当前位置:文档之家› 固定化酶载体的研究进展

固定化酶载体的研究进展

固定化酶载体的研究进展
固定化酶载体的研究进展

固定化酶载体的研究进展

牛亚楠,侯红萍

(山西农业大学食品科学与工程学院,山西太谷030801)

摘要:作为固定化酶技术的重要组成部分,载体的结构及性能在很大程度上直接影响着固定化酶的催化活性及

操作稳定性。综述了近年来国内外有关固定化酶载体材料的研究现状和发展趋势。

关键词:固定化酶;载体;研究进展

中图分类号:Q814文献标识码:A文章编号:1001-9286(2011)09-0097-03

Research Progress in Carriers of Immobilized Enzymes

NIU Ya'nan and HOU Hongping

(College of Food Science and Engineering,Shanxi Agricultural University,Taigu,Shanxi030801,China)

Abstract:As an important part of immobilized enzymes technology,the structure and the properties of carrier would influence directly catalysis activity and operation stability of immobilized enzyme.In this paper,the research progress in carrier materials for immobilized enzymes at home and abroad in recent years and its development trend were reviewed.

Key words:immobilized enzyme;carriers;research progress

载体材料的选择是决定酶能否成功固定化以及固定化酶活力高低的重要因素。酶蛋白的活性中心是酶催化活性所必需的,酶蛋白的空间结构也与酶活力密切相关,因而,在固定化的过程中,必须注意酶活性中心的氨基酸残基不受到载体的影响,而且要避免酶蛋白高级结构的破坏。

从载体材料的组成来看,固定化酶所使用的载体可以分为无机载体、高分子载体、复合载体及新型载体等。1无机载体材料

无机载体稳定性好、机械强度高、对酶和微生物无毒性、不易被酶和微生物分解、耐酸碱、成本较低、寿命长,如氧化硅、活性炭、氧化铁(铝)、多孔玻璃等。无机载体的不足之处在于其结构不易调控,影响传质且键合酶的能力差,但可与传统有机聚合物载体材料形成互补体系[1]。

采用原子转移自由基聚合(ATRP)方法,在Si表面进行甲基丙烯酸缩水甘油酯(GMA)的接枝聚合,从而在硅表面形成刷状P(GMA),并可调节P(GMA)侧链的长度。所得复合载体的传质性能良好,侧链富含能与酶共价连接的环氧基,故提高了固定化葡萄糖氧化酶(GOD)的载酶量,达到0.2mg/cm2[2]。

碳纤维作为固定化酶载体材料已初步显示出其应用价值。最新研究表明,吸附在活性炭纤维上的酶的活性要比吸附在玻璃纤维上的高,在特定条件下,固定化酶表现出高度的热稳定性,可连续用于催化水解和酯交换反应。纤维结构的载体有高比表面积和较高的机械性能,碳纤维上固定的水处理用微生物不仅量很大,而且附着强度也很大,还有一定的弹力性[3]。张巍巍[4]将脂肪酶固定在T300级碳纤维上,发现固定化酶相对于游离酶的反应pH值向碱性偏移,最适合反应温度由原来的37℃提高到50℃,并且在40~60℃能维持比较好的活性。

2高分子载体

高分子载体又可分为天然高分子载体材料和合成高分子载体材料。

2.1天然高分子载体材料

天然高分子材料有结构性蛋白(角质、胶原蛋白)、球状蛋白及其碳水化合物。由于原料比较易得,都比较适合作为酶的载体材料。此类材料最大的特点是无毒性,传质性能好。近年研究的比较热门的载体是壳聚糖和海藻酸钠等。

孙素芳[5]比较了不同相对分子质量壳聚糖(50×104,100×104,200×104)的成球情况及壳聚糖相对分子质量对固定化酶活力、酶活回收率的影响,确定了50×104的壳聚糖

基金项目:山西省科技攻关项目(041030)。

收稿日期:2011-06-09

作者简介:牛亚楠(1986-),在读硕士生,研究方向:酶固定化技术。通讯作者:侯红萍(1965-),教授,sphhping@https://www.doczj.com/doc/df11108351.html,。

为最适固定化β-半乳糖苷酶载体,并制备了毫米级壳聚糖小球,较传统方法更加简单、快速。湿润壳聚糖小球直接干燥和采用体积分数为30%的甘油处理后干燥对比实验表明,后者能够保持小球湿态时的结构,既保证了酶的固定化效果,又有利于载体的工业储存。

由于天然高分子材料强度较低,在厌氧条件下易被微生物所分解,使用寿命较短,而且天然高分子材料原料来源往往受产地所限,这在一定程度上限制了它的进一步应用。

2.2合成有机高分子载体

合成有机高分子材料种类繁多,其化学、物理性能都有很大的可变性。理论上来讲,高分子材料可以担当任何一种酶的固定化载体,而且它们对微生物的腐蚀也有较强的抵抗力。另外,与天然高分子材料相比,合成有机高分子凝胶载体还具有强度较大的优点。常用的合成高分子材料载体为聚丙烯、聚丙烯酰胺、聚丙烯腈等。缺点主要是载体的价格昂贵;多数固定化酶的活力和稳定性不高;操作的半衰期也不够长;连续化反应时,操作和装置过于复杂等,这些问题都有待于解决。王燕佳[6]以聚丙烯酰胺类纳米粒子为固定化载体,采用共价键合的方法对脂肪酶的固定化条件及有机相中固定化酶的催化性能进行了研究,结果如下:固定化的最佳条件为,在pH10.0的缓冲液下,吸附时间为12h,温度为35~36℃。得到的固定化酶催化合成月桂酸月桂醇酯,月桂酸与十二醇的摩尔比1∶2,55℃的条件下酯化反应催化效果最好。

3复合载体材料

将有机材料和无机材料复合组成新的载体材料,可改进材料的性能。目前主要有磁性高分子微球,既可以通过共聚、表面改性等化学反应在微球表面引入多种反应性功能基团,也可通过共价键来结合酶、细胞、抗体等生物活性物质,在外加磁场的作用下,进行快速运动或分离,因而在生物工程、生物医学及细胞学等领域有着广泛的应用前景。Han Lei等[7]采用磁性复合微球为载体来固定木瓜蛋白酶。研究结果表明,木瓜蛋白酶经过固定化后的pH值、热稳定性及储存稳定性均高于单体酶。与单体酶相比,固定化的木瓜蛋白酶表现出了良好的适应环境的能力。

