当前位置:文档之家› 专题:二次函数中的相似问题

专题:二次函数中的相似问题

专题:二次函数中的相似问题
专题:二次函数中的相似问题

二次函数中的相似问题 导学稿(专题)

班级 姓名 组 号 时间 年 月 日

课题:二次函数与相似问题 课型:新授 主备: 九年级数学组 审核 九年级数学组

例1.已知抛物线经过A (-2,0),B (-3,3)及原点O ,顶点为C .

(1)求抛物线的解析式;

(2)P 是抛物线上第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,

是否存在点P 使得以点P 、M 、A 为顶点的三角形与△BOC 相似?若存在,

求出点P 的坐标;若不存在,请说明理由.

例2.把抛物线 向左平移1个单位,再向下平移4个单位,

得到抛物线 所得抛物线与轴交于A,B 两点(点A 在点B 的左边),与轴交于点C ,顶点为D.

(1)写出h,k 的值;(2)判断 的形状,并说明理由;

(3)在线段AC 上是否存在点M ,使△AOM 与△ABC 相似?若存在,求出点M 的坐标;若不存在,说明理由.

2y x =2()y x h k

=-+ACD

例3.抛物线 与X 轴的两个交点分别为A (-3,0)

、B (1,0), 过顶点C 作CH ⊥x 轴于点H .

(1)直接填写:a= ,b = ,顶点C 的坐标为 ;

(2)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC

于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.

例4.如图,已知△ABC 的三个顶点坐标分别为A (-4,0)、B (1,0)、C (-2,6).

(1)求经过A 、B 、C 三点的抛物线解析式;

(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE =CE

(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F ,试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗? 请说明理由.

32++=bx ax

y

练习一

如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.

(1)求这条抛物线对应的函数关系式;

(2)连接BD,试判断BD与AD的位置关系,并说明理由

(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.

练习二

如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)

(1)求抛物线的解析式;

(2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长

(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

练习三:

如图①,已知二次函数223y x x =-++的图像与x 轴交于点,,A B 与y 轴交于点C

(1)求ABC ?的面积;

(2)点M 在OB 边上以每秒1个单位的速度从点O 向点B 运动,点N 在BC 个单位的速度从点B 向点C 运动,两个点同时开始运动,同时停止。设运动的时间为t 秒,试求当t 为何值时,以,,B M N 为顶点的三角形与BOC ?相似?

(3)如图②,点P 为抛物线上的动点,点Q 为对称轴上的动点,是否存在点,P Q 使得以

,,,P Q C B 为顶点的四边形是平行四边形?若存在,

直接写出所有符合条件的点P 的坐标;若不存在,请说明理由。

二次函数与相似三角形问题(含答案)

y x E Q P C B O A 综合题讲解 函数中因动点产生的相似三角形问题 练习1、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 练习2、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式. (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习3 、如图所示,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标. (2)过点A 作AP∥CB 交抛物线于点P ,求四边形ACBP 的面积. (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 练习4、在平面直角坐标系xOy 中,已知二次函数2 (0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点 A 在点 B 的左边) ,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式... 得抛物线的解析式为2 23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

专题10二次函数比较大小和二次函数的平移(解析版)-2020-2021学年九年级数学上册常考题专练

专题10二次函数比较大小和二次函数的平移 解题步骤: 假设抛物线过三个点:A (x 函数平移解题技巧:二次函数平移的具体方法如下: 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移” 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

1.若点()()121,,2,A y B y 在抛物线()2 1112 y x =-+-上,则12,y y 的大小关系是___________. 【答案】12y y > 【解析】 【分析】 根据函数的解析式得到函数图象的对称轴,根据函数的性质即可得到答案. 【详解】 ∵()2 1112 y x =- +-, ∴函数图象的对称轴是直线x=-1,开口方向向下, ∵点()()121,,2,A y B y 在抛物线()2 1112 y x =- +-上,且1<2, ∴由对称轴右侧y 随着x 的增大而减小得到12y y >, 故答案为:12y y >. 【点睛】 此题考查二次函数的性质,根据顶点式解析式确定图象的开口方向,对称轴得到增减性,由此判定函数值的大小,正确掌握函数图象的性质是解题的关键. 2.已知A (3,y 1)、B (4,y 2)都在抛物线y=x 2+1上,试比较y 1与y 2的大小:__________. 【答案】y 1<y 2 【解析】把A(3(y 1((B(4(y 2(代入抛物线y=x 2+1,可得y 1=10(y 2=17,所以y 1(y 2. 3.点A (2,y 1)、B (3,y 2)在二次函数y =﹣x 2﹣2x+c 的图象上,则y 1与y 2的大小关系为y 1_____y 2(填“>”“<” 或“=”). 【答案】〉 【解析】 【分析】 先根据解析式求出对称轴x=b 2a -=-1,再根据函数开口方向且321>>-,即可比较y 1与y 2的大小. 【详解】 ∵抛物线的对称轴为x=b 2a - =-1,函数开口向下,

