当前位置:文档之家› 活塞参数化活塞建模

活塞参数化活塞建模

活塞参数化活塞建模
活塞参数化活塞建模

1. 活塞建模步骤

1.1.确定活塞结构参数如下表所示:

表1 活塞结构参数

参数名称符号数值/m

活塞直径 D 0.079

活塞高度H 0.076 活塞压缩高度H1 0.047

火力岸高度H_1 0.0063 活塞顶部最小厚度DH 0.007 第一环岸高度C1 0.0031 第二环岸高度C2 0.0023

油环高

活塞环径向厚度BO

T

0.0051

0.0038

活塞壁厚活塞销孔直径

BH

XK_D

0.007

0.022

活塞销座直径XZ_D0.03

运用ANSYS软件对活塞进行参数化建模,其根据表1进行参数设置。具体流命令为:*SET,尺寸符号,数值

具体设置如下:

*SET,d,79e-3 /*设置活塞直径参数*/

*SET,h,76e-3 /*设置活塞高度参数*/

*SET,h1,47e-3 /*设置活塞火力岸高度参数*/

依次运用该命令设置活塞各结构尺寸参数,得图3.1

图1 设置后的参数

1.2.采用直接生成圆柱体的方法,根据火力岸高度,创建活塞顶面和火力岸圆柱体,圆柱体半径为活塞半径,深度为火力岸高度,创建圆柱体流命令为:CYL4,,,圆柱体半径,,,,圆柱体深度

因此创建活塞顶面和火力岸圆柱体的命令为:CYL,,,D/2,,,,H_1

图2 火力岸模型

1.3.平移工作平面,使得模型至上而下建立。将工作平面沿Z轴方向,向下

平移h_1的距离,流命令如下:

/VIEW,1,,1 /*转换视图方向*/

/ANG,1

/REP,FAST

wpoff,0,0,h_1 /*向Z轴正方向平移工作平面*/

图3平移工作平面

1.4.按2和3的方法和步骤至上而下依次完成各环岸,环槽以及裙部的建立。

CYL4, , ,d/2-t, , , ,ba /*创建第一环槽圆柱体*/

wpoff,0,0,ba /*向Z轴正方向平移工作平面*/

图4第一槽圆柱体

CYL4, , ,d/2, , , ,c1 /*创建第一环下环岸圆柱体*/ wpoff,0,0,c1 /*向Z轴正方向平移工作平面*/

图5第一环下环岸圆柱体CYL4, , ,d/2-t, , , ,ba /*创建第二环槽圆柱体*/ wpoff,0,0,ba /*向Z轴正方向平移工作平面*/

图6第二环槽圆柱体CYL4, , ,d/2, , , ,c2 /*创建第二第下环岸圆柱体*/ wpoff,0,0,c2 /*向Z轴正方向平移工作平面*/

图7第二第下环岸圆柱体

CYL4, , ,d/2-t, , , ,bo /*创建第三环槽圆柱体*/

wpoff,0,0,bo /*向Z轴正方向平移工作平面*/

图7第三环槽圆柱体

CYL4, , ,d/2, , , ,h-h_1-ba*2-c1-c2-bo /*创建活塞群部模型*/

图8活塞主体模型

1.5.运用布尔加法运算将活塞顶岸,各环岸,环槽以及裙部合为整体,流命令如下:

FLST,2,7,6,ORDE,2

FITEM,2,1

FITEM,2,-7

V ADD,P51X

图9活塞合为整体

1.6.向下平移工作平面,创建活塞腔体的切除实体。由点—线—面—体的方法创建切除实体。先以活塞壁厚和顶部最小厚度为依据创建编号为

100,101,102,103,104四个点,创建点流命令为:K,编号,x轴坐标,y轴坐标,z轴

坐标。具体命令如下:

CSYS,0

WPA VE,0,0,0 /*平移工作平面至初始平面*/

CSYS,0

!*

wpoff,0,0,h+h_1 /*向Z轴正方向平移工作平面*/

CSYS,4

K,100,0,0,0, /*创建编号为100的点*/

K,101,d/2-bh,0,0,

K,102,d/2-bh,0,-h1-h_1,

K,103,0,0,-h-h_1+dh,

K,104,d/2-2.5*bh,0,-h1-3.5*h_1,

连接以创建的关键点并生成面,连接103,104,102时采用以关键点创建样条曲线的方法生成连线,具体命令如下:

LSTR, 100, 101 /*连接100点和101点*/

LSTR, 101, 102

LSTR, 100, 103

FLST,3,3,3 /*调用三点生成样条曲线命令*/

FITEM,3,103

FITEM,3,104

FITEM,3,102

BSPLIN, ,P51X /*生成样条曲线*/

1.7.以轮廓线为基准,生成平面,并通过旋转的方法创建切除实体。具体命令如下:

FLST,2,4,4 /*调用由线成面命令*/

FITEM,2,73 /*选择线*/

FITEM,2,71

FITEM,2,72

FITEM,2,74

AL,P51X /*生成旋转平面*/

FLST,2,1,5,ORDE,1 /*调用旋转命令*/

FITEM,2,2 /*选择面*/

FLST,8,2,3 /*调用以轴为基准进行旋转*/

FITEM,8,100 /*选择编号为100和103的点做旋转轴*/ FITEM,8,103

VROTAT,P51X, , , , , ,P51X, ,360, , /*生成360度旋转实体*/

图10生成旋转体

1.8.运用布尔减法运算,生成活塞腔体,命令:

FLST,3,4,6,ORDE,2 /*调用布尔运算*/

FITEM,3,1 /*选择被切实体*/

FITEM,3,-4 /*选择切除实体*/

VSBV, 8,P51X /*布尔减法运算*/

图11 活塞主体模型

1.9.平移工作平面,创建活塞销座圆柱体,运用布尔加法运算,将销座与活塞合为一体,并运用布尔减法运算创建活塞销孔,完成活塞整体建模,命令如下:CSYS,0

WPA VE,0,0,0

CSYS,4

!*

wpoff,0,0,h1

wpro,,90.000000, /*旋转工作平面,使得xoy面平行于操作界面*/

wpoff,0,0,xz_d/2 /*平移工作平面*/

CYL4, , ,xz_d/2, , , ,d/2-xz_d/2-t /*创建一侧销座圆柱体*/

wpoff,0,0,-xz_d

CYL4, , ,xz_d/2, , , ,-(d/2-xz_d/2-t) /*创建另外一侧销座圆柱体*/

FLST,2,3,6,ORDE,3 /*调用布尔运算*/

FITEM,2,1

FITEM,2,-2

FITEM,2,5

V ADD,P51X /*布尔加法运算*/

图12

wpoff,0,0,-h1

CYL4, , ,xk_d/2, , , ,3*h1 /*创建销孔圆柱体*/

VSBV, 3, 1 /*布尔减法运算*/

图13活塞模型

1.10.平移工作平面,运用布尔减法运算,创建活塞1/4模型。

命令:

CSYS,0

WPA VE,0,0,0

BLOCK,-d,d,0,1.2*h,0,d, /*创建方形实体,作为模型的切除体*/ VSBV, 2, 1

wpro,,,90.000000

BLOCK,0,d,0,1.2*h,0,d,

VSBV, 3, 1

图14活塞四分之一模型

活塞设计说明书

汽油机活塞设计说明书 : :

一、活塞设计要求 活塞是曲柄连杆机构的重要零件,主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 本次课程设计的目的是设计四冲程汽油机的活塞,根据某些现有发动机的参数,确定活塞直径D=73mm。 二、活塞材料 活塞材料常用灰铸铁和铝合金,然而由于铸铁材料密度大,产生的往复惯性力也很大,所以目前只用于大中型、低速柴油机上,故采用铝合金活塞。 为了使活塞拥有较好的热导率、高温强度、可锻性以及较小的热膨胀系数,所以才用铝硅铜合金。 三、活塞的结构设计 活塞按部位不同可以分为顶部、头部和裙部。

1.活塞顶部设计 活塞顶部形状对于四冲程内燃机取决于燃烧室形状,一般有平顶、凸顶和凹顶,此处选用平顶活塞。 活塞顶的厚度δ是根据强度、刚度及散热条件来确定,在满足强度的条件下δ值尽量取小。对于铝合金材料的活塞δ值,汽油机为(0.06~0.10)D,柴油机为(0.1~0.2)D。 则:δ=(0.06~0.10)*73=(4.38~7.3)mm 取δ=5.00mm 2.活塞头部设计 2.1设计要求 活塞头主要功用是承受气压力,并通过销座把它传给连杆,同时

齿轮传动设计参数的选择

齿轮传动设计参数的选择: 1)压力角α的选择 2)小齿轮齿数Z1的选择 3)齿宽系数φd的选择 齿轮传动的许用应力 精度选择 压力角α的选择 由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。我国对一般用途的齿轮传动规定的压力角为α=20o。为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。但增大压力角并不一定都对传动有利。对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16o~18o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。 小齿轮齿数Z 1 的选择 若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多 一些为好,小一些为好,小齿轮的齿数可取为z 1 =20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿 数,一般可取z 1 =17~20。 为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z 1≥17。Z 2 =u·z 1 。 齿宽系数φ d 的选择 由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。圆柱齿轮齿宽系数的荐用值列于下表。对于标准圆柱齿轮减速器,齿宽系数取为

