当前位置:文档之家› 思科UCS虚拟化技术白皮书

思科UCS虚拟化技术白皮书

思科UCS虚拟化技术白皮书
思科UCS虚拟化技术白皮书

专为服务器虚拟化而构建的平台:

思科统一计算系统

您将了解到的内容

本文旨在介绍思科统一计算系统的核心特性能够如何简化虚拟环境的部署、增强管理、提供出色性能和安全性。文章中介绍了该系统的统一阵列、统一内嵌管理、服务配置文件、虚拟化密度以及通过Cisco VN-Link技术,自动、简单地进行虚拟机联网和迁移的方式。

简介

在经济环境良好的时期,“以更少投入获得更大回报”是帮助企业增强竞争优势的座右铭。而在经济困难时期,利用较少资源完成更多任务则能帮助机构继续在市场中生存。

几乎每个人都知道虚拟化的优势:

z整合工作负载;提高利用率;降低运营、投资、空间、耗电和冷却等。

z在虚拟池中动态地移动工作负载,提高使服务器离线或增加新服务器的灵活性。

z管理虚拟机与物理机之间的关系,优化性能,保证服务水平。

z使用现有资源池创建更多虚拟机,从而扩展当前应用或部署新应用。

z使用虚拟化软件的高可用性和灾难恢复功能,来解决本地和跨地区故障问题。

虚拟化使应用部署与服务器购买分离开来,但是这一优势和其他虚拟化优势只有在应用程序运行在一个或多个统一的服务器资源池时,才能够最好地发挥。思科统一计算系统就旨在提供这样一个环境。专为虚拟化环境而优化的思科统一计算系统是下一代数据中心平台,在一个紧密结合的系统中整合了计算、网络、存储接入与虚拟化功能,旨在降低总体拥有成本(TCO),同时提高业务灵活性。该系统包含一个低延时无丢包万兆以太网统一阵列,以及多台企业级x86架构服务器。它是一个集成的可扩展多机箱平台,在统一的管理域中管理所有资源。

统一阵列

虚拟环境需要一致的I/O配置,为资源池中所有服务器的系统管理程序提供统一支持。它们还需要能够支持虚拟机(VM)在资源池中的各服务器间移动,同时又能满足各虚拟机带宽和安全要求的I/O配置。思科统一计算系统以一个低延时无丢包的10-Gbps统一网络阵列为基础,能够满足这一需要。Cisco UCS 5108刀片机箱中的刀片服务器通过扩展卡访问阵列,每刀片服务器吞吐率高达40 Gbps。

该统一阵列采用“一次布线”部署模式,机箱只通过线缆连接到互联阵列一次,I/O配置的改变只需通过管理系统进行,而无需安装主机适配器以及对机架和交换机重布线(参见图1)。此统一阵列不再需要在每个服务器中部署冗余以太网和光纤通道适配器,也不必采用独立布线连接接入层交换机,并为每种网络媒体使用不同交换机,因此大大简化了机架布线。所有流量都路由到中央服务器互联,随后以太网和

图1. 统一阵列将多种流量传输到Cisco UCS 6100系列互联阵列,在此以太网和光纤通道流量拆分到独立网络

该统一阵列基于万兆以太网,采用标准扩展支持更多流量类型并优化管理。它支持以太网和以太网光纤通道(FCoE ),其管理特性使得以太网和FCoE 等多种流量的管理能独立进行,支持带宽管理,且各流量级别间无干扰。

统一阵列为虚拟环境提供了创建基于统一I/O 连接的大型服务器资源池的能力,通过编程,该资源池能够以与数据中心当前最佳实践相一致的方式运行。在虚拟化软件使用基于光纤通道的共享存储的环境里,就无需再部署冗余HBA 卡、收发器、电缆和上游交换机端口,这些成本相当于一个小型服务器。正如文章稍后所讨论的那样,Cisco VN-Link 技术支持每个虚拟机和互联阵列间的虚拟网络连接,简化了虚拟机及其网络的管理,包括轻松移动虚拟机,自动保持安全性等网络特性。

内嵌统一管理功能

当服务器配置到资源池中以后,便可以根据需要进行管理,以满足不断变化的工作负载要求;在部署新应用时无需为其安装特定硬件;并能在服务器间移动虚拟机,以均衡工作负载、满足服务水平协议(SLA )或使某个服务器为计划内停机作好准备时,虚拟化能为数据中心发挥最大价值。Cisco UCS Manager 将思科统一计算系统的资源整合为单一综合系统,非常适于为虚拟环境建立资源池。

Cisco UCS Manager 是思科统一计算系统的中枢神经系统。它从端到端集成系统组件,因此系统能作为单一逻辑实体进行管理。Cisco UCS Manager 提供一个直观GUI 、一个命令行界面(CLI )和一个强大的API ,因此它能单独使用,也能与其他第三方工具集成使用。通过单一控制台,能够全方位管理服务器配置-系统身份、固件版本、网卡(NIC )设置、HBA 设置和网络配置文件等,无需每个系统组件配备单独的管理器。Cisco UCS Manager 内嵌在配置成高可用集群的两个互联阵列中。

集中、全面的管理,并与统一阵列相结合,意味着不再需要人工配置和集成各种独立组件,就能创建一个高效的虚拟池。Cisco UCS Manager 能够简单、自动地执行将一个新服务器部署到系统中的流程,在几分钟内就能完成新服务器的安装、配置并将其投入使用,而不必像传统配置方法那样耗费数小时乃至数天的时间。这一功能不仅有助于提高IT 人员的生产率,在需要更多资源时能够快速扩展虚拟池的能力,也将使采用此系统的企业获得战略优势。 局域网SAN A SAN B Cisco Nexus 7000系列 万兆以太网

流量 Cisco UCS 6100系列互联阵列 Cisco UCS 2100系列阵列扩展模块 传输IP 和FCoE 流量的统一阵列

思科统一计算系统B 系列刀片服务器

光纤通道流量 Cisco MDS 9000系列

光纤通道交换机

Cisco UCS Manager 基于角色和策略的管理模式允许企业继续执行已有的独立式管理。例如,默认配置

定义了独立服务器、存储和网络管理员角色,每个角色的用户则定义如何配置系统的策略。使用这些策略,机构中不同的团队就能更高效地合作。举例来说,网络管理员定义了所有网络策略,之后这些策略就能被服务器管理员所采用和加以参考,这一过程无需网络管理员参与。同时,高级管理员能够将精力更多地集中于关键业务问题,而不必关注各系统配置细节。

服务配置文件和服务配置文件模板

虚拟化使应用部署与服务器购买分离开来。当将服务器配置到虚拟池中,数据中心就成为了一个动态实体,能够高效利用资源,灵活调整分配给物理服务器的虚拟机,以便达到效率和性能的最佳平衡。数据中心就像是一个精确调整的引擎,添加服务器就像是为引擎加油:当虚拟池中的整体工作负载增加,就需要更多服务器来保持所需服务水平。类似的,当工作负载需求降低,应该直接关闭部分服务器,藉此根据实际工作负载需要,精确控制功耗和碳排放量。

服务配置文件和服务配置文件模板是大幅简化在系统中添加新服务器这一流程的机制,能在几分钟而非数小时甚或数天内将新服务器添加到资源池。同样,这个机制也能用来重新配置服务器,以便服务器能用于另一不同的资源池中。

Cisco UCS Manager 全方位配置服务器以及它在系统中的连接。它能设置或配置唯一用户ID

(UUID )、BIOS 和固件版本;包括MAC 地址、VLAN 和服务质量(QoS )设置在内的NIC 配置;包括全球名称(WWN )、VSAN 、带宽限制和固件版本在内的HBA 配置;以及包括VLAN 、VSAN 、QoS 和以太通道设置在内的上行链路端口配置。

服务配置文件全面定义服务器及其所有设置。可使用服务配置文件来配置新服务器,或在需要时,用它来配置同一服务器的副本,以便全部软件都能从原始服务器迁移到替代服务器,这些操作对于软件和其许可证机制完全透明(参见图2)。服务配置文件是对服务器进行全面定义,而服务配置文件模板则是定义如何创建服务配置文件。服务配置文件就像是课程示例,服务配置文件模板则定义课程,即定义创建服务配置文件的策略。

