单位和β亚单位组合构成粘合素分子并不是随机的,多数α亚单位只能与一种β亚单位结合构成异源双体,但也有的α亚单位可与几种不同的β亚单位组合,如αV(CD51)可分别同β1、β3、β5、β6和β8亚单位组成integrin分子,而大部分β单位则可以结合数种不同的α亚单位。目前按β亚单位的不同可将粘合素家族分为8个不同的组,在同一组中的粘合素分子不同成员β链相同,α链不同。已知α链和β链有20种组合形式(表2-1),β1、β3、β4、α3和α6等亚单位的mRNA分子可有不同的剪接形式,更增加了粘合素分子的多样性。 (三)粘合素分子的分布 粘合素分子的体内分布很广泛,多数粘合素分子可以表达于多种组织细胞,如VLA组的粘合素分子在体内广泛分布于各种细胞细胞;而多数细胞可同时表达数种不同的粘合素分子,对体外哺乳动物来源的细胞系粘合素分子表达研究发现,每一种细胞系可同时一有达2~10种不同的粘合素分子,但不同类型的细胞表达粘合素分子的种类是不同的。某些粘合素分子的表达则具有明显的细胞类型特性,如gpⅡb/Ⅲa(Ⅱb/β3)主要表在宾巨核细胞和血小板;LAF-1、Mac-1、P150/95只表达在白细胞表面;α6β4特异性表达在上皮细胞。每一种细胞粘合素分子的表达可随其分化与生长状态的改变而变化。 (四)粘合素分子识别配体的短肽序列 粘合素分子在与配体结合时所识别的只是配体分子中由数个氨基酸组成的短肽序列。不同的粘合素分子可能识别相同的短肽序列或同一个配体中不同的短肽序列。由于同一短肽序列可以存在于几种不同的配体中,因此,每一种粘合素分子可能有几种细胞外间质成分做为配体,而每一种细胞外间质中的配体也可能被几种不同的粘合素分子所识别。 1.识别RGD序列的粘合素分子α5β1、αvβ1、αⅡbβ3、αvβ3、αvβ5、αv β6都可以识别配体分子中的RGD序列,多种细胞外间质成分(包括FN、VN、FB、vWF)都含有RGD序列,它们在体内的分布极为广泛。含有RGD序列的人工合成肽可以抑制上述粘合素分子与配体的结合。 2.识别非RGD序列的粘合素分子α2β1、α4β1、αxβ2、αⅡbβ3、α4β7可分别识别其配体分子中DGEA、EILDV、GPRP、KQAGDV、EILDV等短肽序列,其中KQAGDV具有

相关主题
文本预览
相关文档 最新文档