4新型载体

4.1介孔材料

介孔材料是一种多孔固体材料,它具有蜂窝样的孔道,大小只有2~50nm。很多介孔材料的孔道都是规则有序排列的,包括层状、六方对称排列和立方对称排列的孔道结构。

介孔材料作为酶固定化载体的优越性表现在:①相对于微孔分子筛,介孔材料较大的孔径使其表面活性基团有较好的可接近性,孔内可负载大体积基团,适用于体积大小范围较宽的客体分子;②介孔材料的表面富含羟基基团,与酶分子发生氢键作用,加强载体与酶分子的作用力,而且羟基在表面的分布及其数量可根据目标进行调变;③具有较高的比表面积(达1000m2/g),理论负载量较高;④无机介孔材料在酶催化反应过程中呈惰性,不影响催化反应;⑤在理论研究方面,均一孔径有利于建立固定化酶的结构模型,表面性质及结构的可调变性可为酶/载体的分子水平设计与结构控制提供有意义的信息。

李艳敬[8]以棒状介孔材料SBA-15为载体对脂肪酶进行固定化,结果表明,脂肪酶的进入并没有破坏棒状介孔材料SBA-15孔道的结构,还研究了脂肪酶催化三乙酸甘油酯水解时的催化活性、热稳定性和重复利用次数。与自由酶相比,固定酶的耐碱性和耐高温能力都有所提高。特别是在60℃条件下,固定化酶的热稳定性要比自由酶的稳定性好。邹泽昌[9]采用水热合成法以P123为模板剂,正硅酸乙脂为硅源,在酸性(HCl)条件下合成了氧化硅介孔泡沫材料,用于固定化木瓜蛋白酶。结论为:①在4℃条件下放置60d后,固定化酶的剩余活性仍保持75%以上,而游离酶的活性只有初始活性的53.6%。操作8个批次后,酶活保留60.3%。与游离酶相比,固定化木瓜蛋白酶的pH稳定性、热稳定性、操作稳定性和储藏稳定性都有了很大程度的提高。②酶固定化效果与氧化硅介孔泡沫材料的窗口尺寸相关,当载体材料的窗口尺寸与酶分子的大小接近时,酶固定量和活力达到最大,其固定量为319mg/g MCF。介孔材料窗口尺寸是影响载体酶吸附量的关键因素。③氧化硅介孔泡沫材料经过氨基修饰后,对木瓜蛋白酶分子的固定量有了很大的提高(2.02倍),但是固定化酶的活性只有游离酶的57.3%,说明氨基修饰对酶分子的催化活性有一定的影响。

侯红萍[10]等以介孔分子筛SBA-15为载体、戊二醛为交联剂固定糖化酶,固定化酶的活力回收率为56%,固定化酶比游离酶具有更好的耐热性,且固定化酶的Km比游离酶有所降低,说明其对底物具有很好的亲和性,并用超声波处理了固定化酶,其活力比未处理的提高了18%。

4.2环境敏感性载体

酶的固定化一般是将酶固定在水不溶性载体上,这样可方便有效地将酶与底物和产物分离,而且酶可以重复使用,但由于催化反应是异相反应,催化效率便受到了很大影响。若将酶固定在水溶性大分子上,催化反应则为均相反应,但所得的固定化酶难以分离和重复使用。因

此,近年来,研究开发出了结合均相催化和异相分离特点的环境敏感性材料成为固定化酶的新型载体,通过调节反应体系的温度或pH值实现了这一目的。将适量的聚乙二醇(PEG)接枝到壳聚糖上而制得的温敏性高分子水凝胶载体,随着温度的改变能在溶胶-凝胶之间转变[11]。Zhu等利用pH敏感性高分子载体(甲基丙烯酸-丙烯酰胺-马来酸酐三元共聚物)固定脂肪酶,这种固定化酶在临界pH以上为溶解状态,在临界pH以下则发生沉淀,因而可通过调节pH进行酶促反应和回收酶。P(AM-co-HEMA)是通过丙烯酰胺(AM精制)与2-甲基丙烯酸羟基乙酯(HEMA)共聚产生的单体,P(AM-co-HEMA)固定化α-胰凝乳蛋白酶的最适温度为65℃,自由酶的最适温度为45℃,最适温度范围明显变宽,而且在25~55℃温度范围内酶活力可以实现连续可调。P(AM-co-HEMA)固定化α-胰凝乳蛋白酶,连续催化8次底物,其活力并无明显下降[12]。

5结语

各种固定化酶载体材料都有其各自的优缺点,相应的研究开发也得到了长足的发展,取得了许多重要成果,但仍存在很多需要解决的问题。载体材料的研究已从利用和改进质优价廉的传统载体材料发展到新型载体材料的设计和研发,根据特定酶固定化的需要来设计制备性能优良的载体,将是固定化酶载体材料的发展方向。

参考文献:

[1]柏正武,尹传奇,吴莉.甲壳胺-硅胶复合载体的制备及其在脂

肪酶固定化中的应用[J].应用化学,2002,19(12):1194-1196. [2]F J Xu,Q J cai,Y L Li et al.Covalent immobilization of glucose

oxidase on well-defined poly(glycidyl methacrylate)-Si(111)

hybrids from surface-initiated atom-transfer radical polymer-

ization[J].Blomacromolecules,2005(2):1012-1020.

[3]Elisangela W,Elisangele M.Response surface methodology for

optimization of lipase production by an immobilized newly

isolated peniciIlium sp[J].Industrial&Engineering Chemistry

Research,2008,48:9651-9657.

[4]张巍巍.生物碳纤维的酶固定化研究[D].北京:北京化工大学,

2010.

[5]孙素芳,张燕,吕树芳,等.壳聚糖固定化酶载体小球的研究及制

备方法的改进[J].河北大学学报,2009,29(2):168-172.

[6]王燕佳.聚丙烯酰胺类共聚纳米粒子固定脂肪酶的研究[D].

无锡:江南大学,2008.

[7]Han Lei,Wang Wei.The preparation and catalyticalIy active

characterlzatlon of papain lmmobilized on magnetic comppsite

micmspheres[J].Enzyme and Microbial Techn,2004,35(1):15.

[8]李艳敬.猪胰脂肪酶在介孔材料SBA-15中的固定化及其催

化活性[D].济南:山东轻工业学院,2009.

[9]邹泽昌.氧化硅介孔泡沫材料的制备及其木瓜蛋白酶固定化

[D].北京:北京工业大学,2009.

[10]侯红萍,张茜.介孔分子筛SBA-15固定糖化酶的研究[J].中

国食品学报,2011,11(2):147-151.

[11]N Bhattarai.H R Ramay,J Cunn et al.[J].J.Controlled Release,

2005,103:609-624.

