当前位置:文档之家› 粘土地层中泥水盾构掘进施工方法

粘土地层中泥水盾构掘进施工方法

粘土地层中泥水盾构掘进施工方法
粘土地层中泥水盾构掘进施工方法

庆春路过江隧道粘土地层中泥水盾构掘进施工方法预案

一、工程概况

1.工程位置和环境

庆春路过江隧道是杭州市实现西湖杭州到钱塘江杭州跨越发展的重要组成部分,是杭州市重点建设工程。隧道工程起点自杭州市江干区庆春东路一新塘路交叉口,向东略偏南直至江边,过江后继续沿线路方向(从规划休闲广场下穿过)接江南萧山侧市心路,主线于滨江一路交叉口北侧(K3+440)预留与钱塘江世纪城综合地下空间开发系统的接口。本工程东线隧道长3025m,西线隧道长3022m;盾构隧道总长3532.64单线米,其中东线长为1765.72m,西线长1766.92m,而钱塘江底段约1241m,其地理位置见图1-1。

图1-1 杭州庆春路隧道工程地理位置图

2 工程地质与水文地质

2.1地形、地貌

隧道工程区位于低山丘陵与平原交接处,隧道区江面宽约1300m,两岸地形平坦,地面高程为6~8m,河床高程为-2.1~0.8m。隧道穿越段所处钱塘江河口上段,系七甲微湾与七格弯道的过渡段,受上、下游弯道影响,在迳流、潮汐反复交替作用下,河床冲

刷剧烈,河床主槽摆动频繁且摆幅较大。

富春江路至之江路段现为荒地,有水塘分布,因之江路管廊基坑开挖,有大量土方堆筑于江北工作井南侧。南岸现多为渔塘和苗木,有零星民居分布。因近年人工围垦作用,北岸已于1998年建成100年一遇标准海塘,堤顶高程为11m左右;南岸于2002年建成50年一遇标准海塘,防洪堤挡浪墙顶高程为11.17m。施工环境条件相对较好。

隧道沿线场地新构造运动表现出大面积间歇性升降,但无明显的升降差异运动,构造活动微弱,区域稳定性良好,近场区范围内存在发生6级地震活动的背景。

2.2地基土的物理力学性质

上述各土层物理性质指标参数一览表参数见表1-1。

2.3隧道穿越地层评价和比例

根据详勘报告及设计文件,②、③层为粉土,透水性好,主要为潜水含水层,有明显的触变性和流动性,在水动力条件下易产生管涌、流砂。④、⑤、⑥层为粘性土层,其中④为软性粘土,高压缩性、低承载力、高灵敏性、高触变性特点,工程性质较差。⑤、⑥层为硬性粘土,利于掘进;⑦层为砂性土,⑧圆砾卵石层为碎石层,该组合属承压水层,水压高,水量充沛,有明显的漏浆和塌孔现象,掘进中易引起涌水坍塌。④、⑤、⑥、⑦、⑧层,其力学性质差异较大,掘进时所受力不均匀,防止盾构机偏离设计轴线;同时,注意后期不均匀沉降问题。反应无,切面稍有光滑,干强度及韧性高~中等。本层中部个别孔颜色呈灰白色和浅灰色,为软~可塑状。本层沿线普遍分布。

江北段主要开挖层为②、③层粉土、粉砂,总体上空间分布稳定,呈舒缓波状起伏。

江南段主要开挖层为②、③层粉土、粉砂,总体上空间分布稳定,下部存在过度③4层,工程性质较差。

盾构穿越江底段的上覆有②-2粉土夹淤泥质土、③-3粉砂夹粉土、④淤泥质粉质粘土、⑤-1粉质粘土等地层,洞身穿越地层主要包括⑤-2粉质粘土、⑥-1粘土、⑥-2粉质粘土、⑦-2粉细砂、⑧-1圆砾等。盾构在穿越钱塘江时隧道最小覆土14.1m,覆土厚度大于1D,最大覆土厚度24m。根据盾构段隧道底板标高,东线隧道在LK1+850~LK2+925、西线隧道在RK1+875~RK2+925段,洞身下部穿越⑦-2粉细砂,粉细砂层最厚约2.4m;同时,在里程约L(R)K2+025~L(R)K2+800段,⑧-1圆砾地层侵入东西线隧道底部。圆砾最大粒径不大于400mm,空间上具上细下粗的“二元结构”,空间均一性较差,局部存有夹层。虽隧道上部分布有淤泥质粉质粘土、粉质粘土、粘土等相对隔水层,而砂土层和圆砾层赋存有孔隙承压水。盾构隧道穿越地层统计见表1-2。