图2. 服务配置文件配置服务器和网络资源,能使服务器配置在物理服务器间移动 万兆以太网上行链路

光纤通道上行链路

统一 网络阵列

光纤通道流量

以太网流量

网络配置文件I/O 配置

服务器身份、固件和BIOS

设置

服务配置文件

Parent 级Cisco UCS 6100系列互联阵列

Cisco UCS 虚拟接口卡或

融合网络适配器

通过激活服务配置文件模板,能够将多个服务器进行完全相同的配置,同时又使它们能在采用唯一标识

符的实例中拥有自己的身份(如UUID 、MAC 地址和WWN )。应用服务配置文件模板的结果就是获得一个全面定义一个独特服务器的服务配置文件。当一台新服务器被添加到思科统一计算系统时,Cisco UCS Manager 能发现它并根据服务器的物理特征,自动应用相应的服务配置文件模板。借助这一功能,能够快速、简便地向不同虚拟池添加服务器。例如,一个虚拟池可能包括多个64GB 主内存的服务器,这对于某类应用已经足够,而另一虚拟池中的服务器则可能至少为192 GB 主内存,以实现最大虚拟机密度。

借助Cisco UCS 扩展内存技术, 提高虚拟机密度

虚拟化将更多关注服务器如何拥有更多以及更经济的内存配置。虽然高性能、针对虚拟化的特殊优化和多核处理器如Intel Xeon 5500系列能够提高虚拟机性能,但现在服务器需要更大内存来充分利用服务器的处理器。提高虚拟系统中的虚拟机密度的传统方式是,购买更昂贵、更大型的四路服务器。但这种方法既提高了投资和运营开支,又没能实际解决如何为双路服务器提供更为经济高效的内存的问题。

思科扩展内存技术提供了一种具有极大潜力、经济高效的方法,与其他方式相比,能以更低TCO 提高虚拟化密度,使IT 机构能够凭借更少资源完成更多任务。Cisco UCS B250 M1扩展内存刀片服务器和Cisco UCS C250 M1扩展内存机架安装服务器就采用了这种技术。从处理器的内存通道角度来看,该项技术将四个物理上独立的DIMM 映射为单一逻辑DIMM (参见图3)。这一映射支持拥有48个DIMM 插槽的扩展内存服务器,而采用相同处理器的传统服务器和刀片系统最多只能配备12个最高性能插槽,或18个较低性能插槽。

图3. 思科扩展内存技术使4个物理DIMM 对于CPU 来说显示为单一大型逻辑DIMM

思科扩展内存服务器中的48个DIMM 插槽能插入2、4或8-GB DIMM ,为企业提供了平衡处理能力、内存容量和成本的极高的灵活性。

z

低成本选项使用低成本的4-GB DIMM 来提供高达192 GB 的内存,而不必像使用相同处理器的其他服务器那样,为获得高内存容量而使用8-GB DIMM 。根据2009年8月公开的内存价格,该选项能够节约60%的内存成本。

z

大内存选项能够为需要最大内存的工作负载提供支持。思科扩展内存服务器在使用8-GB DIMM 时内存高达384 GB ,实现了采用Intel Xeon 5500系列处理器的双路服务器的最大内存。

无论需要大型内存还是极大内存来优化虚拟化密度,IT 机构现在都能更加经济地整合更多应用,创建更多虚拟机。 4个8GB DIMM Cisco UCS 扩展内存技术

1个32GB DIMM (最多12个)

使用虚拟接口和Cisco VN-Link 技术进行联网

传统的刀片服务器为部署虚机环境增加了不必要的成本、复杂性和风险。在大多数网络部署中,网络接入层被分为三个层次,很难控制网络连接并保证其安全,增加了VM 到VM 联网的延迟,难以进行高效管理:

z 接入层交换机通常属于数据中心基础设施范畴,由网络管理员管理,对安全和QoS 进行高效控制。 z

刀片服务器中的交换机增加了一个新网络层,它们使用的处理器和特性集常常与数据中心接入层交换机所用的处理器和特性集不同。

z

虚拟软件厂商部署的软件交换机占用CPU 周期来模拟网络硬件,其代价就是降低应用性能。这些软交换机常常超出了网络管理员的控制范围,经常由服务器管理员配置。

这些环境中的接入层划分导致的结果是,在同一刀片服务器中的虚拟机、同一机箱中的虚拟机或不同机箱中的虚拟机之间通信时,采用不同交换设备来实现VM 到VM 通信。很难在各层实现统一管理,尤其是在虚拟机在服务器间动态移动时就更为困难。

思科统一计算系统将VM 到VM 通信所需的交换机精简为一个互联阵列,由此简化、加速并保护了交换。这种方法为系统中的所有网络通信提供了单一控制和管理点(参见图4):

z

单一接入层交换机,即Cisco UCS 6100系列互联阵列,支持虚拟机间的所有网络流量传输,而无论虚拟机位于何处,为网络流量提供了单一控制和管理点。

z

无需在刀片中部署交换机,而是使用Cisco UCS 2100系列阵列扩展模块,它逻辑上是互联阵列的一部分,将所有流量从刀片服务器传输到上游互联阵列。

z

无需使用软件交换机,虚拟机直接连接到物理NIC ,采用直通交换或采用Hypervisor-bypass 技术对其进一步加速。此技术由支持导向I/O 的Intel 虚拟化技术提供。

图4. 思科统一计算系统提供了单一控制和管理点,不再划分网络接入层

Cisco VN-Link 技术

思科统一计算系统中的每台服务器都通过一条或多条物理链路连接到互联阵列。Cisco VN-Link 技术能在单一物理链路上配置多条虚拟链路。虚拟链路将虚拟机中的一个虚拟NIC (vNIC )连接到互联阵列中的一个虚拟接口。当使用Cisco UCS M81KR 虚拟接口卡时,从与虚拟机连接(通过直通交换或Hypervisor-bypass )的物理接口创建一条虚拟链路(参见图5)。这使得对于虚拟机的网络连接的管理能像管理物理服务器的物理链路一样进行。虽然进出虚拟机的所有流量都通过各自不同的虚拟链路接入层交换机

刀片交换机系统管理程序交换机接入层交换机

统一接入层,单一管理点

进行划分的接入层,有多个管理点

虚拟链路在互联阵列内部的虚拟接口处终止。一个虚拟接口与一个物理接口相关联,这种关联能根据需

要改变。当一个虚拟机从一台服务器移动到另一台服务器,该VM 的虚拟链路所连的虚拟接口只要简单地与另一个物理端口建立关联就可以了。现在,虚拟机的网络特性也能随它们一起在服务器间移动,不必再在多个交换层间进行复杂的协调。

在互联阵列中的虚拟接口与虚拟接口卡所支持的物理接口之间,思科统一计算系统通过硬件部署了Cisco VN-Link 技术。在使用非Cisco UCS M81KR 接口来传输虚拟机网络流量时,使用Cisco Nexus? 1000V 系列交换机,在软件中也能实现相同的管理简洁性。

图5. Cisco VN-Link 技术支持每虚拟机链路,它们的管理和移动独立于物理链路

采用Cisco UCS M81KR 虚拟接口卡的Cisco VN-Link 技术

当服务器配置了Cisco UCS M81KR 虚拟接口卡时,思科统一计算系统能发挥最大功效。这些卡采用灵活配置的I/O ,使Cisco UCS Manager 能创建多达128个(其中8个预留,供系统使用)以太网NIC 或光纤通道HBA 的任意组合,其身份(MAC 地址和WWN )可动态编程。这个虚拟接口卡提供了足够的接口,保证每个虚拟机都能拥有一个或多个专用物理接口,因此不再需要虚拟软件层面的交换。

Cisco UCS Manager 与VMware vCenter 软件共用,能够协调虚拟机及它们直接与之通信的接口的创建和移动。Cisco UCS Manager 中的端口配置文件定义了虚拟机所使用的NIC 配置,在创建VM 或将VM 移动到另一服务器时,灵活地引导管理器配置虚拟机所需的接口。端口配置文件的名称与VMware ESX 服务器中的端口组名称相对应。当VMware ESX 服务器希望创建一个新虚拟机或设置虚拟机移动的目的地VM1Cisco UCS B 系列