实验六PID控制系统参数优化设计

实验六 PID 控制系统参数优化设计 一.实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二.实验原理及预习内容: 1.控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标(或结果)的设计方法。控制系统的优化设计包括两方面的内容:一方面是控制系统参数的最优化问题,即在系统构成确定的情况下选择适当的参数,以使系统的某些性能达到最佳;另一方面是系统控制器结构的最优化问题,即在系统控制对象确定的情况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法”。MATLAB 中语句格式为:min ('')X f s =函数名,初值。 2.微分方程仿真应用:传染病动力学方程求解 三.实验内容: 1.PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计PID 调节器参数,使该系统动态性能达到最佳。(习题5-6) 1020.1156s s e s s -+++R e PID Y 2.微分方程仿真应用: 已知某一地区在有病菌传染下的描述三种类型人数变化的动态模型为 11212122232 3(0)620(0)10(0)70X X X X X X X X X X X X ααββ?=-=?=-=??==?

式中,X 1表示可能传染的人数;X 2表示已经得病的人数;X 3表示已经治愈的人数;0.0010.072αβ==;。试用仿真方法求未来20年内三种人人数的动态变化情况。 四.实验程序: 建立optm.m 文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2); kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylong=length(yy); ss=yy(yylong); 建立tryopt.m 文件: global kp; global ki; global kd; global i; i=1; result=fminsearch('optm',[2 1 1]) 建立optzwz.mdl:

【过程控制】PID参数对系统动静态特性的影响(可编辑)

【过程控制】PID参数对系统动静态特性的影响(可编 辑) 主要内容 PID参数对系统动静态特性的影响控制器参数整定: 现场试凑法临界比例度法衰减曲线法采样周期选择 PID参数对系统动静态特性的影响比例度过小,即比例放大系数过大时,比例控制作用很强,系统有可能产生振荡; 积分时间过小时,积分控制作用很强,易引起振荡; 微分时间过大时,微分控制作用过强,易产生振荡。 PID参数对系统动静态特性的影响 比例(P)控制 PID参数对系统动静态特性的影响 比例积分(PI)控制 PID参数对系统动静态特性的影响 比例微分(PD)控制 PID参数对系统动静态特性的影响 比例积分微分(PID)控制控制器参数整定指决定调节器的比例度δ、积分时 间TI和微分时间TD和采样周期Ts的具体数值。整定的实质是通过改变调节器的参数,使其特性和过程特性相匹配,以改善系统的动态和静态指标,取得最佳的控制效果。整定方法整定调节器参数的方法很多,归纳起来可分为两大类,即理论计算整定法和工程整定法: 理论计算整定法有对数频率特性法、根轨迹法等; 工程整定法有经验法、衰减曲线法、监界比例度法和响应曲线法等。工程整定法特点不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定方法简单; 计算简便; 易于掌握。现场凑试法按照先比例(P)、再积分(I)、最后微分(D)的顺序。置调节器积分时间TI=?,微分时间TD=0,在比例度δ按经验设置的初值条件下,将系统投入运行,整定比例度δ。求得满意的4:1过渡过程曲线。引入积分作用(此时应将上述比例度δ加大1.2倍)。将TI由大到小进行整定。若需引入微分作用时,则将TD按经验值或按TD=

ADAMS VIEW 参数化和优化设计实例详解

ADAMS/VIEW 参数化和优化设计实例详解本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify ,然后设置如下图。至此,模型建立完毕。 修改圆环位置

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

极化磁系统参数优化设计方法的研究

极化磁系统参数优化设计 方法的研究 The document was prepared on January 2, 2021

极化磁系统参数优化设计方法的研究 摘要:永磁继电器是一种在国防军事、现代通信、工业自动化、电力系统继电保护等领域中应用面很广的电子元器件,其极化磁系统的参数优化设计是实现永磁继电器产品可靠性设计的前提工作之一。该文采用六因素三水平多目标的正交试验设计方法,分析并研究了极化磁系统的参数优化设计方法。在永磁继电器产品设计满足输出特性指标要求的前提下,给出了输出特性值受加工工艺分散性影响而波动最小的最佳参数水平组合。 1 引言 具有极化磁系统的永磁继电器具有体积小、重量轻、功耗低、灵敏度高、动作速度快等一系列优点,是被广泛应用于航空航天、军舰船舶、现代通信、工业自动化、电力系统继电保护等领域中的主要电子元器件。吸力特性与反力特性的配合技术是电磁继电器产品可靠性设计的关键技术。在机械反力特性及电磁结构已知的情况下,如何对电磁系统进行参数优化设计,使得在保证输出特性值满足稳定性要求的前提下,电磁系统的成本最低,这是继电器可靠性设计必不可少的前提工作之一。

