当前位置:文档之家› 初二下四边形证明题含答案

初二下四边形证明题含答案

初二下四边形证明题含答案
初二下四边形证明题含答案

一:解答题

1、已知:如图7,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:∠CDF=∠ABE

2、如图8,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC

交于点H.求证:HC=HF.

3、已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△AB

外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,

并给予证明.

4、如图10,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片

沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE

交BC于点E,连结C′E.

求证:四边形CDC′E是菱形.

答案:

1、证明:(1)∵ ABCD 是平行四边形,∴DC=AB ,DC ∥AB,

∴∠DCF=∠BAE ,∵ AE=CF , ∴△ADF ≌△CBE ,∴∠CDF =∠ABE

2、如图8,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H .求证:HC=HF.

解:证明:连结AH ,∵四边形ABCD ,AEFG 都是正方形.

∴90B G ∠=∠=°,AG AB =,BC=GF ,又AH AH =.

Rt Rt ()AGH ABH HL ∴△≌△,HG HB =∴,∴HC=HF.

3、解:猜想四边形ADCE 是矩形。

证明:在△A BC 中, AB =AC ,AD ⊥BC . ∴ ∠BAD =∠DA C .

∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠.

∴ ∠DAE =∠DAC +∠CAE =?21

180°=90°.又 ∵ AD ⊥BC ,

CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.

4、证明:根据题意可知 DE C CDE 'ΔΔ?

则 '''CD C D C DE CDE CE C E =∠=∠=,,

∵AD//BC ∴∠C ′DE=∠CED ,∴∠CDE=∠CED ∴CD=CE ∴CD=C ′D=C ′E=CE ∴四边形CDC ′E 为菱形

1.如图,正方形ABCD 和正方形A ′OB ′C ′是全等图形,则当正方形A?′OB ′C ′绕正方 形ABCD 的中心O 顺时针旋转的过程中. (1)四边形OECF 的面积如何变化.

(2)若正方形ABCD 的面积是4,求四边形OECF 的面积.

解:在梯形ABCD 中由题设易得到:

△ABD 是等腰三角形,且∠ABD=∠CBD=∠ADB=30°.过点D 作DE ⊥BC ,则DE=1

2

BD=23,BE=6。过点A 作AF ⊥BD 于F ,则AB=AD=4.故S 梯形ABCD =12+43. 2.如图,

ABCD 中,O 是对角线AC 的中点,EF ⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE

是菱形吗?请说明理由.

解:四边形AFCE 是菱形. ∵四边形ABCD 是平行四边形. ∴OA=OC ,CE ∥AF .

∴∠ECO=∠FAO ,∠AFO=∠CEO . ∴△EOC ≌△FOA ,∴CE=AF .

而CE ∥AF ,∴四边形AFCE 是平行四边形. 又∵EF 是垂直平分线,∴AE=CE . ∴四边形AFCE 是菱形.

3.如图,在△ABC 中,∠B=∠C ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,?垂足分别为E 、F .求证:(1)△BDE ≌CDF .(2)△ABC 是直角三角形时,四边形AEDF 是正方形.

19.

证明:(1),90D BC BD CD

DE AB DF AC BED CFD B C ?=??

⊥⊥?∠=∠=???∠=∠?

是的中点?

△BDE ≌△CDF .

(2)由∠A=90°,DE ⊥AB ,DF ⊥AC 知:

AEDF BED CFE DE DF ?

??????=?

四边形是矩形

矩形AEDF 是正方形.

4.如图,

ABCD 中,E 、F 为对角线AC 上两点,且AE=CF ,问:四边形EBFD 是平行四边

形吗?为什么?

解:四边形EBFD 是平行四边形.在ABCD 中,连结BD 交AC 于点O ,

则OB=OD ,OA=OC .又∵AE=CF ,∴OE=OF .

∴四边形EBFD 是平行四边形.

5.如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片

折叠压平,设折痕为EF ,试求AF 的长和重叠部分△AEF 的面积.

【提示】把AF 取作△AEF 的底,AF 边上的高等于AB =3.

由折叠过程知,EF 经过矩形的对称中心,FD =BE ,AE =CE =AF .由此可以在 △ABE 中使用勾股定理求AE ,即求得AF 的长.