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

二次函数与四边形综合压轴题专题汇编(含答案)

72 x = B(0,4) A(6,0) E F x y O 二次函数与四边形综合压轴题专题汇编 一.二次函数与四边形的形状 例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 练习1.(河南省实验区) 23.如图,对称轴为直线7 2 x = 的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形? ②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由. A

练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为 (34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '. (1)求抛物线2l 的函数关系式; (2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形? (3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30 的直角三角形?若存, 求出点M 的坐标;若不存在,说明理由. 练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -, ,(20)B -,,(08)E ,. (1)求抛物线1 C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于 C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的 面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写 出自变量t 的取值范围; (3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由. 5- 4- 3- 2- 1- 1 2 3 4 5 5 4 3 2 1 A E B C ' 1- O 2l 1l x y

二次函数与相似三角形问题(含答案 完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式... 求得抛物线的解析式为x x 4 1y 2 +-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。 分析:1.当给出四边形的两个顶点时应以两个顶点的连线....... 为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y x E Q P C B O A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、 B 两点,交y 轴于点 C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标; (2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论; (3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式. 练习1、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式.(由一般式... 得抛物线的解析式为2253 33 y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么

二次函数压轴题(相似类)

二次函数压轴题(相似类) 1.如图,在平面直角坐标系中,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点(点A在点B的右侧),与y 轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x=. (1)求抛物线的解析式; (2)M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标; (3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由. 2.如图,顶点为C(﹣1,1)的抛物线经过点D(﹣5,﹣3),且与x轴交于点A、B两点(点B在点A的右侧).(1)求抛物线的解析式; (2)抛物线上存在点Q,使得S△OAQ=,求点Q的坐标; (3)点M在抛物线上,点N在x轴上,且∠MNA=∠OCD,是否存在点M,使得△AMN与△OCD相似?若存在,直接写出点M的坐标;若不存在,说明理由. 3.如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C 在点D的左侧). (1)求抛物线的解析式;(2)求点O到直线AB的距离; (3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标. 4.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N. (1)求点B的坐标和抛物线的解析式; (2)在运动过程中,若点P为线段MN的中点,求m的值; (3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标; 5. 如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0). (1)求抛物线的解析式及其对称轴方程; (2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由; (3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值; (4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

二次函数与平行四边形综合.

【例1】 已知:如图,在平面直角坐标系xOy 中,直线3 64 y x =-+与x 轴、y 轴的交点分 别为A B 、, 将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点.C (1)直接写出点C 的坐标,并求过A B C 、、三点的抛物线的解析式; (2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC 的交点为T Q , 为线段BT 上一点,直接写出QA QO -的取值范围. 【例2】 如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90?得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . ⑴ 求k 的值; ⑵ 点A 位置改变时,AMH ?的面积和矩形AOBC 的面积的比值是否改变?说明你的理由. 【例3】 如图1,Rt ABC ?中,90A ∠=?,3 tan 4 B = ,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图 象是过点()1236,的抛物线的一部分(如图2所示). (1)求AB 的长; (2)当AP 为何值时,矩形APQR 的面积最大,并求出最大值. R Q B C A 二次函数与平行四边形综合

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,

而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+ y ax c

的性质:上加下减。 3. ()2 y a x h =- 的性质:左加右减。

二次函数中相似三角形存在性

相似三角形的存在性(作业) 例:在平面直角坐标系中,二次函数图象的顶点坐标为C (4,3-),且与x 轴 的两个交点间的距离为6. (1)求二次函数的解析式; (2)在x 轴上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与△ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由. x y O C B A x y O C B A 第一问:研究背景图形 【思路分析】 ①由顶点坐标C (4,3-)可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A (___,___),B (___,___). ②设交点式__________________,再代入坐标__________可求解出解析式__________________. 6 (4,-3) (7,0) (1,0) x y O C B A 【过程示范】 ∵顶点坐标为C (4,3-), ∴抛物线对称轴为直线x =4, 又∵抛物线与x 轴的两个交点间的距离为6, ∴由抛物线的对称性可知:A (1,0),B (7,0). 设抛物线的解析式为(1)(7)y a x x =--, 分析不变特征,确定分类标准. 定点:_____________; 动点:_____________; 目标三角形: 特征:

Q 1 E x y O D C B A Q 2 x y O B A 将C (4,3-)代入可得,39 a =, ∴所求解析式为238373999 y x x = -+. 第二问:整合信息、分析特征、设计方案 【思路分析】 相似三角形存在性问题也是在存在性问题的框架下进行的: ①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形. ②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ = _____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况. ③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证. 【过程示范】 存在点Q 使得△QAB 与△ABC 相似. 由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于D , 则AD =3,CD =3. 在Rt △ACD 中,tan ∠DAC = 3 3 , ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=3 6332 ? =,BE =3, ∴E (10,0),Q 1(10,33). 当x =10时,y =33, ∴点Q 1在抛物线上.

2018年中考总复习专题:二次函数与相似的结合

二次函数与相似的结合 题型一:动点在线段上 如图,平面直角坐标系xOy 中,已知(1,0)B -,一次函数5y x =-+的图像与x 轴、y 轴 分别交于点A 、C 两点,二次函数2 y x bx c =-++的图像经过点A 、点B ; (1)求这个二次函数的解析式; (2)点P 是该二次函数图像的顶点,求△APC 的面积; (3)如果点Q 在线段AC 上,且△ABC 与△AOQ 相似,求点Q 的坐标; 如图,抛物线2 2y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点 (0,3)C -,抛物线的顶点为M ; (1)求a 、c 的值; (2)求tan MAC ∠的值; (3)若点P 是线段AC 上一个动点,联结OP ;问是否存在点P ,使得以点O 、C 、P 为 顶点的三角形与△ABC 相似?若存在,求出P 点坐标;若不存在,请说明理由;

如图,已知抛物线2 y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为A (-1,0),顶点为B . 点C (5,m )在抛物线上,直线BC 交x 轴于点E . (1) 求抛物线的表达式及点E 的坐标; (2) 联结AB ,求∠B 的正切值; (3) 点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧), 当△CGM 与△ABE 相似时,求点M 的坐标. 【参考答案】24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1)∵抛物线2y ax x c =-+的对称轴为直线x =1,∴1 2 a = . ∵抛物线与x 轴的一个交点为A (-1,0),∴3 2 c =- . ∴抛物线的表达式为213 22 y x x = --.………………………………………………(2分) ∴顶点B (1,-2).…………………………………………………………………(1分) ∵点C (5,m )在抛物线上,∴6m =. ∴C 点坐标为(5,6). 设直线BC 的表达式为y =kx +b (k ≠0), 则652k b k b =+??-=+? ,∴2, 4.k b =??=-?即BC 的表达式为y =2x -4. x y A B E C O (第24题图)

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

(完整版)二次函数中平行四边形通用解决方法

●探究 (1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程; ●归纳 无论线段AB处于直角坐标系中的哪个位置, 当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明) ●运用 在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。 ①求出交点A,B的坐标; ②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

图 2 图 3 图1 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题. 1 两个结论,解题的切入点 数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。 1.1 线段中点坐标公式 平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,2 21y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P = 2 21x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +). 1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D . 证明: 如图2,连接AC 、BD ,相交于点E . ∵点E 为AC 的中点, ∴E 点坐标为(2C A x x +,2 C A y y +). 又∵点E 为B D 的中点, ∴ E 点坐标为( 2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D . 即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 一个基本事实,解题的预备知识 如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .

二次函数与相似

二次函数与相似 例1 抛物线y=ax 2-3ax+b 经过A(-1,0),C(0,2),交x 轴于另一点B. (1) 求此抛物线的解析式; (2) 点M 为y 使AN 平行且等于BM 的一半?若存在,请求出点N 的坐标; 若不存在,请说明理由; (3) 若点P 为抛物线上一点,ta n ∠ACP=3,求出点P 的坐标。 ① 一般相似: 1 、 如图,在坐标系中,把抛物线2 x y =平移,平移所得到的抛物线与x 轴交于A (-3,0)、B ( 1,0)两点,与y 轴交于C 点。 (1) 求平移后的抛物线的解析式; (2)在线段AC 上是否存在点M ,使△AOM 与△ABC 相似,若存在,求出点M 的坐标。 ②直角相似: 2、P 为抛物线322++-=x x y 上一动点,以AC 为斜边构造直 角三角形,使直角顶点P 落在抛物线的对称轴上,求点P 的坐标. (若无斜边的指定) ③K 型相似:

3、如图,在直角坐标系中,抛物线32 ++=bx ax y 与x 轴交于A 、B 两点,与y 轴交于C 点,且OB=OC=3OA 。 (1)求此抛物线的解析式; (2)过C 点作C D ⊥y 轴交抛物线于D 点,连接AC 、BD ,E 为BD 上一点,DE:BE=7:3,P 为线段AB 上一点,若∠CPE=∠CAP ,求P 点的坐标; (3)如图2,将(1)中抛物线沿x 轴正方向平移,平移后的抛物线交y 轴于点F ,与x 轴的右交点为E 点,G 为AC 中点,延长GO 交EF 于点H ,是否存在这样的抛物线,使得G H ⊥EF ,若存在,求平移后的抛物线的解析式,若不存在,请说明理由。 专题训练 1、抛物线y=ax 2+2ax+b 与x 轴交于A(-4,0)、B 两点,与y (1) 求抛物线的解析式; (2) P 的抛物线上一点且P C ⊥BC,Q 是PC 延长线上一点,QC=3 1 将抛物线向右平移m 个单位后恰好经过点Q ,将原抛物线 向下平移n 个单位后与线段PQ 只有一个公共点,请求出m n (3)在(2)的条件下,原抛物线上是否存在一点M,使得S △若存在,请求出M 点的坐标,若不存在,请说明理由。

关于比较一次函数的函数值与二次函数的函数值大小之我见

关于比较一次函数的函数值与二次函数的函数值大小之我见 多力昆·阿布都热西提 2014.6.3

关于比较一次函数的函数值与二次函数的 函数值大小之我见 多力昆·阿布都热西提 在初中数学中,一次函数的图像和二次函数的图像的复杂的和潜在的概念现象大部分的师生分析问题陷入困惑。数学教师对这一点的忽略引起了学生对这个容的探究精神的欠缺。 数学没有明确概念,解决问题一定会受阻,如果概念里模糊,问题与学过知识之间的技术处理一定会失败。我认为,一次函数的图像与二次函数的图像之间的函数值的大小问题应该分层次分析。 下面,我来分析二次函数的图像与一次函数的图像之间存在的模糊问题的看法。 1、在同一个平面直角坐标中,二次函数y 1 = ax2+bx+c和一次函 数y 2 =ax+b的函数值的大小问题 (1)判断二次函数的图像与一次函数的图像的关系,如果二次函 数y 1 = ax2+bx+c的图像与一次函数的图像相交,则函数值相等,即 y 1= y 2 。 由上可得:ax2+bx+c=ax+b。 整理得:ax2+(b-a)x+c-b=0。 检验:Δ=b2—4ac=(b—a)2—4a(c—b) 第一:当Δ>0时,二次函数的图像与一次函数相交于不同的两个点。

设交点的坐标为(x 1,y 1 ),(x 2 ,y 2 ), 在y= ax2+bx+c中,当a>0(x 1< x 2 )时,x 1 y 1 , 当x> x 2或x< x 1 时,y 2 < y 1 (图1)在y= ax2+bx+c中,当a<0(x 1 < x 2)时,x 1 y 2 。当x> x 2 或x< x 1 时,y 2 > y 1 。(图2) 图1 图2 在图1中,在直线x= x 1与直线x= x 2 之间,一次函数的图像在 二次函数的上方,即,y 1> y 2 在直线x= x 1 的右边与直线x= x 2 的右 边,一次函数的图像在二次函数的下方,即y 1> y 2 。 在图2,在直线x= x 2 之间,二次函数的图像在一次函数的图像, 即:y 1> y 2 。在直线x= x1的左边与直线x= x2的右边,一次函数的 图像在二次函数的图像上方,即y2> y1。 第二,当Δ=0时,一次函数的图像与二次函数的图像有一个交 点,此时,设交点的坐标为(x 0,y ),在y 1 =ax2+bx+c,当a>0时, 在x= x 0的条件下,y 1 > y 2 ,(图3)。在x≠ x 的条件下,y 1 > y 2 ,(图 4)。

二次函数中的相似三角形

二次函数中的相似三角形 例1(2011绵阳):已知抛物线y = x2 -2x +m -1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B. (1)求m的值; (2)过A作x轴的平行线,交抛物线于点C,求证△ABC是等腰直角三角形; (3)将此抛物线向下平移4个单位后,得到抛物线C’,且与x轴的左半轴交于E点,与y轴交于F点。如图,请在抛物线C’上求点P,使得△EFP是以EF为直角边的直角三角形. 例1图例1(1)(2)图例1(3)图

例2:如图,抛物线y = ax2 +bx + 1与x轴交于两点A(-1,0)、B(1,0)与y轴交于点C.(1)求抛物线的解析式; (2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积; (3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. 例2(1)(2)图例2(3)图

