当前位置:文档之家› 氯乙酰氯

氯乙酰氯

氯乙酰氯
氯乙酰氯

1、物质的理化常数

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:对眼睛、皮肤粘膜和呼吸道有强烈的刺激作用。吸入可能由于喉、支气管的痉挛、水肿、炎症、化学性肺炎、肺水肿而致死。中毒表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心、呕吐。

二、毒理学资料及环境行为

急性毒性:LD50120mg/kg(大鼠经口);LC501000ppm,4小时(大鼠吸入)

危险特性:受热或遇水分解放热,放出有毒的腐蚀性烟气。具有较强的腐蚀性。

燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢。

3.现场应急监测方法:

4.实验室监测方法:

气相色谱法《化工企业空气中有害物质测定方法》,化学工业出版社

5.环境标准:

美国车间卫生标准 0.23mg/m3

6.应急处理处置方法:

一、泄漏应急处理

疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷雾状水,减少蒸发。用沙土、干燥石灰或苏打灰混合,然后收集运至废物处理场所处置。大量泄漏:利用围堤收容,然后收集、转移、回收或无害处理后废弃。

废弃物处置方法:把废料放入碳酸氢钠溶液中,再用水冲稀排入下水道。

二、防护措施

呼吸系统防护:可能接触其蒸气或烟雾时,必须佩带防毒面具或供气式头盔。紧急事态抢救或逃生时,建议佩带自给式呼吸器。

眼睛防护:戴化学安全防护眼镜。

防护服:穿工作服(防腐材料制作)。

手防护:戴橡皮手套。

其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。保持良好的卫生习惯。

三、急救措施

皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。若有灼伤,就医治疗。

眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。必要时进行人工呼吸。就医。

食入:患者清醒时立即漱口,给饮牛奶或蛋清。就医。灭火方法:干粉、砂土、二氧化碳、泡沫。禁止用水。

磺酰氯合成法

磺酰氯合成法

目录 1. 前言 3 2. 芳香磺酰氯的制备 3 (3) (4)

1. 前言 磺酰氯是有机化学中非常重要的一类化合物,它们可以作为重要的中间体进行修饰。比如,同胺类化合物作用生成的磺胺类药物是优良的化学治疗剂,开始应用于20世纪30年代。它们能抑制多种细菌,如链球菌、葡萄球菌、肺炎球菌、脑膜炎球菌、痢疾杆菌等的生长和繁殖,因此常用以治疗由上述细菌所引起的疾病。高碳烷基磺酸钠类化合物则是优良的合成洗涤剂。 磺酰氯主要分为脂肪族磺酰氯和芳香族磺酰氯。芳香磺酰氯的来源有以下几 COOH F COOH F S O O Cl S O Cl O HO 如果芳环上存在至钝基团,像羧基等,直接氯磺化的温度要提的比较高,要达到100多度。1 COOH Br ClSO3H 140 o C COOH ClO2S

当体系因为位阻,取代基定位效应劣势等等不能直接完成氯磺化时,就可以选择分两步走,先引入磺酸基团。再转变为磺酰氯。 2. 1. 1芳香环磺化反应示例: H N2HOSO Cl H N O SO2Cl ++ HCl H2SO4 ice be 2. 2. 1芳香磺酸的制备 芳香磺酸的制备有几种办法,磺化,有机金属试剂同三氧化硫加成,Sandermeyer法合成芳香磺酸。这几种合成芳香磺酸的方法也是各有特色,针对不同的底物也可有不同的选择。磺化是对芳环体系直接的引入磺酸基团。想把芳卤转变成芳香磺酰基团时,就可以考虑用有机金属试剂置换卤素后用三氧化硫处

理即可以得到芳香磺酸。Sandermeyer法则提供了由芳胺基团转变为芳香磺酸的一条途径。 2. 2. 1. 1磺化 芳烃的磺化通常采用浓硫酸或含有5%-20%三氧化硫的发烟硫酸。磺化反应是一可逆反应,欲得良好产率的磺酸,必须使用过量的磺化剂或者不断移去生成的水。对于较难磺化的芳烃可采用三氟化硼,锰盐,汞盐,矾盐做催化剂。苯在室温下可用浓硫酸磺化生成苯磺酸2;而在70-90o C磺化则生成间苯二磺酸,产 例:萘的磺化也有类似情况。低温,小于80o C磺化,主要生成α-萘磺酸,这时由动力学控制,一旦达到160 o C 的反应温度,主要产生β-萘磺酸。这时由热力学控制7。

全氟辛酸相关理化性质

全氟辛酸相关理化性质 全氟辛酸(PFOA)是全氟化合物中的一种有机酸,是聚四氟乙烯化工产品的原材料,有独特的表面防水活性,耐高温抗氧化。研究证明PFOA是啮齿动物的致癌剂。PFOA是引起环境污染的重要全氟化合物。全氟辛酸主要被用来防水和抗污,很难从环境中降解,有可能通过食物、空气和水进入人体。 全氟辛酸具有低表面张力,在水中能完全解离与强氧化剂及还原剂不起反应。有较高界面活性,与纯碱反应生成盐;与伯醇、仲醇反应生成酯。加热至250°C 时分解,并放出有毒气体。蒸气对眼睛、粘膜及皮肤有刺激性。闪点:189-192 稳定性:具有很高的稳定性,由于氟具有最大的电负性(-4.0),使得碳氟键具有强极性,是自然界中键能最大的共价键之一(键能大约460 kJ?mo1-1)。 酸性:全氟辛酸是一种有机强酸,浓度为1 g?L-1时,pH为2.6,pKa值为2.5。溶解性:与其他卤代化合物的相分配行为不同,全氟烷基不但疏水而且疏油,因此一些全氟化合物与碳氢化合物和水混合时会出现三相互不相溶的现象;羧基、磺酸基、铵基等带电基团的引入,又赋予其一定亲水性和表面活性,使得PFOA 比相应的烃类表面活性剂的表面张力要小。 全氟辛酸 - 提纯方法 在电解氟化法制备全氟辛酸生产工艺中,对全氟辛酸粗体进行提纯的方法,它是以辛酰氯为原料电解氟化得到电解液,经水解、硫酸酸化分离出沉淀物后得到全氟辛酸粗体,再向全氟辛酸粗体中加入适量的双氧水将其中含-OH和-Cl基团的杂质氧化成羧酸,静置后分离出母液,再用去离子水清洗母液,加入硫酸控制母液pH值为4~5,静置分离出清洗介质水后,将洗净的母液蒸馏得到全氟辛酸产品。 该方法主要将杂质处理成低碳性直链型全氟低碳脂肪酸,形成的是低沸物,因此它们沸点与全氟辛酸相差比较远,在后续的蒸馏过程中非常容易地有效分离。进入到环境中后,主要存在于水体中,部分会吸附在沉积物和有机物上。[全氟辛酸 - 危害性 环境危害 PFOA进入大气环境有2种途径:(1)含氟化合物的降解,(2)PFOA直接排放