【答案】如图,连结AC ,交EF 于点O ,

由折叠过程可知,OA =OC ,

∴ O 点为矩形的对称中心.E 、F 关于O 点对称,B 、D 也关于O 点对称. ∴ BE =FD ,EC =AF , 由EC 折叠后与EA 重合, ∴ EC =EA .

设AF =x ,则BE =FD =AD -AF =4-x ,AE =AF =x . 在Rt △ABE 中,由勾股定理,得

AB 2+BE 2=AE 2,即 32+(4-x ) 2=x 2.

解得 x =

825. ∴ S △AEF =21×3×825=1675(cm 2

故AF 的长为825cm ,△AEF 的面积为16

75cm 2

6.如图,E 是矩形ABCD 的边AD 上一点,且BE =ED ,P 是对角线BD 上任意一点,PF ⊥BE ,PG ⊥AD ,垂足分别为F 、G .求证:PF +PG =AB .

【提示】延长GP 交BC 于H ,只要证PH =PF 即可,所以只要证∠PBF =∠PBH . 【答案】∵ BE =DE ,

∴ ∠EBD =∠EDB .

∵ 在矩形ABCD 中,AD ∥BC , ∴ ∠DBC =∠ADB ,

∴ ∠EBD =∠CBD . 延长GP 交BC 于H 点. ∵ PG ⊥AD , ∴ PH ⊥BC .

∵ PF ⊥BE ,P 是∠EBC 的平分线上. ∴ PF =PH .

∵ 四边形ABHG 中,

∠A =∠ABH =∠BHG =∠HGA =90°. ∴ 四边形ABHG 为矩形, ∴ AB =GH =GP +PH =GP +PF 故 PF +PG =AB .

7.已知:如图,以正方形ABCD 的对角线为边作菱形AEFC ,B 在FE 的延长线上.

求证:AE 、AF 把∠BAC 三等分.

【提示】证出∠CAE =30°即可.

【答案】连结BD ,交AC 于点O ,作EG ⊥AC ,垂足为G 点.

∵ 四边形AEFC 为菱形, ∴ EF ∥AC . ∴ GE =OB .

∵ 四边形ABCD 为正方形, ∴ OB ⊥AC ,

∴ OB

GE ,

∵ AE =AC ,OB =

21BD =2

1

AC , ∴ EG =2

1

AE ,

∴ ∠EAG =30°. ∴ ∠BAE =15°.

在菱形AEFC 中,AF 平分∠EAC , ∴ ∠EAF =∠FAC =

2

1

∠EAC =15° ∴ ∠EAB =∠FAE =∠FAC . 即AE 、AF 将∠BAC 三等分.

8.如图,已知M 、N 两点在正方形ABCD 的对角线BD 上移动,∠MCN 为定角,连结AM 、AN ,并延长分别交BC 、CD 于E 、F 两点,则∠CME 与∠CNF 在M 、N 两点移动过程,它们的和是否有变化?证明你的结论.

【提示】BD 为正方形ABCD 的对称轴,

∴ ∠1=∠3,∠2=∠4,

用∠1和∠2表示∠MCN 以及∠EMC +∠FNC .

【答案】∵ BD 为正方形ABCD 的对称轴,

∴ ∠1=∠3,∠2=∠4,

∴ ∠EMC =180°-∠1-∠3=180°-2∠1. 同理 ∠FNC =180°-2∠2.

∴ ∠EMC +∠FNC =360°-2(∠1+∠2). ∵ ∠MCN =180°-(∠1+∠2), ∴ ∠EMC +∠FNC 总与2∠MCN 相等.

因此∠EMC +∠FNC 始终为定角,这定角为∠MCN 的2倍.

9.如图(1),AB 、CD 是两条线段,M 是AB 的中点,S △DMC 、S △DAC 和S △DBC 分别 表示△DMC 、△DAC 、△DBC 的面积.当AB ∥CD 时,有

S △DMC =

2

DBC

DAC S S ??+ ①

(1)如图(2),若图(1)中AB ∥CD 时,①式是否成立?请说明理由.