[12]张传梅,付建伟,庄银凤,等.温敏性水凝胶作为固定化酶载体

的研究[J].河南科学,2006,24(5):683-686.

牛亚楠,侯红萍·固定化酶载体的研究进展

-------------------------------------------------贵州国际红酒品鉴会在贵州饭店举办

本刊讯:2011年8月19日下午,在贵州饭店贵阳厅,新西兰葡萄酒协会与中国贵州国际酒博会执委会及叁新西兰公司协同举办贵州国际红酒品鉴会,国家商务部市场运行调节司副司长路政闽及贵州省商务厅副厅长陈泽民,14家企业及新闻媒体参加了品鉴会。此次品鉴会旨在传播葡萄酒文化,教授葡萄酒评鉴方法和知识,加强与中国的交流。

国家商务部市场运行司副司长路政闽说,近几年,随着经济的发展,中国的葡萄酒进口量也在逐年增加,而消费者对葡萄酒的要求也越来越高。相信通过葡萄酒文化的传播,会加强中国文化与世界文化的交流,提高中国精神文明建设,使更多的人懂得享受生活。“品葡萄美酒,享美好生活”。

贵州省商务厅副厅长、酒博会副组长陈泽民说,中国是白酒大国,随着世界相互之间的交流加深,中国对红酒如何储藏、评鉴越来越感兴趣。在增进红酒的同时也能促进相互之间的经贸合作。

品鉴会由新西兰红酒品鉴师王胜主持,新西兰红酒协会会长Mal主讲。Mal介绍了新西兰及新西兰葡萄酒,并讲解了多款名酒产地及相关故事、特点、制作流程等。

新西兰专业品酒师王胜讲解了霞多丽(Chardonnay)、黑皮诺(Pinot Noir)、赤霞珠(Cabernet Sauvignon)、西拉子(Shiraz)的中餐搭配方法和品鉴知识。进口葡萄酒的辨别常识与品鉴方式成为大家关心的热点。在品酒师的引导下,大家逐项体验了葡萄酒的色泽、透明度、香味、挂杯等微妙而精致的感官享受。

品鉴会在热烈的气氛中圆满结束。(小小,江砂

)品鉴会会场

99

酶固定化技术及其应用

酶固定化技术及其应用 摘要: 酶因其优良的催化性能而被广泛应用,但游离酶应用过程中有许多缺点,固定 化酶技术因此而产生,并且迅速发展。本文主要介绍传统的固定化酶技术、新 型固定化酶技术、新型载体材料及固定化酶技术的应用。 关键词:酶固定化;载体;应用 The enzyme is widely applied because of its fine catalyzed performance, but in the dissociation enzyme application process has many shortcomings, the fossilization enzyme technology therefore produces, and develops rapidly. This article main introduction traditional fossilization enzyme technology, new fossilization enzyme technology, new carrier material and fossilization enzyme technology application. 一、前言 酶的本质是一类具有催化功能的蛋白质,与化学催化剂相比具有反应速度快、反应条件温和、底物专一性强,可在水溶液和中性pH 下操作等优点。但其 高级结构对环境十分敏感,物理因素、化学因素和生物因素均可使没丧失活力。 而且,随着反应过程的进行,反应速率会下降。此外,游离酶在反应液中和产 物在一起,反应后酶不能回收重复利用,也使得产物的分离纯化更为复杂。以 上的这些因素使得酶在工业中的应用受到了极大的限制,找到解决这些问题得 方法十分迫切。 可喜的是,经过专家学者的不断努力,发现将酶用特殊的载体固定,酶仍能与底物有效的进行反应。这中酶的出现,使得酶与产物在反应液中相互分离,具有可回收、重复利用等优点,从而使生产工艺可以实现连续化、自动化。 酶的固定化是指将酶限制或固定在某一局部空间或特定的固体载体上进行其特有的催化反应,并可回收及重复利用的技术,在催化反应中以固相状态作 用于底物。近年来,固定化酶的研究得到了人们极大的关注,并取得了许多重 要成果。下面以酶的固定化方法为核心,介绍一些有关酶固定化技术的应用及研 究新进展。 二、传统酶固定化技术

固定化酶载体材料的最新研究进展

万方数据

万方数据

万方数据

万方数据

固定化酶载体材料的最新研究进展 作者:袁定重, 张秋禹, 侯振宇, 李丹, 张军平, 张和鹏, YUAN Dingzhong, ZHANG Qiuyu , HOU Zhenyu, LI Dan, ZHANG Heping, ZHANG Junping 作者单位:西北工业大学理学院应用化学系,西安,710072 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2006,20(1) 被引用次数:10次 参考文献(28条) 1.李伟.孙建中.周其云适于酶包埋的高分子载体材料研究进展[期刊论文]-功能高分子学报 2001(03) 2.Wilhelm Tischer.Frank Wedekind Immobilized enzyme:methods and applicatons 1999 3.Barbara.Krajewska Application of chitin-and chitosanbased materials for enzyme immobilizations:a review[外文期刊] 2004 4.Bullockc Immobilized enzymes 1995 5.Chaplin M F.Bucke C Enzyme technology 1990 6.Wiseman A Designer enzyme and cell applications in industry and in environment monitoring 1993 7.Pskin A K Therapeutic potential of immobilized enzymes 1993 8.Paul W.Sharma C P Chitosan,a drug carrier for the 21st century:a review 2000 9.安小宁.苏致兴高磁性壳聚糖微粒的制备与应用[期刊论文]-兰州大学学报(自然科学版) 2001(02) 10.Chiou Shaohua Immobilization of candida rugosa lipase on chitosan with activation of the hydroxgl groups 2004(02) 11.王斌.谢苗.曾竞华磁性壳聚糖微球固定化褐藻酸酶的研究学[期刊论文]-中国水产科学 2004(03) 12.袁春桃.蒋先明壳聚糖-g-丙烯腈固定化木瓜蛋白酶的研究[期刊论文]-应用化学 2002(09) 13.Prashanth S J.Mulimani V H Soymilk oligosaccharide hydrolysis by Aspergillus oryzae galactosidase immobilized in calcium alginate[外文期刊] 2005(3-4) 14.Patel S Stabilization of a haloophilic α-amlyase by callium alginate immobilization 1996(02) 15.Ding Liang.Yao Zihua Synthesis of macroporous polmer carrier and immobilization of papain 2003(06) 16.Li Songjun Use of chemically modified PMMA microspheres for enzyme immobilization 2004(1-3) 17.Cao Linqiu Immobilized enzyme:scence or art? 2005 18.薛屏.卢冠忠.郭杨龙青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[期刊论文]-化学通报(印刷版) 2003(10) 19.Han Yongjin.Jordan T Watson.Galen D Catalytic activity of mesoporous silicate-immobilized chloroperoxidase[外文期刊] 2002 20.Zhang Xin.Guan Ren feng.Wu Dan qi Enzyme immobilization on amino-fuctionalized mesostructrued cellular foam surfaces,characterization and catalytic properties[外文期刊] 2005 21.谢钢.张秋禹.李铁虎磁性高分子微球[期刊论文]-高分子通报 2001(0q) 22.邱广明.孙宗华磁性高分子微球共价结合中性蛋白酶 1995(03) 23.Han Lei.Wang Wei The preparation and catalytically active characterization of papain immobilized