刀片服务器

VM3

VM2 物理端口

虚拟端口

物理端口

将虚拟端口与互联中的物理端口改变相关联

物理10Gbps 统一阵列链路虚拟链路

Cisco UCS Manager 移动端口配置文件

Cisco UCS M81KR 虚拟接口卡

VMware Virtual Center 移动端口组

VMware ESX 服务器

VMware Virtual Center 移动虚拟机

Cisco UCS 6100系列 互联阵列

NIC NIC

VM1 VM3

VM2NIC NIC

VM Direct Path

文件,然后虚拟机就能使用预期的设备来连接网络。

采用Cisco UCS M81KR虚拟接口卡的VM Direct Path技术

VM Direct Path技术进一步优化了虚拟机I/O,使所有I/O流量完全绕开了虚拟软件的管理程序,因此消除了I/O敏感型工作负载虚拟化时所遗留的瓶颈之一。思科支持采用Cisco UCS M81KR的VM Direct Path,它建立在同一VN-Link基础上,便于配置和管理。

终端主机模式

用于从互联阵列到汇聚层交换机的以太网和光纤通道连接的终端主机模式,使作为单一综合系统的思科统一计算系统更为完善。光纤通道终端主机模式采用N端口ID虚拟化(NPIV)技术。这些特性使互联阵列能确定系统中物理机和虚拟机的身份,使多个服务器对于汇聚层来说实现透明,进一步简化了数据中心Layer 2网络的管理。

总结

服务器虚拟化为世界各地的数据中心带来了众多优势,但同时它也向数据中心提出了挑战。如果有统一的I/O配置和足够的带宽,在每台物理服务器上支持大量VM,则资源池的管理会较为容易。资源池将能更快速地应对迅速变化的业务情况和工作负载,新服务器资源的添加能在几分钟内完成,然后设置并投入使用。而无需通过数小时甚或数天繁琐、耗时且易于出错的人工配置,来准备服务器及其接口、固件和设置。通过平衡CPU处理能力和经济高效的内存配置使虚拟机密度提高时,就能够更轻松地实现服务器虚拟化的经济优势。最后,在统一了网络接入层,并以相同方式对待虚拟机链路与物理服务器链路时,能够更高效、更安全地管理虚拟环境,并获得更出色的QoS。

思科统一计算系统通过下一代数据中心平台解决了上述挑战。此平台将计算、网络、存储访问和虚拟化统一到一个综合系统中,进行集中管理,并使用VMware ESX服务器等虚拟化软件进行协调。该系统在一个万兆以太网统一阵列中集成了企业级服务器,提供了虚拟机和虚拟化软件所需的I/O带宽和功能。思科扩展内存技术为高度虚拟化所需要的大内存提供了一种极为经济的配置方法。最后,思科统一计算系统将网络访问层集成为一个能轻松管理的实体,在此实体中,能像物理链路一样配置、管理和移动虚拟机链路。思科统一计算系统继承了思科长期以来的优秀创新传统,在架构、技术、合作关系和服务方面都进行了出色创新。

了解更多信息

如需了解更多信息,请访问:https://www.doczj.com/doc/e610590343.html,/go/unifiedcomputing。

北京

北京市朝阳区建国门外 大街2号北京银泰中心 银泰写字楼C 座7-12层 邮编:100022

电话:(8610) 85155000 传真:(8610) 85155960

上海

上海市长宁区红宝石路500号东银中心A 栋21-25层 邮编:201103

电话:(8621) 22014000 传真:(8621) 22014999

广州

广州市天河区林和西路161号 中泰国际广场A 塔34层 邮编:510620

电话:(8620) 85193000 传真:(8620) 85193008

成都

成都市滨江东路9号B 座香格里拉中心办公楼12层邮编:610021

电话:(8628) 86961000 传真:(8628) 86961003

如需了解思科公司的更多信息,请浏览https://www.doczj.com/doc/e610590343.html,

思科系统(中国)网络技术有限公司版权所有。

2009?思科系统公司版权所有。该版权和/或其它所有权利均由思科系统公司拥有并保留。Cisco, Cisco IOS, Cisco IOS 标识,Cisco Systems, Cisco Systems 标识, Cisco Systems Cisco Press 标识等均为思科系统公司或其在美国和其他国家的附属机构的注册商标。这份文档中所提到的所有其它品牌、 名称或商标均为其各自所有人的财产。合作伙伴一词的使用并不意味着在思科和任何其他公司之间存在合伙经营的关系。

计算虚拟化的发展历程

计算虚拟化的发展历程 1 早期的虚拟化技术雏形 上世界60年代开始,美国的计算机学术界就开始了虚拟技术的萌芽。1959年6月在国际信息处理大会上,克里斯托弗的一篇《计算机分时应用》的论文,被认为是虚拟化技术的最早论述。 1960年美国的Atlas计算机项目,以及1965年IBM公司按照以上论述进行的一些列计算机项目试验,其中的M44/44X计算机项目,定义了虚拟内存管理机制,用户程序可以运行在虚拟的内存中,对于用户来说,这些虚拟内存就好像一个个“虚拟机”。 IBM提出的虚拟机技术,使一批新产品涌现了出来,比如:IBM360/40,IBM360/67,以及VM/370,这些机器在当时都具有虚拟机功能,通过一种叫VMM(虚拟机监控器)的技术在物理硬件之上生成了很多可以运行独立操作系统软件的虚拟机实例。 2 虚拟化技术的推广 很早以前,商业Unix厂商就在他们的企业级产品中加入了虚拟化的功能,这就是当时为什么大型主机卖得如此之火的原因了。但由于虚拟化的门槛很高,而且应用也很有限。虚拟化技术始终没有得到有力的推广。 随着x86平台上虚拟化技术的实现,首次向人们展示了虚拟化应用的广阔前景,因为x86平台可以提供便宜的、高性能和高可靠的服务器。更重要的是,一些用户已经开始配置虚拟化的生产环境,他们需要得到新的管理工具,从而随着虚拟化技术的发展而得到更大的收益。 3 计算虚拟化成为流行趋势 用户对虚拟化感兴趣的底线是希望把成本降低,这是中型企业采用虚拟化架构的驱动力。许多小型企业开始进入数年前部署的Windows 2000/2003的更新期,有两种选择:买一或两台高性能的服务器或者购买6、7台普通的服务器。前者采用虚拟化技术就能达到后者所能提供的性能和存储容量,但占用的空间更小,成本也不高。 对于大型企业,虚拟化技术更吸引人。他们的数据中心往往由数十台甚至上百台机架式服务器组成,功耗很大。然而,大量服务器的CPU被闲置着。在大量调研后得出的结论:只有15%左右的资源在被充分利用。 CPU在高速发展,但操作系统却相对滞后,应用就更不用说了。这使得用户花大量的钱买新的服务器,运行的却是老的应用。那些已经运行数年的应用可能并不需要更大容量的内存和最新的CPU,但为了保证系统的可靠和对新硬件的支持,用户别无选择。

网络功能虚拟化白皮书-中文版 v1.2

网络功能虚拟化 ----概念、益处、推动者、挑战及行动呼吁 目标 本文是由网络运营商撰写的无版权白皮书。 本文的主要目标是概要的描述网络功能虚拟化(不同于云和软件定义网络SDN)的益处,推动者及面临的挑战,以及为什么要鼓励国际间的合作,来加速推动基于高市场占有率的行业标准服务器通信解决方案的开发和部署。 推动组织和作者 AT&T: Margaret Chiosi. BT: Don Clarke, Peter Willis, Andy Reid. CenturyLink: James Feger, Michael Bugenhagen, Waqar Khan, Michael Fargano. China Mobile: Dr. Chunfeng Cui, Dr. Hui Deng. Colt: Javier Benitez. Deutsche Telekom: Uwe Michel, Herbert Damker. KDDI: Kenichi Ogaki, Tetsuro Matsuzaki. NTT: Masaki Fukui, Katsuhiro Shimano. Orange: Dominique Delisle, Quentin Loudier, Christos Kolias. Telecom Italia: Ivano Guardini, Elena Demaria, Roberto Minerva, Antonio Manzalini. Telefonica: Diego López, Francisco Javier Ramón Salguero. Telstra: Frank Ruhl. Verizon: Prodip Sen. 发布日期 2012年10月22至24日,发布于软件定义网络(SDN)和OpenFlow世界大会, Darmstadt-德国。