(2)如图(3),若图(1)中AB 与CD 相交于点O 时,S △DMC 与S △DAC 和S △DBC 有何种相等关系?证明你的结论.

图(1) 图(2) 图(3)

【提示】△DAC ,△DMC 和△DBC 同底CD ,通过它们在CD 边上的高的关系,来确定它们面积的关系.

【答案】(1)当AB ∥CD 时,①式仍成立.

分别过A 、M 、B 作CD 的垂线,AE 、MN 、BF 的垂足分别为E 、N 、F . ∵ M 为AB 的中点,

∴ MN =2

1

(AE +BF ). ∴ S △DAC +S △DBC =21DC ·AE +21DC ·BF =21

DC ·(AE +BF )=2 S △DMC .

∴ S △DMC =

2

DAC

DBC S S ??-

(2)对于图(3)有S △DMC =

2

DAC

DBC S S ??-.

证法一:∵ M 是AB 的中点,S △ADM =S △BDM ,S △ACM =S △BCM , S △DBC =S △BDM +S △BCM +S △DMC , ① S △DAC =S △ADM +S △ACM -S △DMC ②

①-②得:S △DBC -S △DAC =2 S △DMC

∴ S △DMC =

2

DAC

DBC S S ??-.

证法二:如右图,过A 作CD 的平行线l ,MN ⊥l ,垂足为N ,

BE ⊥l ,垂足为E .设A 、M 、B 到CD 的距离分别h 1、h 0、h 2.则MN =h 1+h 0,BE =h 2+h 1.

∵ AM =BM , ∴ BE =2 MN .

∴ h 2+h 1=2(h 1+h 0),

∴ h 0=

21

2h h -. ∴ S △DMC =2

DAC

DBC S S ??-.

10.已知:如图,△ABC 中,点O 是AC 上边上一个动点,过点O 作直线MN ∥BC ,MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证EO =FO .

(2)当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.

【提示】(1)证明OE =OC =OF ;

(2)O 点的位置首先满足四边形AECF 是平行四边形,然后证明它此时也是矩形.

【答案】(1)∵ CE 平分∠BCA ,

∴ ∠BCE =∠ECO . 又 MN ∥BC ,

∴ ∠BCE =∠CEO . ∴ ∠ECO =∠CEO . ∴ OE =OC . 同理 OC =OF . ∴ OE =OF .

(2)当点O 运动到AC 边的中点时,四边形AECF 是矩形,证明如下: ∵ OE =OF ,又O 是AC 的中点, 即 OA =OC ,

∴ 四边形AECF 是平行四边形.

∵ CE 、CF 分别平分∠BCA 、∠ACD ,且∠BCA +∠ACD =180°,

∴ ∠ECF =∠ECO +∠OCF =2

1

(∠BCA +∠ACD )=90°. ∴ □AECF 是矩形.

平行四边形的证明题

平行四边形的证明题 一.解答题(共30小题) 1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由). — 2.如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形. $ 3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. #

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD. ~ 5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. : 6.如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形. ! 7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA. 求证:四边形AECF是平行四边形.

8.在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形. ! 9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE. 10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形? ; 11.如图:已知D、E、F分别是△ABC各边的中点,

初二数学压轴几何证明题含答案

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值; (2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值. 解:(1)EG⊥CG,=, 理由是:过G作GH⊥EC于H, ∵∠FEB=∠DCB=90°, ∴EF∥GH∥DC, ∵G为DF中点, ∴H为EC中点, ∴EG=GC,GH=(EF+DC)=(EB+BC), 即GH=EH=HC, ∴∠EGC=90°, 即△EGC是等腰直角三角形, ∴=;

(2) 解:结论还成立, 理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中 ∴△EFG≌△HDG(SAS), ∴DH=EF=BE,∠FEG=∠DHG, ∴EF∥DH, ∴∠1=∠2=90°-∠3=∠4, ∴∠EBC=180°-∠4=180°-∠1=∠HDC, 在△EBC和△HDC中 ∴△EBC≌△HDC. ∴CE=CH,∠BCE=∠DCH, ∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°, ∴△ECH是等腰直角三角形, ∵G为EH的中点, ∴EG⊥GC,=, 即(1)中的结论仍然成立; (3) 解:连接BD,