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

酶的固定化技术及其应用

酶工程课程论文 题目:酶的固定化技术及其应用 学院:食品学院 专业:食品科学与工程 班级:食品101(35) 2012-11-21

酶的固定化技术及其应用 摘要:酶的固定化技术是酶工程研究领域的一项重点和热点技术之一,酶的固定化技术可以显著提高酶的利用率,降低酶生产的成本。本文主要研究酶的固定化技术,酶固定化的优缺点,以及在食品,医药,环境中的应用。并对其研究的前景进行了简洁的预测。 关键字:酶固定化技术应用 酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,广泛应用于食品加工、医药和精细化工等行业。但在使用过程中,人们也注意到酶的一些不足之处,如酶稳定性差、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。因此为适应工业化生产的需要,人们模仿人体酶的作用方式,通过固定化技术对酶加以固定改造,来克服游离酶在使用过程中的一些缺陷。 固定化酶,是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。与传统的酶相比,固定化酶具有游离酶所不可比拟的优点.同一批固定化酶能在工艺流程中重复多次地使用;固定化后,和反应物分开,有利于控制生产过程,同时也省去了热处理使酶失活的步骤;稳定性显著提高;可长期使用,并可预测衰变的速度;提供了研究酶动力学的良好模型等一系列的优点。 用于固定化的酶,起初都是采用经提取和分离纯化后的酶,随着固定化技术的发展,也可采用含酶细胞或 细胞碎片进行固定化,直接应用细胞或细胞碎片中的酶或酶系进行催化反应.由于微生物细胞可直接作为酶源,所以逐渐产生了固定化细胞技术. 固定化细胞的优点是: (1)省去了酶分离纯化的时间和费用; (2)可进行多酶反应; (3)保持了酶的原始状态,从而增加了酶的稳定性. 但固定化细胞与固定化酶相比,也存在一些不足 之处: (1)因为产生副反应和所需生化产物的进一步代 谢,使固定化完整细胞生产的产物纯度可能比固定化酶低; (2)细胞使用相当长的时间后,常常会发生自溶,尤 其是在细胞有可能进行增殖时,细胞的漏出就特别 明显: (3)单位体积反应器内固定化细胞的活性总是比相 应的固定化酶活性低.

酶的固定化方法的研究进展

l竖!壁塑翌苎垫!!竺篁!塑!篁箜!!!塑!:兰!旦旦旦垦二竺垒燮鱼!里!呈型!里壁!里!型旦塑鱼!垫!!塑:!!里!:!!!! 酶的固定化方法的研究进展 徐莉?,侯红萍2 (1.山西农业大学食品科学与工程学院,山西太谷030801;2.山西农业大学食品科学与工程学院,山西太谷030801) 摘要:固定化酶是酶工程的核心,利于实现酶的重复利用及产物与酶的分离。介绍了几种常用的固定化酶的方 法,如吸附法、包埋法、交联法和共价结合法,以及近几年研究的一些新型的固定化技术,如交联酶聚集体、定向固定 和共固定技术。 关键词:酶;固定化;研究近展 中图分类号:QSl4;Q55文献标识码:B文章编号:1001—9286(2010)01—0086—04 ResearchProgressintheImmobilizationofEnzymes ,xuLilandHOUHong—ping (1.FoodScience&EngineeringCollegeofShanxiAgriculturalUniversity,Taigu,Shanxi030801,China) Abstract:Immobilizedenzymeisthecoreine/izymeengineeringanditishelpfulforthel℃useofenzymeandtheseparationofproductsanden- zyme.Illthispaper,severalcommonly-usedimmobilizationmethodsofenzymewei'eintroducedincludingabsorptionmethod.embeddingmethod,cross-linkingmethodandcovalentbindingmethod.Besides,somenewly-developedimmobilizationmethodsinrecentyearssuchascross-linkedenzymeaggregates.orientationfixedandtotalfixationtechnique、^,erealsointroduced. Keywords:enzyme;immobilization;researchprogress 酶是一类具有催化功能的蛋白质,与化学催化剂相比具有反应速度快、反应条件温和、底物专一性强,可在水溶液和中性pH下操作等优点,但同时也存在一些不足,如酶一旦从细胞中分离出来,其活性会迅速下降,由于酶是溶于水的,在水溶液中进行反应,会导致酶和底物、产物从水中分离的困难,不利于循环使用【ll。 然而,固定化技术的出现彻底解决了这些问题,不仅提高了酶的活性,而且还实现了酶的可重复使用性。近年来,固定化酶的研究得到了人们极大的关注,并取得了许多重要成果。下面以酶的固定化方法为核心,介绍一些有关固定化技术的研究新进展。 1吸附法 利用多种固体吸附剂将酶或含酶细胞吸附在其表面上而使酶固定的方法。该方法最显著的优点是操作简便,条件温和,不会引起酶的变异失活,且载体价廉易得,可反复使用。但酶与载体结合不牢,极易脱落,所以它的使用受到一定的限制[21。因此,人们不断尝试使用新的载体来解决这易脱落的问题。 通常,吸附法分为物理吸附法和离子吸附法。1.1物理吸附法 酶被载体吸附而固定的方法称为物理吸附法。从载体对酶的适应性来看,这个方法效果是好的,酶蛋白的活性中心不易受破坏,酶的高级结构变化也不明显,但其缺点是酶与载体的相互作用较弱,被吸附的酶极易从载体表面上脱落下来,不能获得较高活力的固定化酶[3】。该方法常用的载体有活性炭、多孔陶瓷、纤维素及其衍生物、甲壳素及其衍生物等。 纵伟、刘艳芳等(2008)以磁性壳聚糖微球作为新型载体,并采用物理吸附法固定化脂肪酶,对影响固定化的各种因素进行考察,确定了最优条件,同时比较了游离酶和固定化酶的pH值和热稳定性。结果表明,固定化的适宜条件为:加酶量600U/g,温度5℃,pH7.0,固定化时间2h。固定化酶的pH值和热稳定性都优于游离酶,固定化酶连续使用5次后,其相对酶活仍为使用前的57.8%,具有较好的操作稳定性问。 近年来,随着介孔分子筛制备技术的日臻成熟,人们正在考虑用其担当固定化酶的载体。与其他材料相比,介孔分子筛规则的孔道、大的比表面积、极强的吸附性能、稳定的结构等特点,使其具有担当固定化酶载体得天独 收稿日期:2009一10—12 作者简介:徐莉(1984一),女,山西省孝义市,在读硕士研究生,研究方向:食品微生物与食品发酵。 通讯作者:侯红萍,女,教授,硕士生导师,主要从事食品发酵及生物工程等方面的教学与科研工作。主持、参加基金项目与科研项目多项。万方数据