FusionSphere虚拟化套件存储虚拟化技术白皮书

华为FusionSphere 6.5.0虚拟化套件存储虚拟化技术白皮书

目录 1简介/Introduction (3) 2解决方案/Solution (4) 2.1 FusionSphere 存储虚拟化解决方案 (4) 2.1.1架构描述 (4) 2.1.2特点描述 (5) 2.2存储虚拟化的磁盘文件解决方案 (6) 2.2.1厚置备磁盘技术 (6) 2.2.2厚置备延时置零磁盘技术 (6) 2.2.3精简置备磁盘技术 (6) 2.2.4差分磁盘技术 (7) 2.3存储虚拟化的业务管理解决方案 (7) 2.3.1磁盘文件的写时重定向技术 (7) 2.3.2磁盘文件的存储热迁移 (8) 2.3.3磁盘文件高级业务 (8) 2.4存储虚拟化的数据存储扩容解决方案 (9) 2.4.1功能设计原理 (9) 2.5存储虚拟化的数据存储修复解决方案 (10) 2.5.1功能设计原理 (10)

1 简介/Introduction 存储设备的能力、接口协议等差异性很大,存储虚拟化技术可以将不同存储设备进行格式化,将各种存储资源转化为统一管理的数据存储资源,可以用来存储虚拟机磁盘、虚拟机配置信息、快照等信息。用户对存储的管理更加同质化。 虚拟机磁盘、快照等内存均以文件的形式存放在数据存储上,所有业务操作均可以转化成对文件的操作,操作更加直观、便捷。 基于存储虚拟化平台提供的众多存储业务,可以提高存储利用率,更好的可靠性、可维护性、可以带来更好的业务体验和用户价值。 华为提供基于主机的存储虚拟化功能,用户不需要再关注存储设备的类型和能力。存储虚拟化可以将存储设备进行抽象,以逻辑资源的方式呈现,统一提供全面的存储服务。可以在不同的存储形态,设备类型之间提供统一的功能。

国内外虚拟现实技术发展现状和发展趋势

浅析:国内外虚拟现实技术发展现状和发展趋势 国外虚拟现实技术及产品有Google Earth, Microsoft Map Live, Intel Shockwave3D, Cult3D, ViewPoint, Quest3D,Virtools,WEBMAX等…… 一. 国内外虚拟现实几种主流技术的介绍 VRML技术 虚拟现实技术与多媒体、网络技术并称为三大前景最好的计算机技术。自1962年,美国青年(Morton Heilig),发明了实感全景仿真机开始。虚拟现实技术越来越受到大众的关注。以三个I,即Immersion沉浸感,Interaction交互性,Imagination思维构想性,作为虚拟现实技术最本质的特点,并融合了其它先进技术。在国际互联网发展迅猛的今天,具有广泛的应用前景。重大的发展过程如下: VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0标准。VRML1.0可以创建静态的3D景物,但没有声音和动画,你可以在它们之间移动,但不允许用户使用交互功能来浏览三维世界。它只有一个可以探索的静态世界。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph'96上公布通过了规范的VRML2.0标准。它在VRML1.0的基础上进行了很大的补充和完善。它是以SGI公司的动态境界Moving Worlds提案为基础的。比VRML1.0增加了近30个节点,增强了静态世界,使3D场景更加逼真,并增加了交互性、动画功能、编程功能、原形定义功能。 1997年12月VRML作为国际标准正式发布,1998年1月正式获得国际标准化组织ISO 批准(国际标准号ISO/IEC14772-1:1997)。简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。但它这意味着VRML已经成为虚拟现实行业的国际标准。 1999年底,VRML的又一种编码方案X3D草案发布。X3D整合正在发展的XML、JA V A、流技术等先进技术,包括了更强大、更高效的3D计算能力、渲染质量和传输速度。以及对数据流强有力的控制,多种多样的交互形式。 2000年6月世界web3D协会发布了VRML2000国际标准(草案),2000年9月又发布了VRML2000国际标准(草案修订版)。预计将在2002年,正式发表X3D标准。及相关3D浏览器。由此,虚拟现实技术进入了一个崭新的发展时代。 Wed3D协会其组织包括各种97家会员公司。主要公司如下:Sun、Sony、Hp、Oracle 、Philips 、3Dlabs 、ATI 、3Dfx 、Autodesk /Discreet、ELSA、Division、MultiGen、Elsa、NASA、Nvidia、France Telecom等等。 其中以Blaxxun和ParallelGraphics公司为代表,它们都有各自的VR浏览器插件。并各自开发基于VRML标准的扩展节点功能。使3D的效果,交互性能更加完美。支持MPEG,Mov、Avi等视频文件,Rm等流媒体文件,Wav、Midi、Mp3、Aiff等多种音频文件,Flash 动画文件,多种材质效果,支持Nurbs曲线,粒子效果,雾化效果。支持多人的交互环境,VR眼镜等硬件设备。在娱乐、电子商务等领域都有成功的应用。并各自为适应X3D的发展,以X3D为核心,有Blaxxun3D等相关产品。在虚拟场景,尤其是大场景的应用方面,以VRML标准为核心的技术具有独特的优势。相关网址如下:https://www.doczj.com/doc/e610590343.html, , https://www.doczj.com/doc/e610590343.html, 应用的画面:慕尼黑机场(电子商务)

FusionSphere虚拟化套件分布式虚拟交换机技术白皮书

华为FusionSphere 6.5.0 虚拟化套件分布式虚拟交换机技术白皮书

目录 1 分布式虚拟交换机概述 (1) 1.1 产生背景 (1) 1.2 虚拟交换现状 (2) 1.2.1 基于服务器CPU实现虚拟交换 (2) 1.2.2 物理网卡实现虚拟交换 (2) 1.2.3 交换机实现虚拟交换 (3) 2 华为方案简介 (5) 2.1 方案是什么 (5) 2.2 方案架构 (7) 2.3 方案特点 (7) 3 虚拟交换管理 (8) 3.1 主机 (8) 3.2 分布式虚拟交换机 (8) 3.3 端口组 (8) 4 虚拟交换特性 (9) 4.1 物理端口/聚合 (9) 4.2 虚拟交换 (9) 4.2.1 普通交换 (9) 4.2.2 SR-IOV直通 (10) 4.2.3 用户态交换 (10) 4.3 流量整形 (11) 4.3.1 基于端口组的流量整形 (11) 4.4 安全 (11) 4.4.1 二层网络安全策略 (11) 4.4.2 广播报文抑制 (12) 4.4.3 安全组 (12) 4.5 Trunk端口 (12) 4.6 端口管理 (13) 4.7 存储面三层互通 (13) 4.8 配置管理VLAN (13)

4.9 业务管理平面 (13) 5 虚拟交换应用场景 (14) 5.1 集中虚拟网络管理 (14) 5.2 虚拟网络流量统计功能 (14) 5.3 分布式虚拟端口组 (14) 5.4 分布式虚拟上行链路 (14) 5.5 网络隔离 (14) 5.6 网络迁移 (15) 5.7网络安全 (15) 5.8 配置管理VLAN (15) 5.9 业务管理平面 (15) 6 缩略语 (16)

中国虚拟化技术发展路线图

IDC:提出中国虚拟化技术发展路线图 2008-04-15 04:05:24 通过多年以来对中国服务器市场的跟踪研究,IDC认为虚拟化技术--尤其是基于x86服务器平台的虚拟化技术在近年来已经逐渐成为市场的热点。IDC进一步提出了中国虚拟化技术发展的路线图,并认为虚拟化技术将在目前的基础上有更深远的发展空间。 IDC中国计算机系统研究部,高级分析师周震刚观点:目前中国仍然处于虚拟化1.0时代,绿色IT将推动虚拟化进程——通过多年以来对中国服务器市场的跟踪研究,IDC认为虚拟化技术--尤其是基于x86服务器平台的虚拟化技术在近年来已经逐渐成为市场的热点。IDC进一步提出了中国虚拟化技术发展的路线图,并认为虚拟化技术将在目前的基础上有更深远的发展空间。 IDC认为,虚拟化技术的发展会经历四个阶段,在2000年左右开始兴起的服务器集中化可以被看作是虚拟化发展的准备阶段,可称作虚拟化0.5时代。而从2005年开始持续至今的虚拟化热则可以被看作虚拟化的起步阶段。在这个阶段中,企业将计算资源的动态集中和共享作为实施虚拟化的主要任务。从2007年开始,在一些信息化水平较高的国家,虚拟化技术已经发展到了一个新的阶段,这时虚拟化实施的重点已经转移到了灾备、迁移以及负载均衡上。IDC预测,在2010年左右,虚拟化将达到成熟阶段。这时的虚拟化实施,将形