由于极化磁路的非线性及漏磁的影响,使极化磁系统的输出特性值(吸力值)与磁系统各参数水平组合之间存在着非线性函数关系。在各种干扰影响下,各参数存在一定的波动范围。当各参数取不同的水平组合时,参数本身波动所引起的输出特性值的波动亦不相同。由于非线性效应,必定存在一组最优水平组合,使得各参数波动所造成的输出特性值的波动最小,即输出特性的一致性最好。极化磁系统参数优化设计的目的就是要找到各参数的最优水平组合(即方案择优),使得质量输出特性尽可能不受各种干扰的影响,稳定性最好。 影响永磁继电器产品质量使其特性发生波动的主要干扰因素有:①内干扰(内噪声),是不可控因素,如触点磨损、老化等;②外干扰(外噪声),亦是不可控因素,如环境温度、湿度、振动、冲击、加速度等;③可控因素(设计变量)加工工艺的分散性等。其中前两种因素均与产品实际使用环境有关,这里暂不予考虑,本研究只考虑后者对产品质量特性波动的影响。 正交试验设计法是实现参数优化设计的重要手段之一,以往人们在集成电路制造工艺、电火花成型加工工艺、轴承故障诊断等方面得到了很好应用[1-4],但大多是采用单一目标函数的正交试验设计。文献[2]应用正交试验设计法对永磁继电器磁钢尺寸进行了参数优化设计,但没有采用正交试验设计法对永磁继电

活塞结构设计与加工工艺

课程设计任务书 一、设计题目:活塞结构设计与加工工艺 二、设计参数:五十铃6120、排量2.0L、D S ?为120?135、转速1300r?min 顶岸高度F、活塞销直径BO、裙长SL、销座间距A、总长GL、 最大爆发压力、活塞销校核 三、设计要求: 1用计算机绘制活塞总装配图一张(A1图)、零件图(加工工件)一张(A2图)2设计说明书一份(包括零件图分析、定位方案确定、定位误差计算等内容;最好能写出整个工艺过程) 四、进度安排: 第一周:查找课程设计所需要的书籍,资料。 第二周:对活塞进行尺寸设计计算。 第三周:强度校核 第四周:绘图并书写说明书。 第五周:应用制图软件绘制零件图及装配图并完善课程设计说明书。 五、总评成绩及评语: 指导教师签名日期年月

目录 前言 (1) 1活塞的概述 (2) 1.1活塞的功用及工作条件 (2) 1.2活塞的材料 (2) 1.3活塞结构 (2) 1.3.1活塞顶部 (2) 1.3.2活塞头部 (3) 1.3.3活塞裙部 (3) 2活塞的结构参数 (4) 3活塞最大爆发压力的计算 (5) 3.1热力过程计算 (5) 3.2柴油机的指示参数 (8) 3.3柴油机有效效率 (10) 4活塞销的受力分析 (12) 5活塞的加工工艺 (14) 参考文献: (15)

课程设计 前言 内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞是内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏,特别是坦克、舰艇和军用车船用内燃机活塞则要求更高,它已成为制约内燃机发展的一个突出问题。 本次课程设计的题目是发动机铝活塞的结构及工艺设计,选择利用合适的机床加工发动机活塞,通过这次课程设计,要求熟练掌握并能在实际问题中进行创新和优化其加工工艺过程。

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

活塞结构设计与工艺设计毕业设计说明书

目录 前言 (1) 1活塞的概述 (2) 1.1活塞的功用及工作条件 (2) 1.2活塞的材料 (2) 1.3活塞结构 (2) 1.3.1活塞顶部 (2) 1.3.2活塞头部 (3) 1.3.3活塞裙部 (3) 2活塞的结构参数 (4) 3活塞最大爆发压力的计算 (5) 3.1热力过程计算 (5) 3.2柴油机的指示参数 (8) 3.3柴油机有效效率 (10) 4活塞销的受力分析 (12) 5活塞的加工工艺 (14) 参考文献: (15)

前言 内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞是内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏,特别是坦克、舰艇和军用车船用内燃机活塞则要求更高,它已成为制约内燃机发展的一个突出问题。 本次课程设计的题目是发动机铝活塞的结构及工艺设计,选择利用合适的机床加工发动机活塞,通过这次课程设计,要求熟练掌握并能在实际问题中进行创新和优化其加工工艺过程。