中考数学四边形经典证明题含答案

1.如图,正方形ABCD 和正方形A ′OB ′C ′是全等图形,则当正方形A?′OB ′C ′绕正方形 ABCD 的中心O 顺时针旋转的过程中. (1)四边形OECF 的面积如何变化. (2)若正方形ABCD 的面积是4,求四边形OECF 的面积. 解:在梯形ABCD 中由题设易得到: △ABD 是等腰三角形,且∠ABD=∠CBD=∠ADB=30°. 过点D 作DE ⊥BC ,则DE=1 2BD=23,BE=6 .过点A 作AF ⊥BD 于F ,则AB=AD=4. 故S 梯形ABCD =12+43. 2.如图,ABCD 中,O 是对角线AC 的中点,EF ⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由. 解:四边形AFCE 是菱形. ∵四边形ABCD 是平行四边形. ∴OA=OC ,CE ∥AF . ∴∠ECO=∠FAO ,∠AFO=∠CEO . ∴△EOC ≌△FOA ,∴CE=AF . 而CE ∥AF ,∴四边形AFCE 是平行四边形. 又∵EF 是垂直平分线,∴ AE=CE .∴四边形AFCE 是菱形. 3.如图,在△ABC 中,∠B=∠C ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,?垂足分别为E 、F .求证:(1)△BDE ≌CDF .(2)△ABC 是直角三角形时,四边形AEDF 是正方形.

19.证明:(1),90D BC BD CD DE AB DF AC BED CFD B C 是的中点 △BDE ≌△CDF . (2)由∠A=90°,DE ⊥AB ,DF ⊥AC 知: AEDF BED CFE DE DF 四边形是矩形 矩形AEDF 是正方形.4.如图,ABCD 中,E 、F 为对角线AC 上两点,且AE=CF ,问:四边形EBFD 是平行四边形吗?为什么? 解:四边形EBFD 是平行四边形.在 ABCD 中,连结BD 交AC 于点O , 则OB=OD ,OA=OC .又∵AE=CF ,∴OE=OF . ∴四边形EBFD 是平行四边形.5.如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片 折叠压平,设折痕为EF ,试求AF 的长和重叠部分△AEF 的面积. 【提示】把AF 取作△AEF 的底,AF 边上的高等于AB =3. 由折叠过程知,EF 经过矩形的对称中心,FD =BE ,AE =CE =AF .由此可以在△ABE 中使用勾股定理求AE ,即求得AF 的长. 【答案】如图,连结AC ,交EF 于点O , 由折叠过程可知,OA =OC , ∴O 点为矩形的对称中心.E 、F 关于O 点对称,B 、D 也关于O 点对称. ∴BE =FD ,EC =AF ,

平行四边形证明题

平行四边形证明题 第一篇:特殊平行四边形:证明题 特殊四边形之证明题 1、如图8,在abcd中,e,f分别为边ab,cd的中点,连接de,bf,bd.? (1)求证:△ade≌△cbf. (2)若ad?bd,则四边形bfde是什么特殊四边形?请证明你的结论. fc aeb 2、如图,四边形abcd中,ab∥cd,ac平分?bad,ce∥ad交ab 于e. (1)求证:四边形aecd是菱形; (2)若点e是ab的中点,试判断△abc的形状,并说明理由. 3.如图,△abc中,ac的垂直平分线mn交ab于点d,交ac于点o,ce∥ab交mn于e,连结ae、cd. (1)求证:ad=ce; (2)填空:四边形adce的形状是. a dmn

4.如图,在△abc中,ab=ac,d是bc的中点,连结ad,在ad的延长线上取一点e,连结be, (1)求证: (2)当ae与ad满足什么数量关系时,四边形abec是菱形?并说明理由 5.如图,在△abc和△dcb中,ab=dc,ac=db,ac与db交于点m. (1)求证:△abc≌△dcb; (2)过点c作cn∥bd,过点b作bn∥ac,cn与bn交于点n,试判断线段bn与cn的数量关系,并证明你的结论. 6、如图,矩形abcd中,o是ac与bd的交点,过o点的直线ef 与ab,cd的延长线分别交于e,f. (1)求证:△boe≌△dof; (2)当ef与ac满足什么关系时,以a,e,c,f为顶点的四边形是菱形?证明你的结论. f a b e