表1-1 土层物理性质指标参数一览表

备注:本表部分指标引自浙江工程勘察院邻区工程。

杭州庆春路过江隧道纵断面图

2.4粉质粘土的特性及描述

⑤-1层:粉质粘土

浅灰绿色为主,局部呈黄灰色、灰黑色、灰白色,可塑~硬塑,厚层状构造。粘塑形较好,刀切面光滑,摇振反应无,干强度及韧性高,局部偶见粉土团块,偶见泥质结核,中压缩性,土层性质子上而下渐好。本层主要分布于盾构段,江北及江南有零星出露。

⑤-2粉质粘土

灰黄、褐黄色,可塑~软塑,厚层状构造为主。含铁、锰质氧化斑点及细小结核;均匀性一般。本层上部粘塑形一般较好,局部呈粘土状,下部多含粉土细膜,呈不均匀、不

连续状分布,中压缩性,性质一般。本层摇振

二、盾构始发阶段掘进情况

2.始发阶段掘进状况

在始发阶段,西线盾构推进表现出如下状况

(1)始发阶段在盾构进入淤泥质粘土后,推进速度减缓,平均掘进速度在8m/min 左右,每环推进时间需要4~5小时。

(2)泥水处理设备在进入淤泥质粘土、粉质粘土地层中后,无法提供正常的泥水分离,常常出现筛板拥堵现象,造成泥浆直接从分离设备涌出。

(3)由于受工作井影响,盾构始发采用了半分体始发形式,进行了管路管线延长,导致在始发阶段由于设备原因无法达到正常状况,影响盾构机的整体性能。在2#拖车下井组装连接完成后,盾构机性能大幅提升,在目前的淤泥质粘土和粉质粘土混合地层中,能够保证较为正常的掘进速度,保持在15~25mm/min。

(4)受淤泥质粘土、粉质粘土影响,泥浆比重粘度上升较快,同时由于泥水系统无法良好的工作,造成大量粘土及粘土块在泥浆池内沉积。

三、盾构隧道在粘性土层中掘进施工技术预案

1 粘土地层对盾构掘进的影响

1.1粘土地层对盾构掘进的有利影响

由于粘土矿物经相互间电化学结合而形成的粘性土层是近似变质了的琼胶块状体,所以由泥水比重和加压带来的力就容易形成对开挖面的稳定,不论粘性土层的软弱状态如何,都有利于泥水加压盾构工法施工对地表沉降的控制。

同时由于粘土地层中富含粘土颗粒易形成良好的泥膜,能够很好的保证开挖面的稳定。

1.2粘土地层对盾构掘进的不利影响

盾构机穿越段主要为复杂地段,开挖面上同时存在着④淤泥质粉质粘土层、⑤-1粉质粘土、⑤-2粉质粘土、⑥粘土、⑦-2粉细砂层、⑧-1圆砾地层,性质差异大。⑤-1粉质粘土、⑤-2粉质粘土俗称“硬土层”,硬可塑,盾构在掘进中该两层占穿越地层的80%左右。根据对已知的地质状况的了解,推断对后续盾构施工可能产生如下不利影响:(1)由于掘进开挖面处于淤泥质粘土及粉质粘土地层中,泥浆比重以及粘度等参数上升较快,易造成粘土块在仓内及管路内的堵塞,影响掘进速度。

(2)同时由于泥浆中含泥量增加较快,导致泥水分离设备超负荷运转,造成分离设备的拥堵,无法盾构掘进提供正常的泥水处理,影响盾构正常推进。

(3)在盾构掘进过程中,由于⑤-1粉质粘土、⑤-2粉质粘土俗称“硬土层”,为硬可塑,盾构推进所受的阻力较大,导致盾构推进速度缓慢。

(4)由于在粘土地层掘进中,泥浆比重以及粘度等参数上升较快,造成大量废弃浆液的产生。

2 粘土地层中盾构掘进控制

2.1掘进参数的控制

(1)掘进速度控制:

在粘土中掘进速度宜适当放慢,控制在15~25mm/min;平均每环掘进时间控制在2个小时左右,掘进速度太快容易发生管路堵塞、刀盘固结泥饼等问题。

(2)刀盘转速控制:

粘土中转速控制在40%~45%(0.90~1.20rpm/min),刀盘转速太快容易造成刀具

的磨损和泥饼的形成;刀盘转速过慢造成土体切削量不足,无法保证掘进速度。

(3)推力及扭矩控制:

推力控制在3000T~5000T,扭矩控制在3500 kNm ~4500 kNm;

(4)泥浆循环控制:

进浆泵(P1.1)流量控制在1000 m3/h左右(掘进期间),1144 m3/h(旁通时);