1活塞的概述 1.1活塞的功用及工作条件 全套图纸及更多设计请联系QQ:360702501活塞是曲柄连杆机构的重要零件煤气主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。 活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 活塞顶部直接与高温燃气接触,活塞顶部的温度很高,各部的温差很大,柴油机活塞顶部常布置有凹坑状燃烧室,使顶部实际受热面积加大,热负荷更加严重。高温必然会引起活塞材料的强度下降,活塞的热膨胀量增加,破坏活塞与气缸壁的正常间隙。另外,由于冷热不均匀所产生的热应力容易使活塞顶部出现疲劳热裂现象。所以要求活塞应有足够的耐热性和良好的导热性,小的线膨胀系数。同时在结构上采取适当的措施,防止过大的热变形。 活塞运动速度和工作温度高,润滑条件差,因此摩擦损失大,磨损严重。要求应具良好的减摩性或采取特殊的表面处理。 1.2活塞的材料 现代内燃机广泛使用铝合金活塞。铝合金导热性好(比铸铁大3-4倍),密度小(约为铸铁的1/3)。因此铝活塞惯性力小,工作温度低,温度分布均匀,对改善工作条件减少热应力延缓机油变质有利。目前铝活塞广泛采用含硅12%左右的共晶铝硅合金制造,外加铜和镍,以提高热稳定性和高温机械性能。铝活塞毛胚可采用金属模铸造,锻造和液压模锻等方法生产。 为了提高铝活塞的强度和硬度,并稳定形状尺寸,必须对活塞进行淬火和时效热处理。 1.3活塞结构 活塞按部位不同,分为顶部,头部和裙部三部分。 1.3.1活塞顶部 活塞顶部是燃烧室的组成部分,其形状与燃烧室形状和压缩比有关,一般有平顶,凸

设计参数的合理选择

1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。但需注意以下几点: (1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。 (2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。 (3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6. 1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。 (4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。 (5)注意:钢结构、砌体结没有抗震等级。计算时可不考虑抗震构造措施。 2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点: (1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。 (2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。 (3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在归档文件>结构计算书>振型参与质量中查看,如果不满足,程序自动给出提示。 3、主振型的判断;

(1)对于刚度均匀的结构,在考虑扭转耦联计算(即在全局信息设置中振型组合方法为CQC)时,一般来说前两个或前几个振型为其主振型。 (2)对于刚度不均匀的复杂结构,上述规律不一定存在,此时应注意查看结构计算书“周期、振型、地震力”中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。 4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况: (1)设计应注意查看结构计算书输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于150度时,应将此方向输入重新计算(全局信息附加计算地震方向)。 (2)对于有有斜交抗侧力构件的结构,当大等于150度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。 (3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。 5、周期折减系数:高规3.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。 (1)框架结构 0.6—0.7;框架—剪力墙结构0.7—0.8;剪力墙结构 0.9—1.0;短肢剪力墙结构 0.8—0.9. (2)请大家注意:周期折减是强制性条文,但减多少则不是强制性条文,这就要求在折减时慎重考虑,既不能太多,也不能太少,因为折减不仅影响结构内力,同时还影响结构的位移。 6、活荷载质量调整系数:该参数即为荷载组合系数。可按《抗规》5.1.3条取值。注意该调整系数只改变楼层质量,不改变荷载总值,即对竖向荷载作用下的内力计算无影响,

压力传感器静态特性与动态特性的对比有什么不同

传感器有很多特性,所谓特性也就是传感器所独有的性质,压力传感器作为传感器中最普遍的一种传感器也有很多特性,压力传感器的特性一般可分为静态特性和动态特性。 压力传感器的静态特性是指对静态的输入信号,压力传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即压力传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征压力传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 所谓动态特性,是指压力传感器在输入变化时,它的输出的特性。在实际工作中,压力传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为压力传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以压力传感器的动态特性也常用阶跃响应和频率响应来表示。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/dc14931859.html,/

IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究 IGBT动态参数 IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。RGint:模块内部栅极电阻: 为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。 RGext:外部栅极电阻: 外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。 上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。 用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。

已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。 实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。 如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。 最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。Cge:外部栅极电容: 高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。 IGBT寄生电容参数: IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。