7. 600,它的两底分别是16cm、30cm。求它的腰长。 (两种添线方法) c 8.如图(七),在梯形abcd中,ad∥bc,ab?ad?dc,ac?ab,将cb延长至点f,使bf?cd. (1)求?abc的度数; (2)求证:△caf为等腰三角形. c b图七f 第二篇:平行四边形证明题 由条件可知,这是通过三角形的中位线定理来判断fg平行da,同理he平行da,ge平行cb,fh平行cb!~ 我这一化解,楼主应该明白了吧!~ 希望楼主采纳,谢谢~!不懂再问!!! 此题关键就是对于三角形的中位线定理熟不!~!~· 已知:f,g是△cda的中点,所以fg是△cda的中位线,所以fg 平行da 同理he是△bad的中位线,所以he平行da,所以fg平行he

平行四边形常见证明题

1.在□ABCD中,E、F是对角线AC上两点,且AE=CF,四边形DEBF是平行四边形吗?请说明理由. 2.如图,?ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC. 3、如图,延长平行四边形ABCD的边BC至F、DA至E,使CF=AE,EF与BD交于O. 试说明EF与BD互相平分 4.如图,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE, 求证:(1)△ADF≌△CBE;(2)四边形ABCD是平行四边形. 5.如图, 在ABCD中,∠ABC=70 ,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于点F,求∠CDF的度数. A E D B F A B C D F E

6.已知如图,在□ABCD中,∠ABC的平分线交AD于E,且CE⊥BE。求证:BC=2CD 7.如图,平行四边形ABCD中,AB AC ⊥,1 AB=,.对角线AC BD ,相交于点O,将直线AC绕点O顺时针旋转,分别交BC AD ,于点E F ,. (1)证明:当旋转角为90o时,四边形ABEF是平行四边形; (2)试说明在旋转过程中,线段AF与EC总保持相等; 8、如图,四边形ABCD和四边形EBFD都是平行四边形. 试说明△ABE≌△CDF C 9. 已知:如图, 在ABCD中,E、F分别是AB和CD上的点,AE=CF, M、N分别是DE和BF的中点,求证.四边形ENFM是平行四边形. 10. 已知:如图, 在ABCD中,E、F分别是CD和AB上的点,AE//CF, BE交CF于点H,DF交AE于点G.求证.EG=FH. A B C D O F E

初二数学下册证明题

(1)求证:BG FG =; (2)若2 ==,求AB的长. AD DC 二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF。 三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

求证:AE平分∠BAD. 四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12, AC=18,求DM的长。

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O , 且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH=2 1(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 图,依此规律第10个图形的周长为 。 …… 第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为 (―1,―3),若一反比例函数x k y 的图象过点D ,则其 解析式为 。 M F E N D C A B

平行四边形专项练习题样本

平行四边形专项练习题 一.选择题( 共12小题) 1.在下列条件中, 能够判定一个四边形是平行四边形的是( ) A.一组对边平行, 另一组对边相等 B.一组对边相等, 一组对角相等 C.一组对边平行, 一条对角线平分另一条对角线 D.一组对边相等, 一条对角线平分另一条对角线 2.设四边形的内角和等于a, 五边形的外角和等于b, 则a与b的关系是( ) A.a>b B.a=b C.a<b D.b=a+180°3.如图是一个由5张纸片拼成的平行四边形, 相邻纸片之间互不重叠也无缝隙, 其中两张等腰直角三角形纸片的面积都为S1, 另两张直角三角形纸片的面积都为S2, 中间一张正方形纸片的面积为S3, 则这个平行四边形的面积一定能够表示为( ) A.4S1 B.4S2 C.4S2+S3 D.3S1+4S3 4.在?ABCD中, AB=3, BC=4, 当?ABCD的面积最大时, 下列结论正确的有( ) ①AC=5; ②∠A+∠C=180°; ③AC⊥BD; ④AC=BD. A.①②③B.①②④C.②③④ D.①③④ 5.如图, 在?ABCD中, AB=6, BC=8, ∠C的平分线交AD于E, 交BA的延