成以服务为导向、成本可控、基于策略且能够实现自动控制的数据中心,IDC把这个阶段称作虚拟化3.0时代。 中国虚拟化技术发展路线图 根据IDC对虚拟化发展进程的划分和对中国相关市场的研究,周震刚指出目前中国市场仍然处于虚拟化的起步阶段,即虚拟化1.0时代。在虚拟化的普及程度上也印证了这一点。IDC在北美市场的研究表明,在大型企业中,虚拟化应用的普及程度达到了67%以上。而在中国市场的调研显示,即使在信息化水平较高的发达城市,应用虚拟化技术的大型企业仍然不超过22%。 但是,随着中国政府“节能减排”的政策出台,建设“绿色IT”成为各地企业和政府关注的重点。这将带动虚拟化技术在未来几年中

虚拟化技术展望

当代虚拟化技术和产品介绍 获得产品和技术 Bochs和QEMU: 是PC模拟器,允许如Windows或Linux运行在linux操作系统的用户空间。VMware: 是一个流行的全虚拟化解决方案, 能够虚拟无需修改的操作系统。 z/VM: 是一个最新的基于64位z/架构的虚拟机操作系统。 z/VM提供全虚拟化和支持大多的操作系统, 包括Linux。Xen: 是一个开源的半虚拟化解决方案, 需修改客户机的操作系统, 通过与hypervisor的协作能获得接近于原始系统的性能。 User-mode Linux: 是另外一个开源的半虚拟化解决方案。每一个客户操作系统是主机操作系统的一个标准进程。 coLinux, 或协作Linux: 是一个提供两个操作系统共同分享底层硬件的虚拟化解决方案。 Linux-Vserver: 是一个linux上的操作系统级的虚拟解决方案, 每一个客户服务器都被安全的隔离开来。 OpenVZ: 是一个操作系统级的虚拟化解决方案, 支持检查点和动态迁移。 Linux KVM: 是第一个整合到Linux主线内核的虚拟化技术。 Linux内核在载入一个内核可加载模块(kvm)后, 内核自身成为了一个Hypervisor程序, 如果有合适的硬件支持(Intel VT或AMD SVM处理器), 系统可运行未修改过的linux和windows客户机操作系统。 虚拟化技术的应用十分广泛。当前虚拟化技术主要关注于服务器的虚拟化, 或在单个主机上寄存多个独立的操作系统。本文首先介绍虚拟化技术的原理, 然后讨论多个虚拟化技术的实现方法。另外介绍一些其它的虚拟化技术, 比如Linux上操作系统级的虚拟化技术。 虚拟化把事物从一种形式改变为另一种形式。计算机的虚拟化使单个计算机看起来像多个计算机或完全不同的计算机。虚拟化技术也可以使多台计算机看起来像一台计算机。这叫做服务器聚合(server aggregation)或网格计算(grid computing)。 虚拟化技术的历史。虚拟化技术不是一个新的主题; 实际上, 它已有40年的历史。最早使用虚拟化技术的是IBM 7044计算机, 它是基于MIT(麻省理工学院)为IBM704计算机开发的分时系统CTSS(Compatible Time Sharing System), 和曼彻斯特大学的Atlas项目(世界最早的超级计算机之一), 首次使用了请求调页和系统管理程序调用。 硬件虚拟化 IBM早在1960年就认识到虚拟化技术的重要性, 于是开发了型号为Model 67的System/360主机。 Model 67主机通过虚拟机监视器(VMM, Virtual Machine Monitor)虚拟

FusionSphere虚拟化套件技术白皮书

华为FusionSphere 6.5.0 虚拟化套件技术白皮书 pg. i

1 摘要 云计算并不是一种新的技术,而是在一个新理念的驱动下产生的技术组合。这个理念就是—敏捷IT。在云计算之前,企业部署一套服务,需要经历组网规划,容量规划,设备选型,下单,付款,发货,运输,安装,部署,调试的整个完整过程。这个周期在大型项目中需要以周甚至月来计算。在引入云计算后,这整个周期缩短到以分钟来计算。 IT业有一条摩尔定律,芯片速度容量每18个月提升一倍。同时,IT行业还有一条反摩尔定律,所有无法追随摩尔定律的厂家将被淘汰。IT行业是快鱼吃慢鱼的行业,使用云计算可以提升IT设施供给效率,不使用则会拖慢产品或服务的扩张脚步,一步慢步步慢。 云计算当然还会带来别的好处,比如提升复用率缩减成本,降低能源消耗,缩减维护人力成本等方面的优势,但在反摩尔定律面前,已经显得不是那么重要。 业界关于云计算技术的定义,是通过虚拟化技术,将不同的基础设施标准化为相同的业务部件,然后利用这些业务部件,依据用户需求自动化组合来满足各种个性化的诉求。云着重于虚拟化,标准化,和自动化。 FusionSphere是一款成熟的Iaas层的云计算解决方案,除满足上面所述的虚拟化,标准化和自动化诉求外,秉承华为公司二十几年电信化产品的优秀基因,向您提供开放,安全可靠的产品。 本文档向您讲述华为FusionSphere解决方案中所用到的相关技术,通过阅读本文档,您能够了解到: ?云的虚拟化,标准化,自动化这些关键衡量标准是如何在FusionSphere解决方案中体现的; ?FusionSphere解决方案是如何做到开放,安全可靠的;

桌面虚拟化技术发展分析

桌面虚拟化技术发展分析-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

桌面虚拟化技术(VDI)发展分析

目录 1.1 桌面虚拟化现状与发展 (3) 1.1.1 虚拟桌面简介 (3) 1.1.2 虚拟化技术 (4) 1.1.3 虚拟桌面/应用的优势 (19) 1.1.4 常用三维虚拟桌面平台分析 (20) 1.1.5 虚拟桌面需求分析 (23) 1.1.6 桌面虚拟化安全需求分析 (26)

1.1桌面虚拟化现状与发展 1.1.1虚拟桌面简介 桌面虚拟化“Desktop Virtualization (或者成为虚拟桌面架构“Virtual Desktop Infrastructure”) 是一种基于服务器的计算模型,VDI概念最早由桌面虚拟化厂商VMware提出,目前已经成为标准的技术术语。虽然借用了传统的瘦客户端的模型,但是让管理员与用户能够同时获得两种方式的优点:将所有桌面虚拟机在数据中心进行托管并统一管理;同时用户能够获得完整PC的使用体验。 在后端,虚拟化桌面通常通过以下两种方式之一来实现: 运行若干Windows虚拟机的Hypervisor,每个用户以一对一的方式连接到他们的VM (虚拟机)。 安装Windows系统的服务器,每个用户以一对一的方式连接到服务器。(这种方法有时被称作bladed PC(刀片PC)) 无论何种方式,都是让终端用户使用他们想使用的任何设备。他们可以从任何地方连接到他们的桌面,IT人员可以更易于管理桌面,数据更安全,因为它位于数据中心之内。 VDI方式最有趣的是,虽然这些技术是新兴的,但把桌面作为一种服务来提供的概念在十多年前就已经被提出了。与传统的基于服务器计算的解决方案最主要的区别是,基于服务器计算的解决方案在于为Windows的共享实例提供个性化的桌面,而VDI的解决方案是为每个用户提供他们自己的Windows桌面机器。 能提供虚拟桌面的厂商有国外的VMware,Citrix和微软Hyper-v,的自己研制的Cloudview,集成了虚拟桌面和云计算的功能,包括对外提供云桌面、云应用和云服务等。 将桌面操作系统虚拟化带来很多好处,包括: ●数据更安全,通过策略配置,用户无法将机密数据保存在本地设备上,只能在数据 中心进行存储,备份,保证数据的安全性和可用性; ●提高网络安全,由于只使用需要开放有限几个端口,所以可以实现网络的逻辑隔离 和严格控制,在不影响应用的前提下,全面提升网络安全性; ●用户可以随时随地,通过网络,访问到被授权的桌面与应用; ●终端设备支持更广泛,可以通过PC,瘦客户端、甚至是手机来访问传统PC上才