例3:已知,如图,二次函数y = ax2 - 2ax + c(a ≠ 0)的图象与y轴交于点C(0,4),与x 轴交于点A、B,点A的坐标为(4,0). (1)求该二次函数的关系式并写出它的对称轴和顶点坐标; (2)点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标; (3)若平行于x轴的直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标(2,0).问:是否存在这样的直线l.使△ODF是等腰三角形?若存在,请求出点P坐标;若不存在,请说明理由. 思考:在(1)中抛物线的对称轴上是否存在点M,使△BCM是直角三角形?若存在,请直接写出点M坐标;若不存在,请说明理由. 例3(1)(2)图例3(3)图 例3思考

二次函数与平行四边形综合

第十八讲二次函数与平行四边形综合 一、教学内容 1.二次函数的表示 , 二次函数图像与性质; 2.平行四边形的性质和判定; 3.函数图像与平行四边形的综合应用,典型应用、图像题; 二、例题细看 【例 1】已知:如图,在平面直角坐标系 将OBA 对折,使点O的对应点xOy 中,直线 y 3 与 x 轴、y轴的交点分别为 A、B , x 6 4 H 落在直线 AB 上,折痕交x 轴于点C. ( 1)直接写出点 C 的坐标,并求过A、B、C 三点的抛物线的解析式; ( 2)若抛物线的顶点为 D ,在直线BC上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; ( 3)设抛物线的对称轴与直线BC的交点为 T ,Q 为线段BT上一点,直接写出 QA QO 的取值范围 . 【考点分析】二次函数综合题 y B H 1 O1 C A x D T 【PEC分析】( 1)点 A 的坐标是纵坐标为 0,得横坐标为 8,所以点 A 的坐标为( 8, 0); 点B 的坐标是横坐标为 0,解得纵坐标为 6,所以点 B 的坐标为( 0, 6); 由题意得: BC是∠ ABO的角平分线,所以OC=CH, BH=OB=6 ∵AB=10,∴ AH=4,设 OC=x,则 AC=8-x 由勾股定理得: x=3 ∴点 C 的坐标为( 3, 0)将此三点代入二次函数一般式,列的方程组即可求得;

( 3)如图,由对称性可知QO=QH,|QA-QO|=|QA-QH| .当点 Q与点 B 重合时, Q、 H、 A 三点共线,|QA-QO|取得最大值4(即为 AH的长);设线段OA的垂直平分线与直线 BC的交点为 K,当点 Q与点 K 重合时, |QA-QO|取得最小值 0. 【跟踪练习】例 1.(浙江义乌市 ) 如图,抛物线y x22x 3与x轴交A、B两点(A点在B点左侧),直线 l 与抛物线交于A、C两点,其中C点的横坐标为2. ( 1)求 A 、 B 两点的坐标及直线AC 的函数表达式; ( 2)P 是线段 AC 上的一个动点,过 P 点作 y 轴的平行线交抛物线于 E 点,求线段 PE 长度的最大值; ( 3)点 G 是抛物线上的动点,在x 轴上是否存在点F,使 A 、C、 F、 G 这样的四个点为顶点的四边 形是平行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不存在,请说明理由. A 【例 2】如图,点O是坐标原点,点A(n ,0) 是 x 轴上一动点(n 0) .以 AO 为一边作矩形AOBC ,点C在第二象限,且OB 2OA .矩形AOBC 绕点 A 逆时针旋转90 得矩形AGDE .过点 A 的直线 y kx m ( k 0) 交y轴于点F,FB FA .抛物线y ax 2bx c 过点E、F、G且和直线AF 交于点 H ,过点 H 作 HM x 轴,垂足为点M . ⑴求 k 的值; ⑵点 A 位置改变时,AMH 的面积和矩形AOBC的面积的比值是否改变?说明你的理由. y C B D G M F E A O x H 【 PEC分析】( 1 )由题意知O B=2OA=2n,在直角三角形AEO 中, OF=OB-BF=-2n-AF,因此可用勾股定理求出AF 的表达式,也就求出了FB 的长,由于 F 的坐标为( 0 , m )据此可求出m , n 的关系式,可用 n 替换掉一次函数中m 的值,然后将 A 点的坐标代入即可求出k 的值. ( 2 )思路同( 1)一样,先用n 表示出 E、 F、 G 的坐标,然后代入抛物线的解析式中,得出 a ,b , c 与n 的函数关系式,然后用n 表示出二次函数的解析式,进而可用n 表示出 H 点的坐标,然后求出△AMH

相关主题
文本预览
相关文档 最新文档