长线于F, 则AE+AF的值等于( ) A.2 B.3 C.4 D.6 6.如图, 在?ABCD中, BF平分∠ABC, 交AD于点F, CE平分∠BCD, 交AD于点E, AB=6, EF=2, 则BC长为( ) A.8 B.10 C.12 D.14 7.如图, 在?ABCD中, AB=12, AD=8, ∠ABC的平分线交CD于点F, 交AD 的延长线于点E, CG⊥BE, 垂足为G, 若EF=2, 则线段CG的长为( ) A. B.4 C.2 D. 8.如图, 在?ABCD中, AB>AD, 按以下步骤作图: 以点A为圆心, 小于AD的长为半径画弧, 分别交AB、 AD于点E、 F; 再分别以点E、 F为圆心, 大于EF的长为半径画弧, 两弧交于点G; 作射线AG交CD于点H, 则下列结论中不能由条件推理得出的是( ) A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH

平行四边形经典证明题例题讲解

1 / 1 经纬教育 平行四边形证明题 经典例题(附带详细答案) 1.如图,E F 、是平行四边形 ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D , , 求四边形ABCD 的周长. 【答案】20、 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=D C A B E F A D C B

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A= ∠(度),则20 + = ∠x B,x C2 = ∠. 根据四边形内角和定理得,360 60 2 ) 20 (= + + + +x x x. 解得,70 = x. ∴? = ∠70 A,? = ∠90 B,? = ∠140 C. 4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE == ,,∥. AC AB CD ∥ DCA BAC∠ = ∠ B D A C CA ∠=∠= , ABC △CDA △ 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = BD AB CD ∥ CDB ABD∠ = ∠ ABC CDA ∠=∠ ADB CBD∠ = ∠ AD BC ABCD 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = A D C B A D C B 1 / 1

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

新人教版八年级数学《全等三角形基础证明题》练习

全等三角形的判定班级:姓名: 1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,求证BE=CF。2.已知AC=BD,AE=CF,BE=DF,求证AE∥CF 3.已知AB=CD,BE=DF,AE=CF,求证AB∥CD 4.已知在四边形ABCD中,AB=CD,AD=CB,求证AB∥CD 5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,求证⊿ABD≌⊿ACE. 6.已知CD∥AB,DF∥EB,DF=EB,求证AF=CE 7.已知BE=CF,AB=CD,∠B=∠C,求证AF=DE A B C D F E C D E F D C F E A B A D E B C 1 2 A D C E F B A D

8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A E H A C M E F B D B A D F E C M A B C D 1 2 D C F E A B

15.已知∠A =∠D ,AC ∥FD ,AC =FD ,求证AB ∥DE 。 16.已知AC =AB ,AE =AD , ∠1=∠2,求证∠3=∠4。 17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,求证⊿ABC ≌⊿DEF 。 18.已知AD =AE ,∠B =∠C ,求证AC =AB 。 19.已知AD ⊥BC ,BD =CD ,求证AB =AC 20.已知∠1=∠2,BC =AD ,求证⊿ABC ≌⊿BAD 。 A B C E F D A B C E D F A D E B C A B C D A D E B C 1 2 3 4

中考数学平行四边形综合练习题附答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.在四边形ABCD 中,180B D ∠+∠=?,对角线AC 平分BAD ∠. (1)如图1,若120DAB ∠=?,且90B ∠=?,试探究边AD 、AB 与对角线AC 的数量关系并说明理由. (2)如图2,若将(1)中的条件“90B ∠=?”去掉,(1)中的结论是否成立?请说明理由. (3)如图3,若90DAB ∠=?,探究边AD 、AB 与对角线AC 的数量关系并说明理由. 【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由 见解析. 【解析】 试题分析:(1)结论:AC=AD+AB ,只要证明AD= 12AC ,AB=1 2 AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题; (3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中, 在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°, ∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,