排渣流量(P2.1)1150 m3/h(掘进期间和旁通时);

(5)同步注浆压力控制:

同步注浆压力为1.1~1.2倍的静止土压力与静止水压力之和。现场操作是根据掘进地质条件和地下水情况由值班工程师进行计算调整。

(6)出渣量的管理控制:

控制出碴量的目的主要是为了了解超欠挖情况,以便及时的调整掘进参数,主要控制措施如下:

利用泥水盾构上的流量计、密度计结合地层的地质情况统计每环的出渣量,判断每环掘进是否超欠挖,以便较为准确的判断泥水仓内渣土的堆积程度或地层中土层的损失情况,及时采取相应的施工措施,如调整泥水仓压力,加大泥水循环等措施。

利用泥水分离设备所分离出的渣土量结合泥浆池泥浆的增减及参数变化情况,复核验证每环掘进的出渣量。

2.2泥水压力的控制

在粉质粘土地层中掘进,对泥水压力控制的考虑如下几个方面:

(1)计算出水土压力,选择适当的泥水压力,合适的泥水压力是开挖面稳定的关键,可以有效的控制超欠挖,在实际操作中,还应考虑泥水的渗失量来综合控制压力的设定;

(2)在掘进操作中,保证气压仓液位稳定是保证泥水压力平稳的关键之一;

(3)保证泥浆门的通畅,只有保证泥浆门的通畅气压仓加压的泥水才能够将压力很好的传递到泥水仓形成泥水压力。

(4)合理的控制泥水仓压力波动范围,正常情况控制在±0.2bar范围内;

泥水压力保证的措施:

(1)在不同地层中选定不同的水土压力计算方法,计算出合理的水土压力,通过在实际操作中结合泥水的渗失量来综合控制压力的设定。当泥水质量一定时,泥水压力大于水土压力一定值时,能有效的增加泥水在地层中的渗透速度,加快泥膜的形成速度和提高泥膜的形成的质量,增加掘进时掌子面的稳定性。压力的设定还要综合考虑到地表的沉降

与隆起,及时做出修正。

(2)通过液位传感器,可以了解气压仓内液位情况,保证液位处于气压仓中部,是保证泥水压力的主要措施。

但在实际操作中,经常会遇见液位传感器显示错误的情况,这样会造成误操作,致使液位过高或过低,造者压力波动较大,不利于开挖面得稳定。为避免这种情况的发生就需要通过其他辅助方式来确定实际液位。在实际操作中,通常采用观察气压仓压力与泥水仓中部压力的差值来判定气压仓液位。

当实际液位过低时,气压仓压力—泥水仓压力=正值;当实际液位过高时,气压仓压力—泥水仓压力=负值;气压仓压力—泥水仓压力=0时,说明液位在气压仓中部。这种判定方法是要在泥浆门保证通畅的前提下才能保证准确性,这就需要判定泥浆门通畅情况成为了控制压力的关键一环,泥浆门通畅也主要是通过观察气压仓压力与泥水仓压力的差值来判定的,在泥浆门通畅和液位处于气压仓中部的理想状态下,气压仓的气压压力与泥水仓顶部的泥水压力差为0.6~0.7bar,与中部泥水仓泥水压力的压力差为0,与底部泥水仓泥水压力1.2~1.4bar。

2.3泥浆质量的控制

在粉质粘土地层中掘进,由于地层中的粘土颗粒较多,泥浆的比重、粘度等参数上升较快,因此在掘进该段地层过程中指定如下的泥浆质量控制原则:

①尽量降低泥水的粘度和比重等指标,如添加清水稀释粘度比重较大的泥浆,保证泥水具有良好的流变性,利于泥水泵的输送和渣土的运输,减少粘土地层对盾构掘进的影响

②泥水在盾构掘进时,有合理的比重和粘度指标,指标要求不能因在粘土层掘进而设置过低,应具备形成泥膜,满足开挖面的稳定,防止隧道沉降和开挖面垮塌的要求。

③调整泥水分离系统分离筛板类型,提高分离设备的使用效率,减少废浆排放。

2.4辅助措施

(1)停止开挖时增加循环时间

停止开挖时应先排尽泥水仓及气压仓内渣土,然后打开管路旁通阀,再关闭进浆阀,运行一段时间后,排尽管路内渣土,方可关闭所有泥浆泵。运行时间由流速和距离来确定。

(2)必要时添加辅助剂

使用能够减小泥浆凝胶强度及屈服值的分散剂,降低泥水的密度和粘性,如六偏磷酸钠、碳酸钠等分散剂,增加泥水的活性。

(3)废弃泥浆的及时处理

通过经济比较,选取合适的废弃泥浆处理途径,保证泥浆指标的合理性,为盾构快速掘进提供基础。

(4)增加辅助泵

增加辅助泵,设置出浆接力泵增强盾构机泥水循环的出浆能力,保证出浆的顺畅。四、在粉质粘土中掘进易出现的问题及应对措施

在粉质粘土地层中进行盾构施工的必须对可能出现的问题进行预防,指定相应的处理措施,才能保证盾构掘进的快速平稳可靠,现将可能出现的问题罗列如下:

1、粉质粘土在刀盘上粘附固结形成泥饼

显示特征:推进中出现速度逐步降低,推力明显增大,扭矩逐渐减小。

出现原因:

(1)由于粘土可塑性及粘性较高,容易粘附刀盘固结形成泥饼;

(2)掘进过程中渣土不能顺利排出,在泥水仓内堆积,密实度及密度越来越大,最终形成泥饼。

(3)刀盘高速旋转后,泥水仓内温度升高,对泥饼有烧结促成作用。

预防措施:

(1)在施工工程中,应及时观察所排出碴情况和泥浆比重变化情况,分析掌握土体粘性情况,进行泥浆参数的调整,以减小土体粘性度和粘着力。

(2)适当的控制掘进速度和刀盘转速,加大泥水循环,控制泥土温度的上升。

(3)控制循环水的温度,降低刀盘温度上升。

(4)均衡施工,掘进速度太快或太慢都可能土仓温度的升高,增加固结泥饼的可能性。(5)定期的开仓检查,可以比较准确的掌握前方地层的地质情况和刀具的磨损情况,对刀盘结泥饼可起到预防作用;

(6)根据出渣量情况,分析判断泥水仓内渣土堆积情况。

处理措施:

(1)利用通往泥水仓的进浆管,使用粘度比重较低的泥浆或直接使用清水冲洗刀盘。(2)在泥饼无法冲洗清除的情况下,带压进仓人工清理刀盘上的固结泥饼。

2、泥浆管路,泥浆泵出现堵管堵泵现象

显示特征:泥水循环进出浆液流量不匹配,排浆流量急速下降,进出浆泵吸口和出口压力发生突变(主要发生在出浆泵),气压仓液位上升较快,管路或泥浆泵发生剧烈抖动,严重时发生橡胶软管爆裂的现象。

出现原因:

由于地层中存在大量的粉质粘土层,在盾构机推进时,大块的粘土块进入管路,会造成泥浆管路或泥浆泵的堵塞,清理堵塞会造成占用大量的工作时间。

预防措施:

(1)适当的控制掘进速度和刀盘转速,加大泥水循环,减少单位流量内渣土的携带量,防止渣土发生拥堵。

(2)适当降低刀盘转速,减少单位时间内的渣土切削量。

(3)合理的调整泥浆参数,保证泥浆的渣土携带能力。

处理措施:

(1)停止掘进,打到旁通模式清理排浆管道内碴土清理干净,待冲散堆积碴土后即可正常掘进;

(2)如果堵塞较为严重时,可以采用逆洗模式,反冲管路内碴土,待冲散堆积碴土后,在正常循环排出渣土,采取此措施需主司机严格控制逆洗压力,防止发生爆管现象。(3)关掉泥浆泵泵进浆口和出浆口的板阀,打开检查口,清理泥块即可正常掘进。(4)堵塞特别严重时,只有关闭进出浆控制阀,停机保压,组织人员拆除管路,清理管路内拥堵的渣土。

3、泥水平衡盾构吸口堵塞

显示特征:在泥水平衡盾构施工过程中,排泥流量严重失调,出浆泵进口及出口压力不匹配,出浆泵出现吸空现象。

出现原因:

(1)盾构土舱内的土体中含有大块障碍物;

(2)盾构土舱内搅拌不匀,致使吸口处沉淀物过量积聚;

(3)泥水管路输送泵故障,致使排浆流量小于进浆流量;

(4)泥水指标不合要求,不能有效形成盾构开挖面的泥膜,而且携带碴土能力达不到要求。

预防措施:

(1)及时调整各项施工参数,在推进过程中尽量保持推进速度、开挖面泥水压力的平稳;(2)运行碎石机和调整刀盘转速以达到搅拌碴土均匀;

(3)对泥水输送管路机泵等设备经常保养检修,确保泥水输送的畅通;

(4)根据施工工况条件,及时调整泥水指标,确保泥膜的良好形成,以使盾构切削土体始终处于良性循环状态下。

处理措施:

(1)如吸口轻微堵塞,应相应降低推进速度,同时按技术要求进行逆洗;