酰氯的制备方法

酰氯是一种重要的羧酸衍生物,在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。酰氯是最活泼的酰基化试剂,极限结构的共振杂化体。 这种共振效应稳定了整个分子,也加强了羰基碳原子与离去基团的键。共振效应是一种稳定效应,它依赖于成键原子轨道的交盖,酰氯受这种共振的影响可能是最小的,因为这种共振需要碳原子的2p轨道与氯原子的3p轨道交盖,这两种轨道的大小不同,它们之间的交盖不大,对Cl 来说,结构(Ⅱ)的贡献不大,酰氯由于共振影响而受到的稳定作用是最小的,因此,酰氯是最活泼的酰基化试剂。在一些羧酸不能进行或进行非常缓慢的反应中将羧酸制成酰氯使反应活性和产率大大提高。 目前,制备酰氯的方法最常用的SOCl2,三氯化磷,五氯化磷,三光气等,本文对几种方法进行论述。 1二氯亚砜法 1.1二氯亚砜在酰氯制备中的应用 脂肪酸(包括不饱和脂肪酸)芳香酸,有机磺酸和取代酸(如氨基酸和卤代酸等)在催化剂存在下均能与氯化亚砜生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中氯化亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯。 (1)三甲基乙酸在己内酰胺催化下与氯化亚砜反应生成三甲基乙酰氯,产率96%。 (CH3)3CCOOH→(SOCl2己内酰胺)→(CH3)3COCl (2)对(间)苯二甲氯化亚砜酸和氯化亚砜反应制得对(间)苯二甲酰氯。 这两种产品主要用于有机合成,是目前广泛使用的增塑剂对苯二甲酸二异辛脂(DOTP)和邻苯二甲酸二异辛酯的合成原料。 (3)邻氯苯甲酸和氯化亚砜反应生成邻氯苯甲酰氯。 该产品主要用于有机合成以及医药,染料中间体的合成。 (4)用丁(庚、辛、癸)酸和氯化亚砜反应制得丁(庚、辛、癸)酰氯,用十六碳酸和氯化亚砜反应制得十六碳酰氯,这4种产品常用于医药中间体的合成。 CH3(CH2)n COOH→(SOCl2)→CH3(CH2)n COCl n=4-20 (5)硬脂酸和氯化亚砜反应制得的硬脂酸酰氯可用于合成护肤品,双硬脂酸曲酸脂和制备造纸工业的中性施胶剂——烷基烯酮二聚体(AKD)。 (6)有机磺酸在催化剂存在下与氯化亚砜反应一般生成磺酰氯也可由有机磺酸钠直接与氯化亚砜反应生成磺酰氯。 1.2氯化亚砜在制备酰氯中的优、缺点 利用氯化亚砜制备酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他均为气体,往往不需提纯即可应用,纯度好,产率高。如果所生成酰氯的沸点与氯化亚砜的沸点相近,与氯化亚砜不宜分离;另外此方法氯化亚砜用量大,生产成本高,且设备腐蚀严重。 2三氯化磷法 (1)丙酸与三氯化磷反应生成丙酰氯,反应式如 下: CH3CH2COOH→(PCl3)→CH3CH2COCl 丙酰氨主要用于合成抗癫痫药甲妥因、利胆醇、抗肾上腺素药甲氧胺盐酸盐,在有机合成中用作丙酰化试剂。 (2)月桂酸与三氯化磷反应生成月桂酰氯,反应如下: 3C11H23COOH+PCl3→3C11H23COCl+H3PO3 本品用于合成过氧化十二酰,月桂酰基多缩氨基酸钠。 (3)油酸与三氯化磷反应制得油酰氯,反应如下: CH3(CH2)7(CH2)7COOH PCl3CH3(CH2)7(CH2)7COCl >C=<→>C=C< H H NaOH H H 本品主要用于有机合成中间体,用它可以制得净洗剂LS(C25H40NnaO5S),204洗涤剂等。 用三氯化磷制备酰氯时,适用于制备低沸点酰氯,因反应中生成的亚磷酸不易挥发,可方便蒸出酰氯。