VR虚拟现实技术在教育领域前景展望

VR虚拟现实技术在教育领域前景展望 VR虚拟现实技术在教育领域前景展望 VR虚拟现实技术在教育领域的前景展望 VR虚拟现实技术能迅速火起来,是基于它突破了人们对三维空间在时间与地域上的感知限制,以及市场需求愿景的升级。此技术可广泛地应用到城市规划、室内设计、工业仿真、古迹复原、桥梁道路设计、房地产销售、旅游教学 、水利电力、地质灾害、教育培训等众多领域,可提供切实可行的解决方案 ,从而降低成本与风险。作者蒋燕玲则看好VR虚拟现实技术在教育培训领域里的应用。众所周知,教育行业从最早单一枯燥的说教与图文教学,随后融入了视听媒体,再到后来计算机在教育中的普及应用后复合媒体的发展,但都未能突破二维图像的界限。 什么是VR虚拟现实技术?这是一种可以创建和体验虚拟世界的计算机仿真系统。它利用计算机生成一种模拟环境,利用多源信息融合的交互式三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。简单地说,是以VR虚拟计算机技术为主,利用计算机一些特殊设备进行输入输出,来营造一个人体各感官都可感知如亲临其境的三维虚幻世界。 戴上VR眼镜,就可以进入虚拟现实的空间里,想去哪儿分秒间抵达,虚拟与现实只在一镜之间,这仿若科幻电影中才有的高科技,随着VR虚拟现实技术的崛起悄然间这种愿景将改变着我们的生活方式。每一次教育的变革都是由科技推动的,试想如果VR+教育会产生怎样的反应呢?下面作者就从三类教育现状进行分析。

1.学校 教育 有没有发现,游戏对学生有着特别的吸引力,而印在书本上的图文与课堂上多媒体的展示,相比而言,前者明显更能吸引学生的眼球与注意力,甚至长时间专注其中,而后者学习一会儿就渐显疲态,继而分心。因为前者生动形象不断变换的场景容易吸引学生尽情投入,比起单一的印在书本上枯燥的图文和空洞的说教,或是多媒体的展示中被要求被动观看强制性的学习,远远不如进入游戏角色与场景中游弋在虚拟的世界里,明显学生的专注力在虚拟情境中更持久。 试想学校教育遇上VR虚拟现实技术,是否会产生奇妙的反应呢?学生们戴上VR眼镜,仿若进入某个课程的虚拟场景的三维环境里,进行人、物、景的多重交互,即可重现历史场景或现实中肉眼无法观察到物体的多维展示。美国一个公司开发了教育类的VR虚拟产品,3D眼镜,一支电子笔与一台特制电脑就可以实现相当逼真的场景虚拟。如学生们坐在教室里,就可通过这些虚拟设备来访问历史古迹,电脑里虚拟的场景带学生亲临现场感知每个方位的场景,甚至与历史名人面对面站立领略其风采。 在学习化学时,分子原子的跃动,一些元素氧化的整个过程全部立体展示,学生只需摇摇头,晃动下身子,都可以达到近似现实的体验它们变换的效果,既形象直观,又规避了化学实验可能带来的危险,想起来就很新奇有趣。在做生物实验时,老师可以在虚拟场景中解剖动物,拆解动物身体内部构造,甚至可来回解析几次,学生也可以虚拟方式来完成解剖过程,这种沉浸式的学习方式是不是很真实过瘾,并可节约教育成本。甚至在教育条件欠发达地区,还可弥补上教学设备匮乏的短板。

FusionSphere虚拟化套件安全技术白皮书

华为FusionSphere 虚拟化套件安全技术白皮书

目录 1虚拟化平台安全威胁分析 (1) 1.1概述 (1) 1.2云安全威胁分析 (1) 1.2.1传统的安全威胁 (1) 1.2.2云计算带来的新的安全威胁 (3) 1.3云计算的安全价值 (4) 2 FusionSphere安全方案 (6) 2.1 FusionSphere总体安全框架 (6) 2.2网络安全 (7) 2.2.1网络平面隔离 (7) 2.2.2 VLAN隔离 (8) 2.2.3防IP及MAC仿冒 (9) 2.2.4端口访问限制 (9) 2.3虚拟化安全 (10) 2.3.1 vCPU调度隔离安全 (10) 2.3.2内存隔离 (11) 2.3.3内部网络隔离 (11) 2.3.4磁盘I/O隔离 (11) 2.4数据安全 (11) 2.4.1 数据加密 (11) 2.4.2用户数据隔离 (12) 2.4.3数据访问控制 (12) 2.4.4剩余信息保护 (12) 2.4.5数据备份 (13)

2.4.6软件包完整性保护 (14) 2.5运维管理安全 (14) 2.5.1管理员分权管理 (14) 2.5.2账号密码管理 (14) 2.5.3日志管理 (14) 2.5.4传输加密 (15) 2.5.5数据库备份 (15) 2.6基础设施安全 (15) 2.6.1操作系统加固 (16) 2.6.2 Web安全 (16) 2.6.3数据库加固 (17) 2.6.4 Web容器加固 (17) 2.6.5安全补丁 (17) 2.6.6防病毒 (18)

1 虚拟化平台安全威胁分析 1.1 概述 云计算虚拟化平台作为一种新的计算资源提供方式,用户在享受它带来的便利性、低 成本等优越性的同时,也对其自身的安全性也存在疑虑。如何保障用户数据和资源的 机密性、完整性和可用性成为云计算系统急需解决的课题。本文在分析云计算带来的 安全风险和威胁基础上,介绍了华为云计算虚拟化平台针对这些风险和威胁所采取策 略和措施,旨在为客户提供安全可信的服务器虚拟化解决方案。 1.2 云安全威胁分析 1.2.1 传统的安全威胁 来自外部网络的安全威胁的主要表现 ?传统的网络IP攻击 如端口扫描、IP地址欺骗、Land攻击、IP选项攻击、IP路由攻击、IP分片报 文攻击、泪滴攻击等。 ?操作系统与软件的漏洞 在计算机软件(包括来自第三方的软件,商业的和免费的软件)中已经发现了 不计其数能够削弱安全性的缺陷(bug)。黑客利用编程中的细微错误或者上下 文依赖关系,已经能够控制操作系统,让它做任何他们想让它做的事情。常见 的操作系统与软件的漏洞有:缓冲区溢出、滥用特权操作、下载未经完整性检 查的代码等。 ?病毒、木马、蠕虫等。 ?SQL注入攻击

各种虚拟化技术总结

各种虚拟化技术总结 《各种虚拟化技术总结》是一篇好的范文,好的范文应该跟大家分享,这 里给大家转摘到。篇一:主流的四大虚拟化架构对比分析 主流四大虚拟化架构对比分析 云计算平台需要有资源池为其提供能力输出,这种能力包括计算能力、存 储能力和网络能力,为了将这些能力调度到其所需要的地方,云计算平台还需要对能力进行调度管理,这些能力均是由虚拟化资源池提供的。 云计算离不开底层的虚拟化技术支持。维基百科列举的虚拟化技术有超过 60种,基于X86(CISC)体系的超过50种,也有基于RISC体系的,其中有 4 种虚拟化技术是当前最为成熟而且应用最为广泛的,分别是:VMWARE的ESX、微软的Hyper-V、开源的XEN和KVM。云计算平台选用何种虚拟化技术将是云计算建设所要面临的问题,文章就4种主流虚拟化技术的架构层面进行了对比分析。 形成资源池计算能力的物理设备,可能有两种,一种是基于RISC的大小型机,另一种是基于CISC的 X86服务器。大小型机通常意味着高性能、高可靠性 和高价格,而X86服务器与之相比有些差距,但随着Inter和AMD等处理器厂商技术的不断发展,原本只在小型机上才有的技术已经出现在了X86处理器上,如64位技术、虚拟化技术、多核心技术等等,使得X86服务器在性能上突飞猛进。通过TPC组织在20XX年3月份所公布的单机计算机性能排名中可以看出,4路32核的X86服务器性能已经位列前10名思想汇报专题,更重要的是X86服务器的性价比相对小型机有约5倍的优势。因此,选择X86服务器作为云计算资源池,更能凸显出云计算的低成本优势。 由于单机计算机的处理能力越来越大,以单机资源为调度单位的颗粒度就 太大了,因此需要有一种技术让资源的调度颗粒更细小,使资源得到更有效和充分