酶固定化技术研究进展

酶固定化技术研究进展 选题说明 酶作为一种生物催化剂,具有高催化效率,高选择性,催化反应条件温和,清洁无污染等特点,其卓越的催化效能,令普通无机催化剂难以望其项背,因此酶的工业化使用一直是广受社会关注的课题,但天然酶稳定性差、易失活、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。此外,分离和提纯酶以及其一次性使用也大大增加了其作为催化剂的成本,严重限制了酶的工业推广。在此条件下,固定化酶的概念和技术得以提出和发展,并成为近些年酶工程研究的重点。酶的固定化,是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应,并可回收及重复使用的一类技术。通过固定化,可以解决天然酶的局限性,实现酶的广泛运用。 基于对于酶的工业化使用和固定化酶的兴趣,我通过互联网和数据库信息检索的方式对酶的固定化技术发展状况进行了初步探索,并对目前的研究成果进行了简要的概括。希望能使大家对这一领域有所认识。 检索过程说明 1,检索工具和数据库 1.1,百度搜索引擎 1.2,Google搜索引擎 1.3,中国期刊全文数据库 1.4,万方数据系统 1.5,重庆维普中文科技期刊数据库 2,检索过程简述

首先,我选择了使用百度和Google搜索引擎进行关键词检索,都得到了浩繁的搜索结果,所的信息主要是百科简介和企业广告信息,介绍较为浅显陈旧,可利用性较差,但可以用于简单的信息了解,在搜素过程中,尝试使用了布尔检索规则如“固定化酶and应用”、高级检索和结果中检索的检索方式,以减小数据量。也尝试了Google学术搜索,得到了很多有用信息。运用维普中文科技期刊数据库搜素“题名或关键词”为“固定化酶”的相关资料得到655条,搜素“题名或关键词”为“固定化酶应用”的相关资料得到72条,检索关键词搜素“题名或关键词”为“固定化酶研究”的相关资料得到4条. 万方数据系统搜索主题词"固定化酶",得到相关资料1024条,搜索“固定化酶技术应用”得到相关资料23条.。中国期刊全文数据库中检索“固定化酶技术”得到相关资料2604条,搜索“固定化酶技术应用”得到相关资料742条 关键词 酶固定化载体制备研究应用 酶固定化技术研究进展 提要: 固定化酶有许多优点,尤其是稳定性和可重复使用性使其在许多领域得到广泛应用。固定化酶技术是一门交叉学科技术。目前已得到长足的发展。本文重点介绍了固定化酶制备的传统方法和近些年出现的一些新方法,同时对酶在一些性能优良的栽体上的固定进行了综述。 正文: 一,传统的酶固定化方法

最新固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展摘要:本文主要从分析酶单独应用中的不足、酶的固定化载体、固定化方法等方面介绍了固定化酶制备中的研究进展情况,并且从医药、食品、环保、化学工业、能源等方面其在其中的新应用出发,对固定化酶在新领域中的应用作了综述,给固定化酶研究的发展前景进行了展望,并且指出了今后酶固定化研究的主要方向是多酶的固定化及制备高活性、高负载、高稳定性的固定化酶。 关键字:酶;酶的固定化;载体;酶固定化应用领域 酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶(immobilized enzyme)这个术语是在1971 年酶工程会议上被推荐使用的。随着固定化技术的发展,出现固定化菌体。1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。固定化酶技术为这些问题的解决提供了有效的手段,从而成为酶工程领域中最为活跃的研究方向之一。本文将从酶生

物催化剂固定化载体、固定化方法和技术及固定化酶的应用等几个方面出发,归纳和综述这些方面近年来的研究进展。 1酶固定化的传统方法 关键在于选择适当的固定化方法和必要的载体以及稳定性研究、改进。 1.1 吸附法 吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有活泼的表面。 1.2包埋法 包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。 1)网格型 将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。也称为凝胶包埋法。 2)微囊型 把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。由于形成的酶小球直径一般只有几微米至几百微米,所以也称为微囊化法。

2017-2018学年人教版高中生物选修一专题4 酶的研究与应用 课题3 酵母细胞的固定化 Word版含答案

课题3酵母细胞的固定化 1.概念 利用物理或化学方法将酶或细胞固定在一定空间内的技术。 2.方法 (1)包埋法:多适于细胞的固定化; (2) }化学结合法物理吸附法多适于酶的固定化。 3.载体 包埋法固定化细胞常用的是不溶于水的多孔性载体材料,如明胶、琼脂糖、海藻酸钠、醋酸纤维素和聚丙烯酰胺等。 4.优点 (1)固定化酶既能与反应物接触,又能与产物分离,可以反复利用。 (2)固定化细胞技术制备的成本低,操作容易。 5.实例——高果糖浆的生产 (1)原理:葡萄糖―――――→葡萄糖异构酶果糖。 (2)生产过程: ①将葡萄糖溶液从反应柱的上端注入。 ②使葡萄糖溶液流过反应柱,与固定化葡萄糖异构酶接触。 ③转化成的果糖,从反应柱的下端流出。 1.固定化酶常采用化学结合法和物理吸附法,而 固定化细胞则常采用包埋法。 2.制备固定化酵母细胞的基本步骤是:酵母细胞 的活化―→配制CaCl 2溶液―→配制海藻酸钠溶 液―→海藻酸钠与酵母细胞混合―→固定化酵 母细胞。 3.配制海藻酸钠溶液浓度过高,则难以形成凝胶 珠;若浓度过低,则固定的酵母细胞少,影响 实验效果。 4.配制海藻酸钠溶液应小火加热或间断加热。 5.固定化酶和固定化细胞技术既实现了对酶的重 复利用,降低了成本,又提高了产品质量。