二萘酚资料

第二章2-萘酚市场分析及预测 2.1 项目产品概述 2.1.1 项目2-萘酚产品简介 2-萘酚又名β-萘酚、乙萘或2-羟基萘,分子式:C10H8O,是重要的有机原料和染料中间体,可用于制备吐氏酸、丁酸、2-萘酚--甲酸,也可用于制备防老剂丁、DNP及其它防老剂、有机颜料和杀菌剂等。 2.1.2项目产品2-萘酚应用 1、在染料及颜料工业中的应用 染料及颜料中间体是我国2 - 萘酚最大的消费领域,其重要原因是染料中间体生产已在进行世界性的转移,如2, 3酸、J 酸、γ酸、R酸、色酚AS等都是我国重要的中间体出口产品,出口量占国内总产量一半以上。除了用于合成染料及颜料中间体, 2 - 萘酚还可以作为偶氮基部分,和重氮化合物反应制得染料。 (1)2, 3酸 2, 3酸化学名2 - 羟基- 3 - 萘甲酸,其合成方法为2 - 萘酚与氢氧化钠反应,减压脱水,得到2 - 萘酚钠,然后和CO2 反应得到2 - 萘酚和2, 3酸钠盐,除去2 - 萘酚,酸化,得到2, 3酸。目前其合成方法主要有固相法和溶剂法,目前溶剂法是发展的大趋势。 2, 3酸为偶合组分的色淀颜料,这类颜料的合成方法是先将重氮组分制成重氮盐,和2, 3酸偶合,然后用碱金属和碱土金属的盐可以将其转化为不溶性的色淀染料。2, 3酸色淀颜料的主要色 谱为红光。如: C. I.颜料红57∶1, C. I. 颜料红48∶1等。 2, 3酸大量用于色酚系列冰染染料的合成, 在1992年《染料索引》上,以2, 3酸合成的色酚有28个。色酚AS系列为偶合组分的偶氮颜料,这类颜料的合成方法是先将重氮组分制成重氮盐,和色酚AS系列衍生物偶合,如重氮组分的芳环上只含烷基、卤素、硝基、烷氧基等基团,那么反应后得到普通的色酚AS系列为偶合组分的偶氮颜料,如重氮组分的芳环上还含有磺酸基,和色酚AS系列衍生物偶合,然后用碱金属和碱土金属的盐可以将其转化为不溶性的色淀染料。 (2)吐氏酸 吐氏酸化学名2 - 氨基萘- 1 - 磺酸,其合成方法为2 - 萘酚磺化得到2 - 萘酚- 1 - 磺酸,在氨化得到2 - 萘胺- 1 - 磺酸钠,然后酸析得到吐氏酸。吐氏酸经磺化得到磺化吐氏酸(2 - 萘胺- 1, 5 - 二磺酸) 。 吐氏酸及衍生物可用于制造色酚AS - SW、活性红K1613、立索尔大红、活性艳红K10B、活性艳红KE- 7B 等染料,以及有机紫红等颜料。 (3)J酸 J酸化学名2 - 氨基- 5 - 萘酚- 7 - 磺酸,其合成方法为吐氏酸经过高低温磺化,在酸性介质中水解盐析得到2 - 萘胺- 5, 7二磺酸,再中和、碱熔、酸化得到J酸。J酸再反应得到N - 芳基J酸、双J酸、猩红酸等J 酸衍生物。

磷酰氯合成方法研究进展_刘波

133 磷酰氯合成方法研究进展 刘 波1,王 博2 (1.环境保护部西北核与辐射安全监督站,甘肃兰州 730020; 2. 海南大学化工学院,海南海口 570228) 摘要:磷酰氯类化合物是一类重要的化学中间体,用途十分广泛。就近年来合成磷酰氯方法的进展 情况而言,寻找一种经济、环境友好、容易操作的合成工艺仍是未来的研究方向的。 关键词:磷酰氯;合成;进展 磷酰氯类化合物是一类重要的化学中间体,具有十分广 泛的用途,比如在杀虫剂、抗生素、杀真菌剂、延缓剂、润 滑剂、阻燃剂等的合成中有着非常重要的用途。同时磷酰氯 也是合成各种生物活性的化合物如氨基磷酸酯、膦酸盐、烯 醇磷酸酯、联胺磷酸酯的关键中间体。下面就磷酰氯类化合 物近年来的合成方法做一些总结。 1 酰化试剂与磷酸酯类化合物反应 1.1 氯化亚砜做为酰化试剂制备磷酰氯 常温下使用氯化亚砜和亚磷酸三乙酯或亚磷酸二乙酯 进行反应生成磷酰氯,如(图1)所示。 图1 磷酸酯与氯化亚砜的反应 1.2 氯气作为酰化试剂 Mueller, Eugen等 [1]在此基础上用环己烷做催化剂,室 温下反应得到磷酰氯,收率在80%左右,同时生成加成产物 (图2a)。2006年施介华等 [2]在室温下用氯气反应得到相应 的磷酰氯,收率为93%左右(图2b)。 图2 磷酸酯与氯化亚砜进行反应 1.3 氯代尿酸类作为酰化试剂 2005年,Acharya, J.,王博等[3]用三氯异氰尿酸和亚磷 酸二烷基酯类高效率地合成磷酰氯。后来,Shakya,P. D. 等[4]报道了一篇关于酰氯合成的方法的研究论文,在该论文 中同样采用氯代尿酸类化合物作为酰化试剂(图3)。 图3 氯代尿酸类化合物与磷酸酯反应 1.4 磺酰氯类化合物做催化作用下氯气做酰化试剂 用磺酰氯类化合无做催化剂的磷酰化反应不常见,且该 反应在-78℃进行反应,条件苛刻,收率不高(图4)。 图4 烯烃和磺酰氯催化下氯气与三磷酸酯反应 1.5 四氯化碳做为酰化试剂参与的磷酰化反应 四氯化碳和亚磷酸二乙酯或亚磷酸三乙酯在无催化剂 的情况下反应直接制备磷酰氯的反应(图5a)。同样在缚酸 剂三乙胺的存在下,有无催化剂都能进行反应得到磷酰氯, 该反应较无三乙胺存在的情况下更彻底(图5b)。 图5 四氯化碳参与的磷酰化反应 2010年第12期 2010年12月 化学工程与装备 Chemical Engineering & Equipment

淄博某化工试车方案 2 正文

300吨/年塑料助剂改、扩建项目试生产方案 淄博市临淄红泰化工有限公司 二零一三年一月

300吨/年塑料助剂改、扩建项目试生产方案 一、试车的目的和依据 1、试车目的及依据 根据工艺设计打通全部装置的生产流程,进行各工序(设备设施)之间首尾衔接的运行,以检验设计、设备质量、施工质量、安全设施、工艺技术等除经济指标外的全部性能,并生产出合格产品。 2、编制依据 1.《中华人民共和国安全生产法》 2.《危险化学品安全管理条例》 3.《安全生产许可证条列》 4.《山东省安全生产条列》 5.《危险化学品建设项目安全监督管理办法》(国家安监总局令第45号)6.《危险化学品从业单位安全标准化通用规范》(AQ3013-2008) 7.《山东省化工装置安全试车工作规范》(试行)、《山东省化工装置安全8.试车十个严禁》(试行) 9.《山东省生产经营单位安全生产主体责任规定》 二、建设项目概况 淄博市临淄红泰化工有限公司注册地址为淄博市临淄区凤凰镇侯家屯村南,成立于1999年2月,注册资金306万元,系私营企业,主要生产硫酸锆、碳酸锆、氧氯化锆、塑料助剂等。公司厂区总占地面积11760㎡,公司设有两个分厂,其中北厂占地面积5460㎡,位于侯家屯309国道以南,