数学建模零件参数的优化设计

数学建模零件参数的优 化设计 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

零件参数的优化设计 摘要 本文建立了一个非线性多变量优化模型。已知粒子分离器的参数y由零件 参数)7 2,1 ( = i x i 决定,参数 i x的容差等级决定了产品的成本。总费用就包括y 偏离y 造成的损失和零件成本。问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。最终计算出的各个零件的标定值为: i x={,,,,,,}, 等级为:B B C C B B B d, , , , , , = 一台粒子分离器的总费用为:元 与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。 为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数 非线性规划 期望 方差 一、问题重述 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。 进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为: y 的目标值(记作y 0)为。当y 偏离y 0+时,产品为次品,质量损失为1,000元;当y 偏离y 0+时,产品为废品,损失为9,000元。 零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

主要设计参数资料

主要设计参数 鼓式制动器结构形式及选择 除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。 鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩

擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式制动器。 1.1鼓式制动器的形式结构 鼓式制动器可按其制动蹄的受力情况分类(见图1.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。 图1.1 鼓式制动器简图 (a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式); (d)双向双领蹄式;(e)单向增力式;(f)双向増力式 制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。

直流锅炉的静态和动态特性以及运行参数的调节特点

1.直流锅炉的静态和动态特性以及运行参数的调节特点 1.1.概述 锅炉正常运行是指单元机组启动后的锅炉运行过程。锅炉是单元机组中的一个重要环节,锅炉与汽轮发电机之间存在着相互联系、相互影响、相互依赖的运行关系。锅炉正常运行内容主要是监视和调整各种状态参数,满足汽轮发电机对蒸汽流量、蒸汽参数的要求,并保持锅炉长期连续安全经济运行。 锅炉各种状态参数之间的运行关系、变化规律称为锅炉运行特性,它有静态特性和动态特性两种。锅炉在各个工况的稳定状态下,各种状态参数都有确定的数值,称为静态特性。例如,不同的燃料量就有相应的蒸汽流量、相应的受热面吸热量、相应的汽温与汽压等,这些都是锅炉的静态特性。 锅炉从一个工况变到另一个工况的过程中,各种状态参数随着时间而变化,最终到达一个新的稳定状态。各种状态参数在变工况中随着时间变化的方向、历程和速度等称为锅炉的动态特性。 锅炉在正常运行中,各种状态参数的变化是绝对的,稳定不变是相对的。因为,锅炉经常受到各种内外干扰,往往在一个动态过程尚未结束时,又来了另一个动态过程。锅炉的静态特性与动态特性表明各种状态参数随时偏离设计值。锅炉正常运行的任务就是要使各种状态参数不论在静态或动态过程都应在允许的安全、经济范围内波动,这必须要通过调节手段才能实现。锅炉正常运行调节可分为自动调节和人工调节两种,高参数大型锅炉广泛采用高度的自动调节,以确保静态与动态过程各种状态参数的偏离在允许范围内。 锅炉正常运行还要注意炉内燃烧稳定,防止受热面结渣、积灰,高低温腐蚀、磨损,防止各级受热面管金属超温。正常运行还要监视给水、锅水与蒸汽品质,并进行正确的锅水处理。 1.2.过热汽温静态特性 直流锅炉各级受热面串联连接,水的加热与汽化、蒸汽的过热三个阶段的分界点在受热面中的位置不固定而随工况变化。由此而形成了直流锅炉不同于汽包锅炉的汽温静态特性。对有再热器的直流锅炉,建立热量平衡式稳定工况下,以给水为基准的过热蒸汽总焓升可按下式计算 式中——锅炉输入热量,kJ/kg; ——锅炉效率%; 、——给水焓、过热器出口焓,kJ/kg; ——再热器相对吸热量,; ——再热器吸热量,kJ/kg。 G——给水流量,等于蒸汽流量,kg/s;

转炉设计参数选择

设计参数选择 1 氧气转炉物料平衡与热平衡计算 氧气 半钢、废钢 矿石或铁皮 (1)收入项石灰 萤石、白云石 炉衬侵蚀 其它 炉气 喷溅 炉渣 (2)支出项铁珠 钢水 其它 1.1 计算原始条件假设:

(5)冷却剂 用废钢作冷却剂,其他成分与冶炼钢种成分的中限皆同。

(7)根据国内同类转炉的实验数据选取 ① 渣中铁珠量为渣量的8%; ② 金属中碳的氧化,其中90%的碳氧化成CO ,10%碳氧化成CO 2; ③ 喷溅铁损为铁水量的1%; ④ 炉气和烟尘量,取炉气平均温度1450℃。炉气中自由氧含量为0.5%。 烟尘量为铁水量的1.6%,其中%77)Fe (=O ω,)O Fe (32ω=20%; ⑤ 炉衬侵蚀量为铁水量的0.5%; ⑥ 氧气成分,)O (2?=99.5%、)N (2?=0.5%。 2 转炉炉型主要参数 参数确定方法有两种方法:① 直接推荐法;② 推荐经验公式。由北京钢铁设计研究总院推荐的一套经验公式。主要包括: (1)炉容比(V/T );(2)高宽比(H/D );(3)熔池深度直径比(h/D );(4)炉口直径比(d 0/D );(5)帽锥角(θ);(6)出钢口参数;(7)转炉的公称吨位。 3 炉型设计计算 新转炉的炉型和各部位尺寸可根据经验公式计算,结合现有转炉生产实际并通过模型试验来确定。炉型尺寸的选择依据:生产规模、原材料条件、工艺操作方法。

① 确定所设计炉子的公称容量 ② 选择炉型 设计程序 ③ 确定炉型主要设计参数 ④ 计算熔池尺寸 ⑤ 确定整个炉型尺寸 (1)原始条件 ① 炉子平均出钢量为120t ,钢水收得率为92.62%,则金属装入量为: t 130562.129%62.92120G ≈== ② 原料:半钢,采用单渣不留渣操作。 ③ 氧枪喷嘴采用四孔拉瓦尔喷孔, (2)熔池尺寸的计算 1)熔池直径 t G K D = 2)熔池深度(h )本文采用筒球形熔池深度计算公式 金属熔池的体积为: 32046.079.0D hD V -=熔池 因而 2 3 79.0046.0D D V h += 熔池 (3)炉帽尺寸 1)炉口直径d D d )53.0~43.0(=,本文d 取2200mm 。 2)炉帽倾角θ θ的取值范围在60°~68°。本文取63°。 3)炉帽高度帽H ))(口直斜帽400~300(tan 2 1 +-=+=θd D H H H 炉帽容积: 直台直台帽)(H d d Dd D H V V V 2224 12 π π + ++= += (4)炉身尺寸的计算 1)炉膛直径膛D :

活塞设计说明书样板

(一)压缩高度的确定 1.第一环的位置 根据活塞环的布置确定活塞压缩高度时,首先须定出第一环的位置,即所谓火力岸的高度h。为缩小H1,,当然希望h尽可能小,但h过小会使第一环温度过高,导致活塞环弹性松弛、粘结等故障。柴油机活塞环的工作条件比汽油机更严重,故h应更大些。一般柴油机h=(0.15~0.25)D。 2.第二环的位置 为减小活塞高度,活塞环槽轴向高度b应尽可能小,这样活塞环惯性力小,会减轻对环槽侧面冲击,有助有提高环槽耐久性。但b太小,会使制环工艺困难。在小型高速内燃机上,一般气环高b=2~3毫米,油环高b=4~6毫米。大缸径柴油机的推荐环高见表。 环岸的高度c,应保证它在气压力造成的负荷下不会破坏。实践证明强化柴油活塞第一环岸有时会沿着岸根整圈断落下来。当然,第二、第三环岸负荷要比第一环岸小得多,温度也低,只有在第一环岸已破坏的情况下,它们才可能被破坏。因此,环岸高度一般第一环最大,其它较小。实际发动机的统计表明,c1=(1.5~2.5)b1,c2=c3=(1~2)b1,汽油机接近下限,柴油机特别是增压柴油机取上限,因为后者负荷重。 3.活塞环数 活塞环数目对活塞头部的高度H1有很大影响。目前高速汽油机一般用2~3道气环和一道油环 4.活塞销上面的裙部长度 确定好活塞头部环的布置以后,高度H1最后决定于活塞销轴线到最低环槽(一般是油环槽)的距离h’。为了保证油环工作良好,环在槽中的轴向间隙是很小的,环槽如有较大变形就会使油环卡住而失效。现代高速内燃机活塞的压缩高度在下述范围内:汽油机H1=0.45~0.6)D,柴油机H1=(0.6~0.8)D。由于这一尺寸的变化直接影响发动机的压缩比,在柴油机中有可能造成活塞与气门碰撞的故障,所以要保证严格的公差,一般规定H1±0.05。 (二)活塞顶和环带断面 1.活塞顶 活塞顶的形状主要取决于燃烧室的选择和设计。仅从活塞设计角度,为了减轻活塞组的热负荷和应力集中,希望采用受热面积最小、加工最简单的活塞顶形状,即平顶。大多数汽油机正是采用平顶活塞,非直接喷射的高速柴油机,也采用平顶或接近平顶的形状。但是直接喷射式的高速柴油机,由于混合气形成的需要,活塞顶上应设有一定深度的凹坑作为燃烧室,如果燃烧室深度h1很大,则连杆小头在燃烧室下面自由运动的需要,有时就决定了H1的下限值。有的柴油机活塞顶除有燃烧室外,还设有为防止活塞与气门干涉的浅坑。 中小型高速柴油机活塞顶的厚度是根据结构考虑决定的,主要从活塞向外传热条件和活塞的刚度出发,一般强度是足够的,通常并不对铝活塞顶部进行校核。实际统计数据表明,活塞顶部最小厚度,汽油机δ=(0.06~0.1)D,柴油机为δ=(0.1~0.2)D。 活塞顶面接受的热量,主要通过活塞环传出。专门的试验表明,对无强制冷却的活塞来说,经活塞环传到气缸壁的热量占70%~80%,经活塞本身传到气缸壁的占10%~20%,而传给曲轴箱空气和机油的仅占10%左右。所以活塞顶厚度δ应从中央到四周逐渐加大,而且过渡圆角R应足够大,使活塞顶吸收的热量能顺利的被导至第二、第三环,以减轻第一环的热符合,并降低最高温度。 为了减少积炭和受热,活塞顶表面应光洁,在个别情况下甚至抛光。复杂形状的活塞顶