(3)反应柱:酶固定在一种颗粒状的载体上,再将其装入反应柱内,柱子底端装上分布着许多小孔的筛板。酶颗粒无法通过筛板上的小孔,而反应溶液却可以自由通过。 (4)优点:反应柱能连续使用半年,大大降低了生产成本,提高了果糖的产量和质量。 1.酶能加快化学反应速率,但溶液中的酶难以回收,不能利用。要想既降低生产成本,又不影响产品质量,该如何解决这一问题? 提示:将酶固定于不溶于水的载体上,使酶既能与反应物接触,又能与反应物分离,还可重复利用。 2.固定化酶和固定化细胞一般采用什么方法?为什么? 提示:固定化酶常用化学结合法或物理吸附法。因酶分子小,易从包埋材料中漏出,故一般不用包埋法进行固定。固定化细胞常用包埋法,因个大的细胞难以被吸附或结合。 3.从操作角度来考虑,你认为固定化酶技术与固定化细胞技术哪一种方法更容易?哪一种方法对酶活性的影响更小? 提示:固定化细胞技术。固定化细胞技术。 4.固定化细胞固定的是一种酶还是一系列酶?如果想将微生物的发酵过程变成连续的酶反应,应该选择哪种方法? 提示:一系列酶;固定化细胞技术。 5.如果反应物是大分子物质,又应该采用哪种方法?为什么? 提示:固定化酶技术。因为大分子物质不容易进入细胞内,如果采用固定化细胞技术会使反应效率下降。 [跟随名师·解疑难] 直接使用酶、固定化酶和固定化细胞的比较

固定化酶技术与应用

固定化酶技术与应用 姓名:高强 专业:生物科学 学号:2004083011 日期:2013年5月

固定化酶技术及应用 摘要:近年来由于固定化酶技术的发展,对固定化酶载体的研究非常活跃。本文对固定化酶载体,固定化酶的应用生产,酶传感器,固定化细胞技术进行简单介绍。 关键词:固定化酶载体应用固定化细胞 引言 固定化技术的应用可追溯到20世纪50年代,最初是将水溶性酶与不溶性载体结合起来,成为不溶于水的酶的衍生物。1971年第一届国际酶工程会议上正式建议采用“固定化酶”的名称。所谓固定化酶,即在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。固定化酶属于修饰酶,其具有以下优点:1极易将固定化酶与底物,产物分开;2可以在较长时间内进行反复分批反应和装柱连续反应;3在大多数情况下,能够提高酶的稳定性;4反应过程能够加以严格控制;5产物溶液中没有酶的残留,简化了提纯工艺;6较游离酶更适合于多酶反应;7可以增加产物的收率,提高产物的质量;8酶的使用效率提高,成本降低。鉴于固定化酶的优点,本文从固定化酶载体的研究进展,固定化酶的应用,固定化酶的生产,在食品加工中的使用,固定化细胞技术等方面进行介绍。 固定化酶载体研究进展 载体材料的选择是决定酶能否成功固定化以及固定化酶活力高低的重要因素。酶蛋白的活性中心是酶催化活性所必需的,酶蛋白的空间结构也与酶活力密切相关,因而.在固定化的过程中,必须注意酶活性中心的氨基酸残基不受到载体的影响.而且要避免酶蛋白高级结构的破坏[1]。 甲壳素及壳聚糖作为载体的固定化方法报道较多的有吸附法、通过双功能试剂交联的共价结合法。目前,使用较多的是用戊二醛作交联剂的共价结合法。载体的形态有片状、球状、膜状、无定形等。1982年.John Wiley 利用甲壳素、壳聚糖的吸附作用固定化胰蛋白酶,把甲壳素、壳聚糖固态混合研磨40h,加入粉末状胰蛋白酶混合研磨进行固定化,另一对照样加入酶液进行固定化。结果表明胰蛋白酶以粉末状进行固定化时效果更好,且研磨时间越长,固定化效果越好。得出结论:甲壳素、壳聚糖表面积的增加有利于胰蛋白酶的固定化溶液酶在数天内几乎失去全部活力,而固定化酶在室温或高于室温的条件下仍保持其活力。 纳米粒子作为酶固定化的载体,当其具有磁性时,制备的固定化酶易从反应体系中分离和回收,操作简便;并且利用外部磁场可以控制磁性材料固定化酶的运动方式和方向,替代传统的机械搅拌方式,提高固定化酶的催化效率。在众多纳米材料中,氧化铁因其在磁性、催化等多方面的良好特性而备受瞩目[2]。 微胶囊是一种采用高分子聚合物或其他成膜材料将物质的微粒或微滴包覆所形成的微小容器,其粒径一般在微米至毫米级范围,通常为5~400μm。将酶用微胶囊包覆后形成的微胶囊固定化酶,由于被催化物质和产物可自由通过囊壁,因而能起到酶催化剂的作用[3]。酶经过微胶囊固化后,还使酶具有如下的优点:①提高了酶的稳定性,使其可以在恶劣的条件下存活。微胶囊囊壁可将对酶活性和稳定性有影响的抑制因子、有害因子等排除在外,同时还可与一定量的稳定剂、整合剂等一起包埋,进一步增加其耐极端条件的能力;②通过选择合适的胶囊,可控制酶的释放时间。这对于多阶段加工过程中酶的活力要在后一阶段发挥的情况