主要生产硫酸锆、碳酸锆;南厂占地约6300㎡,位于淄博齐鲁化学工业区,主要生产氧氯化锆、塑料助剂等。本项目是对南厂区助剂车间南侧车间进行改造,利用闲置厂房及设施生产5个塑料助剂品种,生产规模为300吨/年。新增加的5个产品为二叔丁基过氧化物(DTBP)、过氧化苯甲酸叔丁酯(TBPB)、过氧化-2-乙基己酸叔丁酯(TBPEH)、双(3,5,5-三甲基己酰)过氧化物(TMHP)、过氧化二碳酸双(2-乙氧基)己酯(EEP)。 该项目由山东润昌工程设计有限公司设计,由山东省XX安装有限公司施工建设。2012年2月开工建设,2012年7月20日已建成,2012年10月1日拟试生产。 (一)工艺流程简述 1、二叔丁基过氧化物 将称量准确的叔丁醇950公斤用打料泵输入于清洗干净的反应釜中,开冷冻盐水降温至低温,缓慢滴加计量准确的硫酸680公斤,生成硫酸叔丁醇,温度保持18℃以下,而后滴加叔丁基过氧化氢1220公斤,进行过氧化反应。反应1.5小时后,停止搅拌进行分层处理,温度保持18℃以下。而后将水相排入污水池,有机相至干燥釜内加入硫酸镁25公斤进行干燥、过滤后,再经精虑釜精虑后包装,储存于冷库中。 反应化学方程式如下: C4H10O+H2SO4=C4H9OSO3H+H2O C4H9OSO3H+C4H10O2=C8H18O2+H2SO4 二叔丁基过氧化物生产工艺流程方框图:

辛酰氯的生产工艺

辛酰氯的生产工艺 1.辛酰氯简介 酰氯是指含有-C(O)Cl官能团的化合物,属于酰卤的一类,是羧酸中的羟基被氯替换后形成的羧酸衍生物。酰氯在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。 辛酰氯是又称正辛酰氯,别名氯化正辛酰、辛酰基氯、辛基酰氯,其分子式为C7H15COCl,分子结构如下图所示: 英文名称 Octanoyl chloride 英文别名Capryloyl chloride; n-Octanoyl chloride,(Capryloyl chloride); n-Capryly chloride; n-Capryloyl Chloride; octanoic acid, chloride; octanoic chloride; OCTANOYL CHLORIDE (OTCL) CAS NO. 111-64-8 EINECS 203-891-6 分子式 C8H15CLO 分子量 162.66

物理化学性质密度0.953熔点-63°C沸点195°C折射率1.434-1.436闪点75°C水溶性REACTS 产品用途用作液晶中间体,也用于橡胶工业 辛酰氯作为一种重要的有机合成中间体,在医药、农药、化工等领域起着非常重要的作用。 2.辛酰氯的生产工艺 目前辛酰氯的制备方法有二氯亚砜法,光气法、双光气法、三光气法、三氯化磷法等。 2.1二氯亚砜法 工艺流程简述: 正辛酸在催化剂存在下与二氯亚砜(化学式SOCl2,又称氯化亚砜、亚硫酰氯)生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中二氯亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯:CH3(CH2)6COOH + (SOCl2) →CH3(CH2)6COCl + SO2 + HCl 经反应制得辛酰氯混合物,经精馏得到成品辛酰氯,尾气经水洗中和后排放。 用二氯亚砜制备辛酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他(二氧化硫和氯化氢)均为气体,容易分离,往往不需提纯即可应用,纯度好,产率高,产品含氯量可达99.5%以上。目前工业生产中大部分厂家采用二氯亚砜法。但此方法氯化亚砜用量大,且设备腐蚀严重。 2.2光气法 光气法工艺流程

苯甲酰氯的合成方法大全综述

苯甲酰氯的合成方法 摘要叙述了苯甲酰氯的物理性质和化学性质,介绍了实验室中合成苯甲酰氯和工业生产苯甲酰氯的方法,探讨了苯甲酸与三氯苄在三氯化铁催化剂作用下反应制备苯甲酰氯时影响苯甲酰氯产率的主要因素, 确定了最适宜的反应条件,即:苯甲酸与三氯苄配比以1:1为最佳,反应温度控制在110℃左右时为宜,使用三氯化铁为催化剂苯甲酰氯的产率最高,催化剂的用量以0.25 % 为宜,反应时间以60分钟为最好。 关键词苯甲酰氯;合成;苯甲酸 Synthesis Methods of Benzoyl Chloride Abstract Describes the physical and chemical properties of benzoyl chloride, introduced the methods of laboratory synthesis of benzoyl chloride and industrial production of benzoyl chloride, discussed the main factors effecting benzoyl chloride production in reaction preparation of benzoyl chloride of benzoic acid and benzyl trichloride under the action of catalyst of ferric chloride, determined the optimum reaction conditions, that is:benzoic acid and benzyl trichloride ratio of 1:1 is the best, reaction temperature control at 110 degrees Celsius is appropriate, the rate of benzoyl chloride is highest when using ferric chloride as catalyst, the appropriate amount of catalyst is 0.25 %, the reaction time is 60minutes for the best. Keywords Benzoyl chloride; Synthesis; Benzoic acid 1 前言 苯甲酰氯是重要的有机合成中间体,广泛地应用于农药、医药、香料和助剂等的合成中。苯甲酰氯还是重要的苯甲酰化和苄基化试剂。苯甲酰氯主要用于生产过氧化苯甲酰、二苯酮类化合物、苯甲酸苄酯等重要化工原料。 2 苯甲酰氯的物理性质 苯甲酰氯是一种无色透明液体。有强烈的刺激气味。熔点- 1. 0 ℃,沸点197. 2 ℃,相对密度 1. 2120 (20 ℃)。苯甲酰氯能够燃烧,遇水、氨水或乙醇逐渐分解成苯甲酸、苯甲酰胺或苯甲酸乙酯和盐酸。 3苯甲酰氯的化学性质 苯甲酰氯较脂肪族酰氯稳定,但由于其中含有较活泼的氯,故决定了其化学活泼性很强,主要用作苯甲酰化剂。苯甲酰氯可以发生水解作用、还原反应、胺化反应、酯化反应、缩合反应、氯化反应等化学反应。 4苯甲酰氯的实验室合成法 目前常用的合成苯甲酰氯的方法主要有以下几种:

氯乙酰氯理化性质与质量指标

氯乙酰氯理化性质与质量指标 1.1 氯乙酰氯的基本概念 产品名称:氯乙酰氯,又称氯化氯乙酰、一氯乙酰氯、一氯代乙酰氯、氯化酰氯; 英文名称:chloroacetyl chloride ; 分子式:C2H2Cl2O; 分子量:112.94; C A S 号:79-40-9; 结构式: 图1.1 氯乙酰氯结构式 氯乙酰氯是一种无色透明液体,有刺激性气味,是重要的有机化工中间体,广泛应用于农药、医药、染料、萃取剂、灭火剂、润滑油添力口剂和聚合物改性剂等多个领域。 氯乙酰氯作为一种性能优良的酰化剂,目前用量最大的领域便是农药行业,采用氯乙酰氯替代传统的有机原料用于农药合成,可以大大提高产品收率和质量,减少污染,因此氯乙酰氯在农药行业中应用前景十分广阔。 国内氯乙酰氯工业级产品质量分数≥95% (医药用),≥80%(农药用)。 氯乙酰氯还可以衍生出几十个系列的精细化学品,近年来随着我国医药、农药工业的迅速发展,对氯乙酰氯的需求量越来越大,氯乙酰氯已成为近几年来需求发展最快的有机合成中间体之一。

1.2 氯乙酰氯的理化性质 氯乙酰氯为无色透明液体,有刺激性气味,分子式为C2H2Cl2O,分子量为112.94,熔点-22.5℃,沸点105~106℃,相对密度(水=1)1.417(20℃),折射率1.4530(20℃),能溶于苯、四氯化碳、醚和氯仿等。能溶于四氯化碳、氯仿。 表1.1 氯乙酰氯的理化性质表 产品名称氯乙酰氯;一氯代乙酰氯;氯化酰氯 英文名称chloroacetyl chloride 外观与性状无色透明液体,有刺激性气味。 熔点(℃) -22.5 沸点(℃) 107 相对密度(水=1)1.417(20℃) ;(空气=1)3.9 折射率 1.4530(20℃) 饱和蒸气压(kPa) 8.00(41.5℃) 溶解性溶于丙酮,可混溶于乙醚。 主要用途用于有机合成。 1.3 氯乙酰氯的包装、贮存、运输及其他注意事项 包装方法:氯乙酰氯产品一般采用200L聚乙烯桶包装,每桶净重250kg。或按客户要求进行包装。 运输注意事项:铁路运输时应严格按照铁道部《危险货物运输规则》中的危险货物配装表进行配装。起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与氧化剂、醇类、食用化学品等混装混运。运输时运输车辆应配备泄漏应急处理设备。运输途中应防曝晒、雨淋,防高温。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。 储存注意事项:氯乙酰氯储存于阴凉、干燥、通风良好的库房。远离火种、

摘 要:传统变性淀粉只有单一的亲水性质,淀粉的疏水改性成为该

淀粉的疏水酯化改性 罗发兴 黄 强 杨连生 李 琳 (华南理工大学轻工与食品学院,广东广州 510640) 摘 要:传统变性淀粉只有单一的亲水性质,淀粉的疏水改性成为该领域的研究热点之一,介绍了国内外烷基脂肪酸淀粉酯和烯基琥珀酸淀粉酯的研究现状及存在的问题。 关键词:淀粉;疏水酯化;烷基脂肪酸;烯基琥珀酸酐 前言: 传统的改性淀粉均在淀粉分子中引入亲水基团,加之淀粉本身的亲水性质,使产品只具单一的亲水性。在淀粉分子中引入亲油基团可使淀粉的性质得到明显改善,其应用范围也得到拓展,此类变性方法已成为目前国内外的研究热点。淀粉的疏水改性主要是在淀粉分子链中引入烷基脂肪酸或烯基琥珀酸基团,反应以酯化反应为主。产品在可降解包装材料,高级纸张,食品乳化稳定剂、阿拉伯胶替代品、食用香精、微胶囊壁材等高附加值领域具有广泛的应用。 1、烷基脂肪酸淀粉酯 合成烷基脂肪酸淀粉酯的方法有水媒法、溶剂法、熔融法等。水媒法先在脂肪酸甲酯和水解淀粉中加水,使体系均匀混合,充氮气保护防止产品氧化,在反应过程中把水蒸出,以利于脂肪酸淀粉酯的生成[1]。水媒法工艺相对简单易控制,不需使用大量有机溶剂,生产成本较低,但产物取代度低,使用范围有限。溶剂法是二甲基甲酰胺等有机溶剂在碱性催化剂存在下进行反应,由于体系含水率低,该法适合于制备各种不同取代度的淀粉酯,但该法需要使用较大量的有机溶剂,回收成本较高。熔融法在高温、高压下进行,反应不易控制。 目前,关于烷基脂肪酸淀粉酯的溶剂制备法研究较多,常用的溶剂包括吡啶、甲苯、二甲基甲酰胺和三己胺等[2]。其中最常用的是吡啶,它具有用量少,淀粉降解程度最小的优点,且有溶剂和催化剂的双重作用[3]。所采用的酸主要以酸酐或酰氯形式,其中酰氯对于制备烷基链的淀粉酯更有效[4]。到目前为止人们已经制备了不同碳链长度(C2~C18)的烷基脂肪酸淀粉酯[3-7]。以淀粉辛酸酯为例,其典型的制备过程[7]为:取干燥后的淀粉(直链19%,支链81%,湿含量<2%)2.5g置于双颈烧瓶中,然后加入15mL吡啶和适量的辛酰氯,充分搅拌,于115℃下反应3h。将产物冷却后用无水乙醇洗涤,干燥后得白色或淡黄色粉末即为淀粉辛酸酯。 为了研究吡啶在酯化反应中的作用,Praful 等[8]对谷类和小颗粒苋薯类淀粉丁二酸半酯的制备条件进行了详细研究,最佳优化条件是:在115℃下反应时间为5h ,淀粉与吡啶的比例为1:2,吡啶与淀粉的比例在该反应中起着重要的作用,对丁二酰基的含量和取代度(DS)的影响非常大。吡啶可以很