主流虚拟化技术基础知识和发展趋势

一、背景知识 云计算平台需要有资源池为其提供能力输出,这种能力包括计算能力、存储能力和网络能力,为了将这些能力调度到其所需要的地方,云计算平台还需要对能力进行调度管理,这些能力均是由虚拟化资源池提供的。 云计算离不开底层的虚拟化技术支持。维基百科列举的虚拟化技术有超过60种,基于X86(CISC)体系的超过50种,也有基于RISC体系的,其中有4 种虚拟化技术是当前最为成熟而且应用最为广泛的,分别是:VMWARE的ESX、微软的Hyper-V、开源的XEN和KVM。云计算平台选用何种虚拟化技术将是云计算建设所要面临的问题,文章就4种主流虚拟化技术的架构层面进行了对比分析。 形成资源池计算能力的物理设备,大概有两种,一种是基于RISC的大/小型机,另一种是基于CISC的X86服务器。大/小型机通常意味着高性能、高可靠性和高价格,而X86服务器与之相比有些差距,但随着Inter和AMD等处理器厂商技术的不断发展,原本只在小型机上才有的技术已经出现在了X86处理器上,如64位技术、虚拟化技术、多核心技术等等,使得X86服务器在性能上突飞猛进。通过TPC组织在2011年3月份所公布的单机计算机性能排名中可以看出,4路32核的X86服务器性能已经位列前10名,更重要的是X86服务器的性价比相对小型机有约5倍的优势。因此,选择X86服务器作为云计算资源池,更能凸显出云计算的低成本优势。 由于单机计算机的处理能力越来越大,以单机资源为调度单位的颗粒度就太大了,因此需要有一种技术让资源的调度颗粒更细小,使资源得到更有效和充分

的利用,这就引入了虚拟化技术。当前虚拟化技术中主流和成熟的有4种:VMWARE的ESX、微软的Hyper-V、开源的XEN和KVM。 二、虚拟化架构分析 从虚拟化的实现方式来看,虚拟化架构主要有两种形式:宿主架构和裸金属架构。在宿主架构中的虚拟机作为主机操作系统的一个进程来调度和管理,裸金属架构下则不存在主机操作系统,它是以Hypervisor直接运行在物理硬件之上,即使是有类似主机操作系统的父分区或Domain 0,也是作为裸金属架构下的虚拟机存在的。宿主架构通常用于个人PC上的虚拟化,如WindowsVirtual PC,VMware Workstation,Virtual Box,Qemu等,而裸金属架构通常用于服务器的虚拟化,如文中提及的4种虚拟化技术。 2.1 ESX的虚拟化架构 VMWare (Virtual Machine ware)是一个“虚拟PC”软件公司。它的产品可以使你在一台机器上同时运行二个或更多Windows、DOS、LINUX系统。与“多启动”系统相比,VMWare采用了完全不同的概念。多启动系统在一个时刻只能运行一个系统,在系统切换时需要重新启动机器。VMWare是真正“同时”运行,多个操作系统在主系统的平台上,就象标准Windows应用程序那样切换。而且每个操作系统你都可以进行虚拟的分区、配置而不影响真实硬盘的数据,你甚至可以通过网卡将几台虚拟机用网卡连接为一个局域网,极其方便。安装在VMware操作系统性能上比直接安装在硬盘上的系统低不少,因此,比较适合学习和测试。

虚拟实验室技术白皮书

虚拟实验室 技术白皮书 上海庚商网络信息技术有限公司 2015年9月

目录 1 产品概述 (3) 1.1 云教育基础架构分类 (5) 1.1.1 服务器虚拟化 (5) 1.1.2 桌面虚拟化 (6) 1.2 教育虚拟技术应用分类 (7) 1.1.1 模拟 (7) 1.1.2 仿真 (8) 1.1.3 虚拟现实 (8) 1.1.4 增强现实 (9) 1.1.5 远程实验 (9) 2 总体设计 (13) 2.1 系统架构 (13) 2.2 系统说明 (13) 3 系统功能 (17) 3.1开放管理 (17) 3.2知识地图 (18) 3.3二维码 (20) 3.4微课与实验支架 (21) 3.5虚拟实验 (22) 3.6 可视化环境监控 (23) 3.7 电流检测 (23) 3.8 科研协同 (24) 3.9 云桌面 (26) 4 预算清单 (28)

1 产品概述 随着计算机技术和网络技术的迅速发展,以及科学研究进一步深入的需要,虚拟仿真实验技术日渐成熟和完善,虚拟实验作为继理论研究和实验研究之后的第三种科学研究方法,对社会发展和科技进步起到了越来越重要的作用,代表着科学研究方法的重要发展方向。 虚拟实验是指以计算机为控制中心,利用软件技术,构建系统的逻辑结构模型,基于模块化和层次化的设计思想,采用软硬件相结合的方式,协调相关硬件和效应设备,形成虚拟实验系统,并利用网络技术,实现虚拟实验系统的网络化,形成运行在个人计算机上、实现自行设计与开发,以及远程控制与协作的实验方式。

庚商虚拟实验室作为实验资源综合服务平台,不同于传统的虚拟平台,割裂实体资源与在线资源的联系,而是面向最终实践教学、科研与管理活动,对数据与应用资源的整合与开发,是实体资源的延伸与增强。同时,通过对实践教学、科研等核心活动数据的采集,为管理活动提供第一手的信息,有效辅助管理决策。系统建设目标如下: 1)提供良好实验平台,提高实验教学水平 传统教学中,理论教学与实验教学是分开的。理论课上没有实验,建设虚拟实验室,借助虚拟仿真实验,就可以将实验带进理论课。 2)整合实验教学资源,实现实验室的真正开放 虚拟实验室可以提供开放式实验环境,真正实现实验室向学生开放。学生可以打破时间和地域的限制完成相关的教学实验。由于虚拟仪器系统的支持,学生可以自拟、自选实验题目,自行组织实验,使用现成的仪器为开发自己的仪器进行实验,摒弃传统的灌输式教学方式,让学生自主参与到教学中来,最大限度地发挥学生的主动性和创造性。

KVM虚拟化技术发展史及未来

2008年9月,红帽收购了一家名叫Qumranet的以色列小公司,由此入手了一个叫做KVM的虚拟化技术(KVM,全称Kernel-based Virtual Machine,意为基于内核的虚拟机)。当时的虚拟化市场上主要以VMware为主,而KVM只是在Ubuntu 等非商用发行版上获得了一些关注。 2009年9月,红帽发布其企业级Linux的5.4版本(RHEL 5.4),在原先的Xen 虚拟化机制之上,将KVM添加了进来。 2010年11月,红帽发布其企业级Linux的6.0版本(RHEL 6.0),这个版本将默认安装的Xen虚拟化机制彻底去除,仅提供KVM虚拟化机制。 2011年初,红帽的老搭档IBM找上红帽,表示KVM这个东西值得加大力度去做。于是到了5月,IBM和红帽,联合惠普和英特尔一起,成立了开放虚拟化联盟(O pen Virtualization Alliance),一起声明要提升KVM的形象,加速KVM投入市场的速度,由此避免VMware一家独大的情况出现。联盟成立之时,红帽的发言人表示,“大家都希望除VMware之外还有一种开源选择。未来的云基础设施一定会基于开源。……我们想要营造一个小厂商们可以轻松加入的生态环境。” 于是,开放虚拟化联盟红红火火的成立了。从5月到8月这短短3个月间,开放虚拟化联盟的成员已经增加到将近300个,联盟发展的速度十分可观。IBM现在全线硬件都对红帽Linux和KVM进行了大量的优化,有60多名开发者专门开发KVM 相关的代码。 原本采用Xen技术的红帽,为什么会想要再去搞一个KVM?而在虚拟化方面一直以来和Vmware、思杰、微软都有着紧密合作的IBM,为什么会对红帽的KVM展现出这样大的兴趣?这一切,还需要从整个虚拟化,乃至云计算市场的发展说起…… 虚拟化发展简史 虚拟化技术最早出现在大型机时代。上世纪60年代,IBM开始在其CP-40大型机系统中尝试虚拟化的实现,后来在System/360-67中采用,并衍生出VM/CMS到后来的z/VM等产品线。大型机上的虚拟化技术在之后20多年的发展中愈发成熟,但随着小型机以及x86的流行,大型机在新兴的服务器市场中已经失去了影响力。 由于处理器架构的不同,在大型机上已经成熟的虚拟化技术却并不能为小型机及 x86所用。直到2001年,VMware发布了第一个针对x86服务器的虚拟化产品。之后的几年间,英国剑桥大学的一位讲师发布了同样针对x86虚拟化的开源虚拟化项目Xen,并成立XenSource公司;惠普发布了针对HP-UX的Integrity虚拟机;Sun跟Solaris 10一同发布了同时支持x86/x64和SPARC架构的Solaris Zone;而