纳米材料固定化酶的研究进展_高启禹

?综述与专论? 2013年第6期 生物技术通报 BIOTECHNOLOGY BULLETIN 酶的固定化方法和技术研究是酶工程研究的重点之一,其核心是如何将游离的酶通过一定的方式与水不溶性的载体相结合,同时保持酶的催化活性和催化特性。固定化酶的概念自1953年由德国科学家Gubhofen [1]提出以来,先后经过了实验室研发到工业化生产的重大转折,并建立了传统的固定化酶的基本方法,如包埋法、交联法、吸附法和共价结合法[2]。近年来,随着结构生物学、蛋白质工程及材料科学的不断发展,在酶的固定中出现了一些新型载体和新型技术,从而使酶在负载能力、酶活力和稳定性等方面获得了极大提高,且降低了酶在工农业应用中的催化成本。这些载体和技术包括交联酶聚集体、“点击”化学技术、多孔支持物和最近的以纳米粒子为基础的酶的固定化[3]。纳米材料作为 收稿日期:2012-11-27基金项目:河南省科技厅科技攻关项目(112102210299),河南省教育厅自然研究计划项目(2011A180026)作者简介:高启禹,男,硕士,讲师,研究方向:酶与酶工程;E -mail :gaog345@https://www.doczj.com/doc/df11108351.html, 纳米材料固定化酶的研究进展 高启禹1 徐光翠2 陈红丽1 周晨妍1 (1.新乡医学院生命科学技术学院 河南省遗传性疾病与分子靶向药物重点实验室培育基地,新乡 453003; 2.新乡医学院公共卫生学院,新乡 453003) 摘 要: 纳米材料在蛋白酶及核酶的固定化研究领域进展迅速,主要包括各种磁性纳米载体及非磁性纳米载体。目前在固定化纳米载体的特性、固定化方法及固定化效果上已进行了广泛探讨。综述以纳米载体的研究现状为基础,分析纳米载体固定化酶的应用前景及纳米载体固定对酶学性质的影响,并对该技术的研究进行介绍和展望。 关键词: 纳米材料 固定化酶 磁性载体 非磁性载体 核酶 Research Progress of Nanoparticles for Immobilized Enzymes Gao Qiyu 1 Xu Guangcui 2 Chen Hongli 1 Zhou Chenyan 1 (1. College of Life Science and Technology ,Xinxiang Medical University ,Henan Key Laboratory of Hereditary Disease and Molecular Target Drug Therapy (Cultivating Base ),Xinxiang 453003;2. College of Public Health ,Xinxiang Medical University ,Xinxiang 453003) Abstract: Immobilization of protease and ribozyme by nanometer carrier are researched as a more useful means, including of the magnetic nanoparticle and nonmagnetic nanoparticles. Currently, the types of immobilized carrier and methods and results of nanoparticles are discussed. In this paper, we describe the current application of immobilized enzyme by nanocarrier, the effect of nanoparticles matrix to enzymatic properties and the prospect of application for the above mentioned technology were introduced, and the direction of the development of nanoparticles immobilization of enzyme was analyzed. Key words: Nanoparticle cartie Immobilized enzymes Magnetic nanoparticles Non magnetic nanoparticles Ribozyme 酶固定化的新型载体,能够体现良好的生物相容性、较大的比表面积、较小的颗粒直径、较小的扩散限制、有效提高载酶量及在溶液中能稳定存在等优点[4]。固定化的微粒状态根据纳米材料物理形态的差异性可分为纳米粒(包括纳米球、纳米囊)、纳米纤维(包括纳米管、纳米线)、纳米膜及纳米块等。目前,用于酶固定化的纳米形态以纳米粒(Nanoparticles,Nps)最为常见,纳米粒通常指粒子尺寸在1-1 000 nm 范围内的球状或囊状结构的粒子。而用于酶固定的纳米载体材料有磁性纳米载体、非磁性纳米载体等[5]。但是,在进行相关固定化设计时,仍然需严格遵循固定化酶的主要任务,即一方面要满足应用上的催化要求;另一方面又要满足在调节控制及分离上的非催化要求。

固定化酶在现代工业中的应用

固定化酶在现代工业中的应用姓名:胡艳芬学号:2008132106 指导教师:张孟 摘要酶是一类有催化功能的蛋白质,具有反应条件温和, 底物专一性强, 可在水溶液和中性pH 下操作等优点。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处。本文简要介绍了固定化酶的概念、制备方法及其在生物、医药、环境保护等方面的广泛应用。重点介绍一些固定化酶在现代工业中的应用,并对其应用前景进行了展望。 关键词固定化酶制备工业应用前景 酶是一类由活细胞产生的具有生物催化功能的分子量适中的蛋白质,具有极高的催化效率、高度的特异性及控制的灵敏性。大多数酶是水溶性的。由于酶催化反应具有底物专一性、催化高效性、反应条件温和等优点,符合绿色化学的要求,从而被大家高度重视,已在许多领域得到广泛的应用[1]。酶的最大缺点是其不稳定性,在酸、碱、热及有机溶剂中易发生变性,活性降低或丧失;而且酶反应后,会在溶液中残留,造成酶反应难以连续化、自动化,同时也不利于终产品的分离提纯,这些都大大阻碍了酶工业的发展,所以有必要采取酶工程技术改善这些缺点。酶工程技术措施较多,其中酶的固定化技术是重要举措之一。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能[2]。 已固定化的酶像化学反应所用的固体催化剂那样, 既能发挥它们的催化特性, 又能回收, 并能多次反复使用, 使整个生产工艺可以连续化、自动化。近年来, 国内外科技工作者在固定化酶在工业生产中的应用做了大量研究,并得到了广泛的发展,本文将对这些成就做具体介绍。 1 固定化酶的概念 1916 年Nelson 和Griffin最先发现了酶的固定化现象后, 科学家就开始了固定化酶的研究工作。1969 年日本一家制药公司第1 次将固定化的酰化氨基酸水解酶用来从混合氨基酸中生产L-氨基酸, 开辟了固定化酶工业化应用的新纪元。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能。通常酶是游离的,而经过固定化以后,酶被束缚在一定区域内,因而这样的酶被称为固定化酶[ 3, 4 ]。