苯甲酰氯与氯乙酰氯分析方法的研究报告

苯甲酰氯与氯乙酰氯分析方法的研究报告 苯甲酰氯与氯乙酰氯是农药合成的重要化工原料,对其含量的分析一般采用气谱衍生法。但该法操作过程复杂,而且在本工艺中要求监测原料是否反应完全和在同一色谱条件对苯甲酰氯与氯乙酰氯的准确定量。在我们现在的实验条件下达不到这个要求,主要是在同一色谱条件下苯甲酸不出峰,现在的毛细管柱分析苯甲酰氯也不理想,需要非极性毛细管柱进行分析,苯甲酰氯与氯乙酰氯分离也不好。为此我们通过多次实验采用高效液相色谱衍生法对苯甲酰氯与氯乙酰氯进行了监测和定量分析。该方法是以甲醇加水做流动相,水以磷酸调pH值,ODS 反相柱分离,紫外波长检测器检测,外标法定量。同时在此条件下可监测反应终点,使苯甲酸、一氯甲苯、二氯甲苯、三氯甲苯、苯甲酰氯、氯乙酰氯都达到完全分离。该方法操作简单,分离彻底,灵敏度高,重现性较好,苯甲酰氯变异系数为0.12%,回收率为98.96%-101.38%,线性相关系数为0.9985。氯乙酰氯其精密度变异系数为0.32%,准确度回收率为三氯乙酰氯在99.15%-99.81%之间,线性相关系数为:0.9999,能够满足生产要求,是一种较为理想的实验方法。 1.实验部分 1.1仪器: PE高效液相色谱仪 检测器:LC-295 泵:PUMP-250 EASY2000数据处理工作站 色谱柱:VP-ODS 150×4.6mm 微量注射器:25μL 1.2试剂: 甲醇:优级纯 水:二次重蒸水脱气并过滤。 磷酸:分析纯

苯甲酰氯标准品:纯度99%;氯乙酰氯标准品:纯度99% 1.3色谱条件 柱温:室温 检测波长:230nm 流动相:甲醇:水=70:30,水以磷酸调pH值为2.8。 流速:0.6ml/min 进样量:10μL 主峰相对保留时间:苯甲酸4.5′;苯甲酰氯6.7′;一氯甲苯9.46′; 二氯甲苯12.04′;三氯甲苯25.91′;氯乙酰氯3.509′色谱图为: 1.4操作步骤: 1.4.1 标准溶液的制备 准确称取苯甲酰氯(氯乙酰氯)标准品0.20g左右(精确至0.0001g),置于50ml的容量瓶中,以甲醇定容,超声脱气待用。 1.4.2 样品溶液的制备 准确称取约含苯甲酰氯(氯乙酰氯)0.20g左右的试样(精确至0.0001g),置于50ml的容量瓶中,以甲醇定容,超声脱气待用。

有机化学-有机化工工艺学-试卷+答案

高等有机化工工艺学试题 一、 简要回答下述问题(5′×4=20′) 1. 简述一种硝基化合物制备氨基的方法。要求写出一个反应方程式。 2. 常用来保护氨基的三个基团的名称和结构? 3. 酰胺呈酸性还是碱性?能否进行烷基化反应,为什么? 4. Friedel-crafts 烷基化反应的特点? 二、标出下列反应条件 (2′×10=20′) OH Br ( )OH 2 、 O 2N Cl KF O 2N F KCl 3、 O 2N CHO methanol O 2 N CH 2OH 4. 3CO 2O COCH 3 5、 Br NO 2 6. H 3C CH 3 OH Br 2 H 3C CH 3 Br 7、 2 OH

8、 CH 3CO O COCH 3 9 、 OH HCOOH OCHO 10、 Cl O 2N KF F 2 KCl 三、写出下列反应的反应物(2′×10=20′) 1. 2. + 3.+ 4. + 5. + + 6.+ HOAc 34 H PO

+ (CH3CO)2O 7. RCOOH + 8. + 9. + 10. 四、写出下列反应的产物(2′×10=20′) 1、COOH Cl 2 + 3、 4、 +HCN 5、 34 H PO 24 H SO 3/POCl Py 3 AlCl 3H O Ni-Al/NaO ( ) Br 3 AlCl3 CH 3OH O ( ) Br2/PCl3 ( ) H2O ( ) CHO ( ) CH 3 CH 3 O NaOCl ( )

45095酰氯制备方法综述

酰氯制备方法综述 来源:中国化工信息网 2007年1月29日 酰氯是一种重要的羧酸衍生物,在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。酰氯是最活泼的酰基化试剂,极限结构的共振杂化体。这种共振效应稳定了整个分子,也加强了羰基碳原子与离去基团的键。共振效应是一种稳定效应,它依赖于成键原子轨道的交盖,酰氯受这种共振的影响可能是最小的,因为这种共振需要碳原子的2p轨道与氯原子的3p轨道交盖,这两种轨道的大小不同,它们之间的交盖不大,对Cl来说,结构(Ⅱ)的贡献不大,酰氯由于共振影响而受到的稳定作用是最小的,因此,酰氯是最活泼的酰基化试剂。在一些羧酸不能进行或进行非常缓慢的反应中将羧酸制成酰氯使反应活性和产率大大提高。 目前,制备酰氯的方法最常用的SOCl 2 ,三氯化磷,五氯化磷,三光气等,本文对几种方法进行论述。 1 二氯亚砜法 1.1 二氯亚砜在酰氯制备中的应用 脂肪酸(包括不饱和脂肪酸)芳香酸,有机磺酸和取代酸(如氨基酸和卤代酸等)在催化剂存在下均能与氯化亚砜生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中氯化亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯。 (1)三甲基乙酸在己内酰胺催化下与氯化亚砜反应生成三甲基乙酰氯,产率96%。 (CH 3) 3 CCOOH→(SOCl 2 己内酰胺)→(CH 3 ) 3 COCl (2)对(间)苯二甲氯化亚砜酸和氯化亚砜反应制得对(间)苯二甲酰氯。 这两种产品主要用于有机合成,是目前广泛使用的增塑剂对苯二甲酸二异辛脂(DOTP)和邻苯二甲酸二异辛酯的合成原料。 (3)邻氯苯甲酸和氯化亚砜反应生成邻氯苯甲酰氯。 该产品主要用于有机合成以及医药,染料中间体的合成。 (4)用丁(庚、辛、癸)酸和氯化亚砜反应制得丁(庚、辛、癸)酰氯,用十六碳酸和氯化亚砜反应制得十六碳酰氯,这4种产品常用于医药中间体的合成。 CH 3(CH 2 ) n COOH→(SOCl 2 )→CH 3 (CH 2 ) n COCl n=4-20 (5)硬脂酸和氯化亚砜反应制得的硬脂酸酰氯可用于合成护肤品,双硬脂酸曲酸脂和制备造纸工业的中性施胶剂——烷基烯酮二聚体(AKD)。 (6)有机磺酸在催化剂存在下与氯化亚砜反应一般生成磺酰氯也可由有机磺酸钠直接与氯化亚砜反应生成磺酰氯。 1.2 氯化亚砜在制备酰氯中的优、缺点 利用氯化亚砜制备酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他均为气体,往往不需提纯即可应用,纯度好,产率高。如果所生成酰氯的沸点与氯化亚砜的沸点相近,与氯化亚砜不宜分离;另外此方法氯化亚砜用量大,生产成本高,且设备腐蚀严重。

