当前位置:文档之家› 余切正割余割的图象和性质

余切正割余割的图象和性质

余切正割余割的图象和性质
余切正割余割的图象和性质

曹振卿一、余切:

余切函数的性质

(1)、定义域:{x|x≠kπ,k∈Z}

(2)、值域:实数集R当x→2kπ时,y→∞;当x→(2k+1)π时,y→-∞;

(3)、奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出

图像关于原点对称,实际上所有的零点都是它的对称中心

(4)、周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;

(5)、单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。

(6)、对称性中心对称:关于点(kπ/2,0)k∈Z中心对称

二、正割余割:

粗线是正割函数,细线是余割函数

y=secx的性质:

(1)定义域,{x|x≠π/2+kπ,k∈Z}

(2)值域,|secx|≥1.即secx≥1或secx≤-1;

(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;

(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.(5)正割与余弦互为倒数;余割与正弦互为倒数;

(6)正割函数无限趋于直线x=π/2+Kπ;

(7)正割函数是无界函数;

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

三角函数 正切、余切图象及其性质

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

正切函数和余切函数的图像和性质

正切函数和余切函数的 图像和性质 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

正切函数和余切函数的图像和性质知识点: 1.正切函数和余切函数的概念; 2.正切函数与余切函数的图像和性质; 3.正切函数与余切函数性质的应用; 教学过程: 1.正切函数和余切函数的概念: (1)正切函数---形如tan =的函数称为正切函数; y x 余切函数--形如cot =的函数称为余切函数; y x 2.函数的图像和性质: (1)正切函数的图像: 见正切函数图像课件。 (2)正切函数图像: (3)与切函数的图像: 归纳填表格:

例1.求下列函数的周期: (1)tan(3)3 y x π =-+; (2)221tgx y tg x =+ ; (3)cot tan y x x =-; (4)2 2tan 21tan 2 x y x =-; (5)sin 1tan tan 2x y x x ??=+ ?? ? 例2.求下列函数的单调区间: (1)tan(2)24 y x π =++; (2)tan()123 x y π=-+-; (3)12log cot y x ?= ?? 例3.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y = (3)y =

例4.(1)求函数21)tan tan ]y x x =-的定义域; (2)解不等式:23tan (2)(3tan(2)044 x x ππ+-+≤ 例5.已知2tan tan y x a x =-,当1[0,],[0,]34 x a π∈∈时,函数max y =a 的值; 例6.已知函数tan ,(0,)2y x x π=∈,若1212,(0,),2 x x x x π∈≠。 求证:1212()()()22f x f x x x f ++>。

余切函数的图象和性质解读

正切、余切函数的图象和性质 教学目的:(略) 教学过程择录: 一、引题: 师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题? 生众:P159(11)正弦,余弦函数的定义域: P158(3)正弦,余弦函数的最值(值域): P158(6)正弦,余弦函数的奇偶性 P159(8)正弦,余弦函数的单调性 P159(7)正弦,余弦函数的应用一-----比大小 P158(4)正弦,余弦函数的周期(最小正周期) P159(12)正弦,余弦函数的图象 P160(16、17)正弦,余弦函数性质的应用 教师在黑板上书写:(1)定义域(2)值域(3)奇偶性(4)单调性(5)比大小(6)求最小正周期(7)作图(8)应用 教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题? 生众:不就是上面这几点问题吗? 教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后(1)~(7)后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟(P153~P157)。 [评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。 二、学生自己回顾性设问,(自问自答)