∴AB=1 2 AC,同理AD= 1 2 AC. ∴AC=AD+AB. (2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E, ∵∠BAC=60°, ∴△AEC为等边三角形, ∴AC=AE=CE, ∵∠D+∠ABC=180°,∠DAB=120°, ∴∠DCB=60°, ∴∠DCA=∠BCE, ∵∠D+∠ABC=180°,∠ABC+∠EBC=180°, ∴∠D=∠CBE,∵CA=CE, ∴△DAC≌△BEC, ∴AD=BE, ∴AC=AD+AB. (3)结论:AD+AB=2AC.理由如下: 过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°, ∴DCB=90°, ∵∠ACE=90°, ∴∠DCA=∠BCE, 又∵AC平分∠DAB, ∴∠CAB=45°, ∴∠E=45°. ∴AC=CE. 又∵∠D+∠ABC=180°,∠D=∠CBE,

关于平行四边形的证明题例析

关于平行四边形的证明题例析 平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的证明与研究上有着广泛的应用.例1如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分. 分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手. 证明因为ABCD是平行四边形,所以 AD BC,AB CD,∠B=∠D. 又AE⊥BC,CF⊥AD,所以AECF是矩形,从而 AE=CF. 所以 Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以 △BEM≌△DFN(SAS), ME=NF.① 又因为AF=CE,AM=CN,∠MAF=∠NCE,所以 △MAF≌△NCE(SAS), 所以MF=NF.② 由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分. 例2如图所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF. 分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解. 证明作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而 △ABG≌△HBG(AAS), 所以AB=HB.① 在△ABE及△HBE中, ∠ABE=∠CBE,BE=BE,

初二数学证明题的思路教学文案

证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到的原理 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

2017年中考复习特殊四边形综合题

特殊四边形综合题 1.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; ,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y (3)在平移变换过程中,设y=S △OPB 的最大值. 2.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD) (1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G. ①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由. 3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b. (1)如图1,当∠EAF被对角线AC平分时,求a、b的值; (2)当△AEF是直角三角形时,求a、b的值;

(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由. 4.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变. (1)求证:=; (2)求证:AF⊥FM; (3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明. 5.如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°. (1)当E为BC中点时,求证:△BCF≌△DEC; (2)当BE=2EC时,求的值; (3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.

初二数学平行四边形压轴:几何证明题

1 / 1 初二数学平行四边形压轴:几何证明题 1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明; (2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。 2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1. (1)线段A 1C 1的长度是 ,∠CBA 1的度数是 . (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形. 3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:OP=OQ ; (2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形. 4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC. ⑴求证:BE =DG ; ⑵若∠B =60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ; (2)AB =BC +AD . 6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE. (1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. B F C G D H B A 1 C 1A C A D G C B F E A Q C D P B O A B E D A D E F C B

初二数学下册证明题中等难题.doc含答案

一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =. (1)求证:BG FG =; (2)若2AD DC ==,求AB 的长. 二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。 D C E B G A F

三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ ED.求证:AE 平分∠BAD. 四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D , AB=12,AC=18,求DM 的长。 (第23题) E D B A F

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交 于点O ,且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH= 2 1 (AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 M F E N D C A B

最新特殊平行四边形综合练习题

特殊平行四边形综合练习题 考点综述: 特殊平行四边形即矩形、菱形、正方形,它们是四边形的必考内容之一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 典型例题:(基础简单题) 例1:在下列命题中,正确的是( ) A .一组对边平行的四边形是平行四边形 B .有一个角是直角的四边形是矩形 C .有一组邻边相等的平行四边形是菱形 D .对角线互相垂直平分的四边形是正方形 例2:如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )。 A .4 B .3 C .2 D .1 例3:如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( ) A .16a B .12a C .8a D .4a 例4:已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F . (1)求证:BCG DCE △≌△; (2)将DCE △绕点D 顺时针旋转90o 得到DAE '△,判断四边形E BGD '是什么特殊四边 形?并说明理由. 实战演练:(中档题) 1.顺次连接菱形各边中点所得的四边形一定是( ) A .等腰梯形 B .正方形 C .平行四边形 D .矩形 笔记:中点四边形(补充知识点) (1)连接四边形各边中点: (2)连接平行四边形各边中点: (3)连接矩形各边中点: (4)连接菱形各边中点: (5)连接正方形各边中点: A 、顺次连接对角线相等的四边形各边的中点所得到的图形是: . B 、顺次连接对角线互相垂直的四边形各边的中点所得到的图形是: . C 、顺次连接对角线垂直且相等的四边形各边的中点所得到的图形是 : . A B C D E F E ' G

平行四边形证明练习题汇编

平行四边形证明练习题 一.解答题 1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF. 2.在?ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF. 3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2 求证:△ABE≌△CDF. 4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF. 5.如图,在?ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论. 6.已知:如图,?ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.