辛酰氯

辛酰氯 中文名称辛酰氯 辛酰氯 [1] 别名辛基酰氯英文名称Octanoyl chloride 英文别名Capryloyl chloride; n-Octanoyl chloride,(Capryloyl chloride); n-Capryly chloride; n-Capryloyl Chloride; octanoic acid, chloride; octanoic chloride; OCTANOYL CHLORIDE (OTCL) CAS NO. 111-64-8 EINECS 203-891-6 分子式C8H15CLO 分子结构图分子结构图3D模型分子量162.66 物理化学性质密度0.953熔点-63°C沸点195°C折射率1.434-1.436闪点75°C水溶性REACTS 产品用途用作液晶中间体,也用于橡胶工业危险品标志C:Corrosive; 风险术语R22:; R34:; 安全术语S25:; S36/37/39:; S45:; 辛酰氯的生产工艺目前辛酰氯的制备方法有二氯亚砜法,光气法、双光气法、三光气法、三氯化磷法等。二氯亚砜法工艺流程简述:正辛酸在催化剂存在下与二氯亚砜(化学式SOCl2,又称氯化亚砜、亚硫酰氯)生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中二氯亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯:CH3(CH2)6COOH + (SOCl2) → CH3(CH2)6COCl + SO2 + HCl 经反应制得辛酰氯混合物,经精馏得到成品辛酰氯,尾气经水洗中和后排放。用二氯亚砜制备辛酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他(二氧化硫和氯化氢)均为气体,容易分离,往往不需提纯即可应用,纯度好,产率高,产品含氯量可达99.5%以上。目前工业生产中大部分厂家采用二氯亚砜法。但此方法氯化亚砜用光气法光气法工艺流程将辛酸与催化剂二甲基酰胺混合,通光气反应,然后用氮气驱除反应生成的氯化氢和过量光气,精馏后,得到辛酰氯。DMF CH3(CH2)6COOH + COCl2 →CH3(CH2)6COCl + CO2 + HCl 光气是一种很好的酰化试剂,用光气制备辛酰氯产品含量高,收率高。但是光气是剧毒气体,在使用、运输及储存过程中具有很大的危险性,另外光气的成本相对较高。双光气法由于光气在生产中的缺点,80年代开发研制生产双光气(氯甲酸三氯甲酯)可替代光气应用于实验室和工业生产。CH3(CH2)6COOH + Cl-CO-OCCl3 →CH3(CH2)6COCl + HO-CO-OCCl3 虽然双光气在运输、储存和使用均较光气方便,安全。其作为一种剧毒,有刺激性气味的液体,其运输、储存仍然具有很大的危险性。三光气法三光气(双(三氯甲基)碳酸酯,BTC)熔点高,挥发性低,低毒性,即使在沸点也仅有少量分解,在工业上仅把它当一般毒性物质处理。三光气法制取辛酰氯所需要的条件十分温和,而

氯乙酰氯的生产现状及预测1

氯乙酰氯的生产现状及预测 3.1 国外氯乙酰氯生产现状分析 2001年,世界氯乙酰氯的总生产能力约为20万吨/年,生产主要集中在西方发达国家与地区,年产量超过10万吨。 2003年,世界氯乙酰氯的总生产能力约为23万吨/年,年产量约为16万吨。 近几年,世界氯乙酰氯的产能增长…… 目前,世界氯乙酰氯的总生产能力约为--万吨/年,生产主要集中在亚洲和西方发达国家与地区,年产量约为--万吨。主要生产企业有:……等。 表3.1 世界氯乙酰氯主要生产企业及产能统计表 氯乙酰氯无论采取什么路线生产,…… 3.2 我国氯乙酰氯生产现状分析 3.2.1 我国氯乙酰氯生产发展 我国从20世纪70年代开始氯乙酰氯的研究与生产,“八五”期间取得很大进展,生产能力、装置规模、生产技术都取得飞跃性发展。 80年代末期,国内仅有不到十家企业生产氯乙酰氯,而到1997年,国内报道有40余家企业建有装置,而且多为数百吨的氯乙酸三氯化磷氯化法装置。许多企业不具备生产能力,产品质量差,环境污染严重,造成大量资源浪费。 1990~2000年10年间,生产能力由2000吨/年上升到约2万吨/年,生产能力增加10倍,规模由起初的数百吨达到3000吨/年,正常生产厂20余家;…… 根据我们的调查,目前(2011年11月底),我国有氯乙酰氯生产装置的企业--余家(包含一些停产企业),…… 2006~2010年我国氯乙酰氯生产能力、产量、开工率情况见下表和图: 表3.2 2006~2010年我国氯乙酰氯生产能力、产量、开工率统计表

图3.1 2006~2010年我国氯乙酰氯产能、产量走势图 3.2.2 我国氯乙酰氯生产现状 我国曾有--多家氯乙酰氯生产企业,总生产能力超过--万吨/年。目前大型企业仅有-家:…… 表3.1 我国氯乙酰氯主要生产企业及产能统计表 除表中列出主要生产企业外,据报道还有许多小规模(小于300吨/年)和部分新建装置,如…… 3.2.3 我国氯乙酰氯市场竞争分析 近20年来,由于我国氯乙酰氯行业一直处于无序发展状态,……. 3.3 氯乙酰氯生产分析预测 氯乙酰氯是一种医药、农药中间体,…… 3.4 氯乙酰氯生产企业概况 泰兴市申龙化工有限公司 泰兴市申龙化工有限公司创建于2004年4月,是一家新型成长型化工生产企业,现有固定资产1.2亿元,占地面积9万平方米,员工总人数180人,其中有各类工程技术人员56人。目前建有16万吨三氯化磷、2万吨三氯氧磷、2万吨氯乙酰氯、1万吨双甘膦、2万吨亚磷酸及联产8万吨的盐酸。 宜都市友源化工有限公司 宜都市友源化工有限公司于2005年5月27日成立。宜都市友源实业有限公司于2005年5月成立。坐落于湖北宜都市工业园(宜都市陆城街办龙窝村)。主要从事氯苄产品、酰氯产品及延伸产品的研发生产。现已形成年产三氯甲苯10000吨,苯甲酰氯7000吨、氯乙酰氯5000吨的生产能力。….