5分钟以后:学生阅读完毕,教师指导第一组学生(7人)为相邻的同桌的同学(第二组学生)就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学(起立)对着大家回答。做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正: 生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。 生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数 生3: ……… 生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数) 生11:正切函数是它定义域上的增函数吗?(好问题!)邻生答:是,其它学生更正:不是。教师追问理由……… 生12:正切函数是一个周期为2的函数吗?(含义不清的问题)邻生回答:准确地说正切函数是最小正周期为的周期函数。 生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?邻生:不对, 另外的学生答:对,……… 学生即席讨论………。 生14:怎样由y=tgx的图象得到y=ctgx的图象?(好问题),邻生答:可以先把y=tgx的图象以x 轴为轴,翻转180度,再向右平移。另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度 和把y=tgx的图象以y轴为轴,翻转180度的效果一样?…学生讨论得到:因为y=tgx是奇函数,f(-x)=-f(x)。教师又插说:非要先翻转后平移吗?…学生讨论略。 [评论]学生自己设计问题,自问他答,其它学生协助判定是否正确,可以在很大程度上调动学生自己学习的主动性。但问题的难易控制有一定难度,先问的人设计问题相对容易些,可以用往复问答的方式来解决(第一个提问的学生将回答最后一个问题)。邻座的学生作答,同一横行同学做答的是非判定,这样做目的是让反馈的更快、更广些。从学生问答情况看,基本达到了目的。 三、自己提出问题,设计问题,当堂练习,自己作评价。 师:下面请第3组同学为大家设计一组课堂练习(2分钟)可以讨论。要求是七个方面都要覆盖。(七人上黑板,学生之间有交流,组长分配协调一人一个题,不使重复,2分钟后题目完成)请第四组同学上

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

正切、余切函数的图象和性质

正切、余切函数的图象和性质 正切、余切函数的图象和性质张思明教学目的:教学过程择录:一、引题:师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题?生众:P159正弦,余弦函数的定义域:P158正弦,余弦函数的最值:P158正弦,余弦函数的奇偶性P159正弦,余弦函数的单调性P159正弦,余弦函数的应用一-----比大小P158正弦,余弦函数的周期P159正弦,余弦函数的图象P160正弦,余弦函数性质的应用教师在黑板上书写:定义域值域奇偶性单调性比大小求最小正周期作图应用教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题?生众:不就是上面这几点问题吗?教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后~后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟。[评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。二、学生自己回顾性设问,5分钟以后:学生阅读完毕,教师指导第一组学生为相邻的同桌的同学就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学对着大家回答。做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正:生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数生3:.........生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数)生11:正切函数是它定义域上的增函数吗?邻生答:是,其它学生更正:不是。教师追问理由 (12) 正切函数是一个周期为2的函数吗?邻生回答:准确地说正切函数是最小正周期为的周期函数。生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?邻生:不对,另外的学生答:对,……… 学生即席讨论………。生14:怎样由y=tgx的图象得到y=ctgx的图象?,邻生答:可以先把y=tgx的图象以x轴为轴,翻转180度,再向右平移。另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度和把y=tgx的图象

正切函数和余切函数的图像和性质

正切函数和余切函数的图像和性质知识点: 1.正切函数和余切函数的概念; 2.正切函数与余切函数的图像和性质; 3.正切函数与余切函数性质的应用; 教学过程: 1.正切函数和余切函数的概念: (1)正切函数---形如tan =的函数称为正切函数; y x 余切函数--形如cot y x =的函数称为余切函数; 2.函数的图像和性质: (1)正切函数的图像: 见正切函数图像课件。 (2)正切函数图像: - (3)与切函数的图像:

例1.求下列函数的周期: (1)tan(3) 3 y x π =-+; (2)2 21tgx y tg x = +; (3)cot tan y x x =-; (4)2 2tan 2 1tan 2 x y x = -; (5)sin 1tan tan 2x y x x ??=+ ?? ? 例2.求下列函数的单调区间: (1)tan(2)24 y x π =++; (2)tan()123 x y π =- + -; (3)12 log cot 3y x ?=- ?? 例3.求下列函数的定义域:

(1)tan 4y x π ?? =- ??? ; (2)y = (3)y = 例4.(1)求函数21)tan tan ]y x x =-+的定义域; (2)解不等式:23tan (2)(3tan(2)0 4 4 x x π π +--+ -≤ 例5.已知2tan tan y x a x =-,当1 [0,],[0,]3 4 x a π∈∈时,函数max y =,求实数a 的值; 例6.已知函数tan ,(0,)2y x x π=∈,若1212,(0,),2 x x x x π ∈≠。 求证:1212 ()() ( ) 2 2 f x f x x x f ++>。

2015年基本初等函数的图像与性质

2015年高考数学基本初等函数的图像与性质 主编:宁老师 主编单位:永辉中学生学习中心 一、一次函数: 1、通式:b kx x f +=)(; 2、图像:直线; ①0,0>>b k ②0,0<>b k ③0,0>单调递增;②)(,,0x f R x k ∈<单调递减; 4、正比例函数: (1)、通式:kx x f =)(; (2)、正比例函数恒过点)0,0(; (3)、图像: ①0>k ②0

①)(,,0x f R x k ∈>单调递增;②)(,,0x f R x k ∈<单调递减; 二、二次函数: 1、通式:c bx ax x f ++=2)(; 2、开口方向: ①0>a ,抛物线开口向上;②0?时,二次函数与x 轴有两个交点; ②当0=?时,二次函数与x 轴有一个交点; ③当0?>a ②0,0=?>a ③0,0a ④0,0>?a 时: )(),2,(x f a b x --∞∈单调递减;)(),,2(x f a b x +∞-∈单调递增; ②当0

高中数学必修4正弦余弦正切余切函数图像的性质总结

高中数学必修4正弦余弦正切余切函数图像的性质总结 三角函数是高中数学教学中一类基本的、重要的函数,下面是小编给大家带来的高中数学必修4正弦余弦正切余切函数图像的性质总结,希望对你有帮助。 高中数学正弦余弦正切余切函数图像的性质高中数学学习方法抓好基础是关键 数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。 严防题海战术 做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,

当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。 归纳数学大思维 数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。 积累考试经验 本学期每月初都有大的考试,加之每单元的单元测验和模拟考试

正切 余切图像的性质 反三角函数

正切、余切函数图象和性质反三角函数 [知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图 象上三点及两条重要的辅导线——渐近线,来作正切函

数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: 上单减 ,奇函数 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的. 3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.

(完整)五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。高等数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。与互为反函数。当时的对数函数称为自然对数,当时,称为常用对数。 以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

三角函数的图象与性质知识点汇总

三角函数的图象与性质 、知识网络 基弃变换 三、知识要点 (一)三角函数的性质 1、定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y = tanx ; 偶函数:y= cosx. (2) -'’ 一 -‘:型三角函数的奇偶性 (i)g (x)=* (x€ R) g (x )为偶函数 ' 二二—「二: O卫址1(徴 + ? =/win(-徴+@)(x亡卫)U sin ocrcos(p= 0(x白应) cos (p二 0 o(p= jt/r-hy e 7) 由此得 同理,旨(对二話乞山(伽+洌0€丘)为奇函数O 寻炉=七兀3€2). (ii)u'■■ ' '''「:;::「' ■?■. 八为偶函数' ..为奇函数

O S (<3X + 炉)+丘 的周期为 竺 kl 7T y = / tan (阪 + + 上丿=/cot (血+饲 + 上 的周期为 (2)认知 -I ' ' : " '型函数的周期 7T -;1 1 - - ■ : - 1 的周期为 门; 71 均同它们不加绝对值时的周期相同,即对 J 的解析式施加绝对值后, y = sin z|+|co3J : 的最小正周期为

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y=C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3)当0=x 时,1=y ,所以它的图形通过(0,1)点。 3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m y x f x x x x g ? ? ?=1)(

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ), y=A cos(ωx+φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函数、 余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和 最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x 通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现 象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该 图象与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别 开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的 第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x 取0、、π、、2π来求相应的x 值及对应

相关主题
文本预览
相关文档 最新文档