活塞表设计

旋转活塞式水表的设计方法 摘要:本文介绍了旋转活塞式水表的工作原理,分析了计量腔参数间的关系,给出了结构常数K值,提出了设计方法 关键词:水表旋转活塞结构常数K 设计方法 一、工作原理 本厂研制的旋转活塞式水表是容积式水表的一种,通过计量水流过一定容积的数目来计算累计流过的水流量。其计量腔原理图如下: 活塞内外壁将计量腔分成内外两个计量腔,隔板又将计量腔分成高压部分(接进口)和低压部分(接出口)。在此压差下,每个计量部分的容积随着活塞的运动周期地变化,完成进、排水的计量工作。 二、活塞的运动分析 由计量机构的工作过程可以看出,活塞运动可简化为曲柄滑块机构。假设活塞壁厚为零,质量为零的理想环,水为理想流体,则水流经计量腔时仅受导向作用,无容积排挤效应,进出水口的平均流速不受影响。因而在此情况下,如果管道中的流动是稳定的,则活塞转动也是匀速的。 从以上分析可知,在理想情况下,活塞的运动是曲柄连杆机构中,曲柄匀速转动时的连杆的运动. 但实际上活塞总有一定的壁厚和质量,水也不是理想的流体,因而导致活塞运动呈周期变化,这是有待进一步研究的课题。 三、水表转速与计量腔尺寸的关系 1.计量腔的尺寸匹配 图1为计量腔横截面示图,各尺寸关系为 r1=r0+r2① R2=R1-r0 ② δ=R1-r2-2r0 ③ 单位高度容积为V =πR12-πR22+πr12-πr22 =2πR1r0+2πr2r0≤2πR1r0+πr22+πr02 设定Vm=2πR1r0+2πr22 (r0=r2时取极值) 在此条件下(r0=r2),将③代入上式得

Vm= 8π R12 - 24π R1δ+ 2πδ2 9 9 9 此函数的曲线如右图2 实际情况要求0≤δ≤R 1 所以当δ=0时,Vm取得最大值Vmax: Vmax= 8π R12 9 又∵当δ=0时,8π R12 =πR12–πR22 9 ∴r2=1/3R1 由以上分析可知,当r2=1/3R1,δ=0时,计量腔容积最大。 2.水表传动比与活塞高度b以及计量腔外壁半径R1的关系: (1)在理想情况下,Vmax= 8/9πR12b(b为活塞的高度),此值也等于单位转数的流量。 则首位指针前的传动比 i= 0.001 8/ 9πR1 2b (2)实际上,活塞体积和间隙的泄漏都不能忽视,故引入排挤系数和泄漏系数 排挤系数ξ= 活塞体积泄漏系数f= 实际流过体积 活塞腔容积理论体积 则i= 0.001 整理成 i= 0.001 . 1 8/ 9πR12b(1- ξ)f 8/ 9π(1- ξ)f R1 2b 令K= 0.001 8/ 9π(1-ξ)f 得i=K 1 R12b 上式称为活塞表基本关系式,实践证明,系数K是一个常数,它的值大约在 0.000466~~0.00053之间,我们称K为活塞表的结构常数。 3.活塞高度b和计量腔外壁半径R1的关系: 活塞高度的确定应以活塞腔纵切面过流面接近正方形为原则,即b≈R1-r2

相关主题
文本预览
相关文档 最新文档