氯乙酰氯市场预测

氯乙酰氯市场预测 2.1产品特性及用途 2.1.1产品特性 通用名称:氯乙酰氯 英文名称:chloroacetyl chloride 别名:氯化氯乙酰;一氯乙酰氯;二氯化乙酰 CA登记号:79-40-9 分子式:C2H2Cl2O 分子结构:Cl—CH2CO—Cl 分子量:113.0 物化性质:本品为无色或微黄色液体,有强烈的刺激性,与水、乙醇剧烈反应产生氯化氢,熔点-22.5℃,沸点105.5-106.5℃,相对密度1.47(25/20℃),折光率1.451(25℃),能溶于苯、四氯化碳、丙酮、醚和氯仿中。 毒性:对人的眼睛和皮肤具有刺激作用,能刺激上呼吸道发炎,引起窒息,造成气管和肺部损伤;进入眼里会损伤角膜,以致引起视力减退或失明;附着皮肤,会引起严重烧伤;其绝对毒性为二氯乙烷的2倍,比CC14大12.5倍,属一级腐蚀性物品,危规编号92012。包装使用玻璃瓶或陶瓷罐,外用木箱包装,注意密封、防潮、防晒,按有毒化学品规 定运输。 产品质量标准:

(1) 日本三井东亚公司工业级产品质量指标 指标名称质量指标 外观无色液体 沸点,℃106 质量分数,%≥97 (2)国内产品质量指标 指标名称质量指标 外观无色或微黄色液体 沸点,℃105.5—106.5 相对密度(D 2525)1.417 质量分数,%≥95(医药用),≥80(农药用) 2.1.2产品用途 氯乙酰氯是一种活泼且性能优良的酰化剂和重要的有机合成中 间体,反应活性高,在农用化学品、医药、染料、食品、饲料添加剂、仪器等领域有着广泛的用途,作为精细化工极其重要的中间体,能衍生出近百种系列精细化学品。此外,还可用作溶剂、萃取剂、致泠剂、灭火剂、表面处理剂、润滑油添加剂、聚合反应催化剂、聚合物改性剂和军用毒气的合成等。是近几年来需求发展最快的有机合成中间体之一,开发应用与发展潜力巨大,市场前景广阔。 在农药方面,氯乙酰氯主要用于合成二硫代和单硫代磷酸酯类杀虫、杀螨剂,氯代乙酰胺类除草剂。

酰氯

酰氯 酰氯是一种重要的羧酸衍生物,在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。酰氯是最活泼的酰基化试剂。在一些羧酸不能进行或进行非常缓慢的反应中将羧酸制成酰氯使反应活性和产率大大提高。 目前,制备酰氯的方法最常用的SOCl2,三氯化磷,五氯化磷,三光气等,本文对几种方法进行论述。 1二氯亚砜法 1.1二氯亚砜在酰氯制备中的应用脂肪酸(包括不饱和脂肪酸)芳香酸,有机磺酸和取代酸(如氨基酸和卤代酸等)在催化剂存在下均能与氯化亚砜生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中氯化亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯。 (1)三甲基乙酸在己内酰胺催化下与氯化亚砜反应生成三甲基乙酰氯 (CH3)3CCOOH→(SOCl2己内酰胺)→(CH3)3COCl (2)对(间)苯二甲氯化亚砜酸和氯化亚砜反应制得对(间)苯二甲酰氯。 (3)邻氯苯甲酸和氯化亚砜反应生成邻氯苯甲酰氯。该产品主要用于有机合成以及医药,染料中间体的合成。 (4)用丁(庚、辛、癸)酸和氯化亚砜反应制得丁(庚、辛、癸)酰氯,用十六碳酸和氯化亚砜反应制得十六碳酰氯,这4种产品常用于医药中间体的合成。 CH3(CH2)nCOOH→(SOCl2)→CH3(CH2)nCOCl (n=4-20) (5)硬脂酸和氯化亚砜反应制得的硬脂酸酰氯可用于合成护肤品,双硬脂酸曲酸脂和制备造纸工业的中性施胶剂——烷基烯酮二聚体(AKD)。

(6)有机磺酸在催化剂存在下与氯化亚砜反应一般生成磺酰氯也可由有机磺酸钠直接与氯化亚砜反应生成磺酰氯。 1.2氯化亚砜在制备酰氯中的优、缺点 利用氯化亚砜制备酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他均为气体,往往不需提纯即可应用,纯度好,产率高。如果所生成酰氯的沸点与氯化亚砜的沸点相近,与氯化亚砜不宜分离;另外此方法氯化亚砜用量大,生产成本高,且设备腐蚀严重。 2三氯化磷法 (1)丙酸与三氯化磷反应生成丙酰氯,反应式如下: CH3CH2COOH→(PCl3)→CH3CH2COCl 丙酰氨主要用于合成抗癫痫药甲妥因、利胆醇、抗肾上腺素药甲氧胺盐酸盐,在有机合成中用作丙酰化试剂。 (2)月桂酸与三氯化磷反应生成月桂酰氯,反应如下: 3C11H23COOH+PCl3→3C11H23COCl+H3PO3 本品用于合成过氧化十二酰,月桂酰基多缩氨基酸钠。 (3)油酸与三氯化磷反应制得油酰氯 本品主要用于有机合成中间体,用它可以制得净洗剂LS(C25H40NNaO5S),204洗涤剂等。用三氯化磷制备酰氯时,适用于制备低沸点酰氯,因反应中生成的亚磷酸不易挥发,可方便蒸出酰氯。 3五氯化磷法 (1)五氯化磷和草酸反应制备草酰氯,反应如下:COOHPCl5COCl∣→∣ +2POCl3+HClCOOHCOCl

相关主题
文本预览
相关文档 最新文档