国内外虚拟现实技术发展现状和发展趋势的技术报告

国内外虚拟现实技术发展现状和发展趋势的技术报告 一. 国内外虚拟现实几种主流技术的介绍 VRML技术 虚拟现实技术与多媒体、网络技术并称为三大前景最好的计算机技术。自1962年,美国青年(Morton Heilig),发明了实感全景仿真机开始。虚拟现实技术越来越受到大众的关注。以三个I,即Immersion沉浸感,Interaction交互性,Imagination思维构想性,作为虚拟现实技术最本质的特点,并融合了其它先进技术。在国际互联网发展迅猛的今天,具有广泛的应用前景。重大的发展过程如下: VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0标准。VRML1.0可以创建静态的3D景物,但没有声音和动画,你可以在它们之间移动,但不允许用户使用交互功能来浏览三维世界。它只有一个可以探索的静态世界。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph'96上公布通过了规范的VRML2.0标准。它在 VRML1.0的基础上进行了很大的补充和完善。它是以SGI公司的动态境界Moving Worlds提案为基础的。比 VRML1.0增加了近 30个节点,增强了静态世界,使3D场景更加逼真,并增加了交互性、动画功能、编程功能、原形定义功能。 1997年12月VRML作为国际标准正式发布,1998年1月正式获得国际标准化组织ISO批准(国际标准号ISO/IEC14772-1:1997)。简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。但它这意味着VRML已经成为虚拟现实行业的国际标准。 1999年底,VRML的又一种编码方案X3D草案发布。X3D整合正在发展的XML、JAVA、流技术等先进技术,包括了更强大、更高效的3D计算能力、渲染质量和传输速度。以及对数据流强有力的控制,多种多样的交互形式。 2000年6月世界web3D协会发布了VRML2000国际标准(草案),2000年9月又发布了VRML2000国际标准(草案修订版)。预计将在2002年,正式发表X3D标准。及相关3D浏览器。由此,虚拟现实技术进入了一个崭新的发展时代。 Wed3D协会其组织包括各种97家会员公司。主要公司如下: Sun、Sony、Hp、Oracle 、Philips 、3Dlabs 、ATI 、3Dfx 、Autodesk /Discreet、ELSA、Division、MultiGen、Elsa、NASA、Nvidia、France Telecom等等。 其中以Blaxxun和ParallelGraphics公司为代表,它们都有各自的VR浏览器插件。并各自开发基于VRML标准的扩展节点功能。使3D的效果,交互性能更加完美。支持MPEG,Mov、Avi等视频文件, Rm等流媒体文件,Wav、Midi、Mp3、Aiff等多种音频文件,Flash动画文件,多种材质效果,支持Nurbs曲线,粒子效果,雾化效果。支持多人的交互环境,VR眼镜等硬件设备。在娱乐、电子商务等领域都有成功的应用。并各自为适应X3D的发展,以X3D为核心,有Blaxxun3D 等相关产品。在虚拟场景,尤其是大场景的应用方面,以VRML标准为核心的技术具有独特的优势。相关网址如下:https://www.doczj.com/doc/e610590343.html, , https://www.doczj.com/doc/e610590343.html,

深信服服务器虚拟化-技术白皮书

深信服服务器虚拟化产品技术白皮书 深信服科技

声明 市深信服电子科技所有,并保留对本文档及本声明的最终解释权和修改权。 本文档中出现的任何文字叙述、文档格式、插图、照片、方法、过程等容,除另有特别注明外,其著作权或其它相关权利均属于市深信服电子科技。未经市深信服电子科技书面同意,任何人不得以任何方式或形式对本文档的任何部分进行复制、摘录、备份、修改、传播、翻译成其他语言、将其全部或部分用于商业用途。 免责条款 本文档仅用于为最终用户提供信息,其容如有更改,恕不另行通知。 市深信服电子科技在编写本文档的时候已尽最大努力保证其容准确可靠,但市深信服电子科技不对本文档中的遗漏、不准确、或错误导致的损失和损害承担责任。 信息反馈 如果您有任何宝贵意见,请反馈: 信箱:省市学苑大道1001号南山智园A1栋邮编:518055 电话:09 传真:09 您也可以访问深信服科技:https://www.doczj.com/doc/e610590343.html,获得最新技术和产品信息

缩写和约定 英文缩写英文全称中文解释 Hypervisor Hypervisor 虚拟机管理器(和VMM同 义) VMM VMM Virtual Machine Manager 虚拟机监视器 HA HighAvailability 高可用性 vMotion vMotion 实时迁移 DRS Distributed Resource Scheduler 分布式资源调度程序 FC Fibre Channel 光纤通道 HBA Host Bus Adapter 主机总线适配器 RAID Redundant Arrays of Independent Disks 磁盘阵列 IOPS Input/Output Operations Per Second 每秒读写(I/O)操作的次数VM Virtual Machine 虚拟机 LUN Logical Unit Number 逻辑单元号

云计算虚拟化技术的发展与趋势

第8卷第21期黑龙江科学V ol. 8 2017 年11 月HEILONGJIANG SCIENCE November 2017 云计算虚拟化技术的发展与趋势 唐明双 (长春工程学院,长春130012) 摘要:介绍了虚拟化技术和主流虚拟化平台, 对虚拟化平台应对的不同安全问题进行研究, 对虚拟化平台的安全现状与安全威胁的 进行分析,虚拟平台存在的不足之处, 提出一些建议,参考。 关键词:云计算; 云 ; 虚拟化;漏洞; 虚拟化平台 中图分类号:TP391.9 文献标志码:A文章编号:1674 -8646(2017)21 -0118 -02 Development and trend of cloud computing virtualization technology TANG Ming-shuang (Changchun Institute of Technology,Changchun 130012,China) Abstract:This paper introduces the virtualization technology and the mainstream virtualization platforrm,studies the different security problems that the virtualization platform deals with,analyzes the security status quo of the virtualization platform and the development trend of security threats,discusses the shortcomings of the virtual platform,and puts forward some suggestions for reference. Key words:Cloud computing;Cloud security;Virtualization technology;Security vulnerability%Virtualization platform 1虚拟化技术 虚拟化技术 源映射,将其作为虚拟源,使其 个共享 让多个程度或软件 的计算资源。通过客户的要求来进行动态调整的虚拟化计算资源,以减少对资源的浪费,减少管理成 本,且这个虚拟化的平台还能使每个虚 享有整个硬件资源。 虚拟技术通常分为全虚拟化和半虚拟化两部分,全虚拟化有着 的性,可 增 件的复杂度和较大的损失。半虚化则需要的操作系统进行改动,修改过后,接近其物理机的性能。这 两个虚拟化技术的基本结构如图1所示。,月艮 器虚拟化平台 的有vSphere和KVM等。 1.1 vSphere vSphere是一种面向企业及应用的服务器虚拟化 平台,其核心的组件包括VMwae ESX/ESX i,该服务 虚拟化平台支持全虚拟化和半虚拟化。但由 Server和Hypervisor占用的资源较多,而且大部分都以 全虚拟化 体,因,它的性能 。 1.2 KVM KVM利用QEMU设备中的虚拟化进行全虚拟化, 收稿日期:2017 -09 -22 作者简介:唐明双(1964 -),男,副教授,本科。 应用程序应用程序 客户操作系统客户操作系统 虚拟硬件虚拟硬件 虚拟机监视器(VMM/Hypervisor) 硬件(CPU、内存、硬盘等) (a)全虚拟化 应用程序应用程序 客户操作系统客户操作系统 虚拟硬件虚拟硬件 宿主机虚拟机监视器 操作系统(VMM) 硬件(CPU、内存、硬盘等) (b)半虚拟化 图1虚拟化平台的两种基本结构 Fig. 1Two basic structures of virtualization platform 而且能 个硬件平台。近几年来,众多Linux 的发者都 研究 ,其发展态势近年非常可观。 2虚拟化平台构成的安全威胁及必要防范2. 1虚拟化平台存在的安全威胁 当前虚拟化平台的部署应用来看,虚化平台 还存 性问题,其 出的表现为以下几点:第一,虚 的逃逸。所谓的虚 逃逸,是指在通常情况下,个虚拟化平台上的 虚 ,必然会出现相 视、相 彼 程的情况, 118

相关主题
文本预览
相关文档 最新文档