7.如图,已知在?ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF. 8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么? 9.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF. 10.如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形. 11.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形. 12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB,AD+DC=BC. 求证:(1)DE=DC; (2)△DEC是等边三角形. 13.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF. 求证:(1)△ADF≌△CBE;

平行四边形常见证明题(经典)

1.下列条件中,能判定四边形是平行四边形的条件是( ) A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角相等 C.一组对边平行,一组邻角互补 D.一组对边相等,一组邻角相等 2.如图,EF过□ABCD的对角线的交点O,交AD于E,交BC于F,若AB=4,BC=5,OE=,那么四边形EFCD 的周长是( ) 3.两直角边不等的两个全等的直角三角形能 拼成平行四边形的个数( ) 4.过不在同一直线上的三点,可作平行四边形的个数是( ) 个个个个 5.如图,已知□ABCD的对角线交点是O,直线EF过O点,且平行于BC,直线GH过且平行于AB,则图中共有( )个平行四边形. 6.以下结论正确的是( ) A.对角线相等,且一组对角也相等的四边形是平行四边形 B.一边长为5cm,两条对角线分别是4cm和6cm的四边形是平行四边形 C.一组对边平行,且一组对角相等的四边形是平行四边形 D.对角线相等的四边形是平行四边形 7.能够判定四边形ABCD是平行四边形的题设是(). A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD 8.具备下列条件的四边形中,不能确定是平行四边形的为(). A.相邻的角互补 B.两组对角分别相等 C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点 9.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是(). A.若AO=OC,则ABCD是平行四边形; B.若AC=BD,则ABCD是平行四边形; C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形 10.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.() (2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.() (3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.() (4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.() (5)因为AB=CD,AD=BC,所以ABCD是平行四边形.() (6)因为AD=CD,AB=AC,所以ABCD是平行四边形.() 1.在□ABCD中,E、F是对角线AC上两点,且AE=CF,四边形DEBF是平行四边形吗请说明理由.

初二数学证明有答案证明题有过程定稿版

初二数学证明有答案证 明题有过程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-

23.(本题8分).如图,已知:△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F.求证:FD 2=FB.FC. 24.(本题8分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E . (1)求AE AC 的值; (2)若AB a FB EC ==,,求AC 的长. 25.(本题8分)如图:已知△ABC 中,AB=5, BC=3,AC=4,PQ∥AB,P 点在AC 上(与A 、C 不重合),Q 在BC 上. (1) 当△PQC 的面积等于四边形PABQ 面积的3 1,求CP 的长. (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长. (3)试问:在AB 上是否存在一点M ,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由:若存在,请求出PQ 的长. 23、连接FA,证明FAC Δ∽FBA Δ,由于FD FA =,命题获证。 24、法一:连接AD FC ,;法二:过F E 或者 做平行线,命题获证,在命题获证的基础上第二问求出。 25、(1)用相似CPQ Δ∽CAB Δ

(2)设出x PC 表示出CQ,利用周长列出方程,求出PC (3)当∠PQM=90°时(画图) 过P作PN⊥AB于N 设PQ=QM=PN=MN=a ∠QMB=∠ANP=90° ∠B=90°-∠A=∠APN ∴△MQB∽△NAP∽△CAB ∴AN:PN=AC:BC,BM:QM=BC:BC ∴MB=3/4a,AN=4/3a ∵AB=AN+NM+MB ∴3/4a+4/3a+a=5 ∴PQ=a=60/37 当∠QPM=90°时 同理有PQ=60/37

相关主题
文本预览
相关文档 最新文档