脂肪酶修饰研究进展

脂肪酶修饰研究进展 摘要 脂肪酶广泛应用于食品、化工和生物技术等领域,反应体系涉及溶剂体系和水相体系;为提高脂肪酶在反应中活性和稳定性,可采取多种方法对脂肪酶进行修饰。该文对脂肪酶修饰方法进行综述。 关键词脂肪酶酶修饰酶 脂肪酶(EC 3.1.1.3)能催化脂肪酸酯水解、醇解、酸解、酯交换及脂肪酸酯化反应,广泛应用于食品、化工、医药、纺织等领域;脂肪酶可应用于水相反应,亦可应用于非水相反应。脂肪酶系由生物细胞所分泌、以蛋白质为主要成分生物催化剂,具有选择性好、催化活性高、反应条件温和、环保无污染等特点。但天然脂肪酶在实际应用中仍存在一些问题,如游离酶与产物分离困难、游离酶不易回收重复利用、游离酶稳定性差等。为解决天然脂肪酶在实际应用中存在问题,研究者采用多种方法对其进行修饰,以改善其功能。 酶修饰化技术始于20世纪50年代,并很快应用于工业化生产。酶修饰目的有:定向修饰酶催化活性中心氨基酸残基,揭示酶活性中心构成及催化机理修饰与组成酶活性中心无关氨基酸侧链,改善酶的应用性能及酶原有催化功能或创造新功能;酶与其它物质(或化合物)通过非共价键相互作用,改善酶的表面特性或应用特性。根据修饰中酶与修饰分子间作用力不同,可将酶的修饰方法分为共价修饰和非共价修饰。 1 脂肪酶共价修饰 1.1 大分子修饰脂肪酶 很多大分子经活化可用以修饰脂肪酶,如聚乙二醇、葡聚糖、右旋糖苷、甲壳素和壳聚糖及其衍生物等。 聚乙二醇(PEG)是一种单功能聚合物,具有一系列不同分子量产品,其无毒副作用、无刺激性、无免疫原性,并具良好水溶性,与许多有机物组份呈良好相溶性。20 世纪70 年代后期,PEG 对蛋白质化学修饰已有很多报道。Abuchowski研究发现,经PEG修饰蛋白质作为药物比未修饰蛋白质有效许多。PEG主要通过改变蛋白分子侧链基团或分子中主链结构对脂肪酶进行修饰,按PEG 修饰基团不同可将之分为氨基修饰、巯基修饰、羧基修饰等。但PEG用于脂肪酶化学修饰必须活化,因此PEG修饰一般可分为两步:首先,将PEG 予以活化处理,使其连接一个活性基团,以便其与酶蛋白分子某些功能基团结合,然后将经活化PEG与酶进行共价结合。目前,最常用活化剂有:氰尿酰氯(三聚氯氰)、三氟乙烷磺酰氯、氯甲酸–P–硝基苯酯、N–羟基琥珀酰亚胺等。其中三聚氯氰是一种常用活化剂,价格低廉、容易获得;但毒性较大,且有可能会影响酶活性。脂肪酶经活化PEG 修饰后,可提高其在有机溶剂中溶解性和稳定性;但酶活可能会有不同程度改变。用硝基苯基氯仿、氰尿酸氯化物活化的PEG修饰念珠菌属脂肪酶,修饰酶在异辛烷中稳定性和活力均提高许多。而用对硝基苯―氯甲酸酯活化PEG,再用此活化PEG 修饰C.rugosa 类VII脂肪酶(CRL),修饰虽降低酶活性,但提高酶稳定性。经PEG修饰后可提高酶在有机溶剂中稳定性和溶解性;但PEG修饰脂肪酶在存在少量水条件下才能在酯化反应和酰基交换反应体系中发挥其活力,同时少量水的存在可使反应逆向进行。 甲壳素是一种在自然界储量丰富天然多糖,对蛋白质呈有高亲和性,有许多反应基团,是一种具多功能基团高分子化合物,可发生多种反应。甲壳素部分水解脱乙酰基可得到壳聚糖。甲壳素、壳聚糖均存在氨基,能与酶蛋白共价结合,又能螯合金属离子,使金属离子不能抑制酶活性。脱酰壳聚糖也可通过戊二醛偶联到酶分子上。黄朋、Lee 等采用Fe3O4化学沉淀法合成一种磁性高分子微球,通过固定化修饰脂肪酶,可提高脂肪酶耐受性、酶使用次

固定化酶在食品中的应用

固定化酶在食品中的应用 (生物科学与技术学院袁定清) 摘要:固定化酶技术将酶工程提高到一个新水平,实现了酶的重复使用及产物与酶的分离。而且它已在食品领域得到了迅速的发展和广泛的应用。本文主要介绍了固定化酶技术的特点、固定方法、食品工业方面的应用和发展趋势的预测,是酶工程的核心技术之一。 关键词:固定化酶;食品制造;固定化技术 Application of immobilized enzyme in food(College of biological science and technology Yuan Dingqing ) Abstract:The technology of immobilized enzyme is one of the core technology for enzyme engineering, it enzyme engineering to a new level, to achieve the separation of enzyme reuse andproduct with the enzyme. And it has been in the food area of rapid development and wide application. This paper describes the characteristics of the immobilized enzyme technology, fixation methods, applications and development trends in the food industry forecast. Key words:immobilized enzyme; food industry; immobilization technology; prospects 1 固定化酶的定义和特点 固定化酶技术是用人工方法将酶固定在特定载体上,进行催化生产,因而固定化酶一般可以被认为是不溶性酶,与水溶性酶相比,其优点如下:易于将固定化酶与底物、产物分离,便于后续的分离和纯化;可以在较长时间连续生产;酶的稳

【小初高学习]2017-2018学年高中生物 第三章 酶的应用技术实践 第二节 制备和应用固定化酶素

第二节固定化酶的制备和应用 1.掌握制备固定化酶的常用方法。(重点) 2.掌握酵母菌细胞的固定化技术。(重难点) 1.固定化酶 固定化酶是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.制备固定化酶的方法 (1)物理吸附法的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)化学结合法是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。 3.固定化酶的优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用。 [合作探讨] 探讨1:对固定化酶的作用影响最小的固定方法是哪一种? 提示:物理吸附法。 探讨2:为什么固定化酶不适合采用包埋法? 提示:由于酶分子较小,容易在包埋材料中漏出,所以不适合采用包埋法固定化。 探讨3:如果反应物是大分子物质,应该采用哪种方法? 提示:因为大分子物质不容易进入细胞内,应采用固定化酶技术。 [思维升华] 1.制备固定化酶的常用方法可用下图所示: 2.常用的制备固定化酶的方法

1.最广泛的细胞固定化方法 凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 2.优点 (1)无须进行酶的分离和纯化,减少了酶的活力损失,降低了生产成本。 (2)不仅可以作为单一的酶发挥作用,且可以利用细胞中所含的复合酶完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,使营养物质和产物的扩散受到一定的限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键性的限制因素。 [合作探讨] 探讨1:固定化细胞为什么只能用于生产胞外酶和其他能分泌到细胞外的产物? 提示:因为固定化细胞固定的是活细胞,细胞膜具有选择透过性,细胞内有用的物质(如胞内酶)是不能自由进出细胞的。 探讨2:能否在刚溶化好的海藻酸钠溶液中加入活化的酵母菌细胞? 提示:不能,因为刚溶化好的海藻酸钠溶液温度较高,会将酵母菌细胞杀死。 探讨3:如果制作的凝胶珠颜色过浅,呈白色,则说明了什么?如果凝胶珠不是圆形或椭圆形,又说明了什么? 提示:如果凝胶珠的颜色过浅,则说明了海藻酸钠溶液的浓度偏低,固定的酵母菌细胞数目较少;如果凝胶珠不是圆形或椭圆形,则说明了海藻酸钠的浓度过高,制作失败。 [思维升华] 1.制备固定化酵母菌细胞的操作流程 准备各种实验药品和器具

相关主题
文本预览
相关文档 最新文档