(2)如吸口堵塞严重,应采取相应技术措施,在确保安全的前提下,及时组织力量,带压进舱清除障碍物。

4、泥浆冲破地层,造成地面冒浆、涌浆;

显示特征:

(1)地面有大量泥浆冒出,可以清晰的听见有气体自地面冒出。

(2)泥水仓压力发生突变,气压仓液位急剧下降,保压系统不断补充气压。

出现原因:

(1)由于堵管堵泵堵仓等现象的出现造成压力突变,发生冒浆;

(2)地层厚度发生突变或地质发生突变出现地层薄弱面,地层无法承受泥水压力造成地面冒浆;

预防措施:

(1)值班工程师熟悉工程地质条件及盾构埋深变化情况,计算出合适的气垫仓压力,及时调整压力。并派人随时跟踪地面情况调整气垫仓压力。

(2)安排经验丰富,责任心强,现场处理问题迅速、反应敏捷的盾构主司机从事掘进工

作,严格控制开挖面泥水压力,在推进过程中严格控制气压舱压力,严格控制泥水舱加泥量,保证掘进过程中泥水循环的顺畅;

(3)在冒浆区域适当加“被”,即用粘土覆盖;

(4)控制同步注浆压力,并在注浆管路中安装安全阀,以免注浆压力过高;

(5)及时调整泥水各项质量指标。

解决措施:

(1)如轻微冒浆,可在不降低开挖面泥水压力的情况下继续推进,同时,适当加快推进进度,提高管片拼装效率,使盾构尽早穿越冒浆区;

(2)当冒浆严重,停止推进,并采取如下措施:提高泥浆密度和粘度;掘进一段距离后,进行充分的同步以及壁后注浆;地面可采用覆盖粘土措施。

5、隧道管片上浮

显示特征:已经成型管片在脱出盾位后形成上下错台,甚至局部出现破损现象。

原因分析:

(1)管片脱出盾构后失去了约束,同时还受到周围土层的作用。

(2)如果管片脱出盾尾后(一般情况2~3环),同步注浆的浆液不能达到初凝和一定的早期强度,隧道管片仍然可视为浸泡在液体之中,在浮力的作用下必然会产生上浮现象。预防措施:

(1)根据管片上浮的规律值和盾构推进姿态的关系合理选择注浆孔位、注浆量和注浆压力。

(2)适当控制盾构掘进速度,一般以缓推为宜,推进速度不大于30mm/min.确保管片脱出盾尾时形成的空隙量与注浆量平衡,尽量避免注入的浆液稀释而降低浆液性能。(3)根据统计的管片拼装后上浮经验值,调整盾构机推进轴线高程,以此来抵消管片衬砌后期的上浮量,使隧道中心轴线近可能地接近设计轴线。

处理措施:

(1)管片上浮后的处理比较难,一旦发现管片上浮超限,立即停止盾构掘进,对已上浮的管片通过注浆孔进行二次注浆。注浆材料以瞬凝双液浆为最好,注浆压注顺序应顺着隧道坡度方向,从隧道拱顶至两腰,最后压注拱底。终止注浆以打开拱底注浆孔无渗水为条件,以防止盾构恢复掘进后管片继续上浮。

6、泥水处理设备堵塞

显示特征:

(1)当盾构机以1200方/时循环流量进行掘进时,浆液流量很大,出现部分浆液没有及时进入分离设备下部集浆槽,直接冲出。

(2)当盾构机在粘土层掘进时,大量粘土停留在预分筛上层筛板上,不能排出,越积越多,致使预分筛瘫痪。

原因分析:

(1)预分筛筛板不能满足粘土分离要求

(2)设备处于磨合调试阶段,粉质粘土、淤泥质粘土对泥水处理设备要求较高

处理措施:

(1)将预分筛上层筛板仅保留下料口处孔径30mm的橡胶筛板(5块,1m长),预分筛下层孔径4.5mm的橡胶筛板更换为间隙2.5mm的钢筛板(筛板的更换要符合现在和以后土层的分离)

(2)将预分筛上层更换为改进后的棒条筛(仅对分离淤泥质粘土效果较好,但要做到分离平衡,改动的同时不能影响其它部件如:旋流器、脱水筛等)

五、始发段盾构掘进的几点认识及总结

(1)泥水压力的设定要在理论值的基础上,结合现场实际情况不断摸索,通过试掘进阶段的地表沉降值及时修正;

(2)控制泥水仓压力波动范围,正常情况下宜控制在±0.2bar范围内,有利于减少泥水压力对地层的冲击;

(3)盾构推进要快速平稳连续,不能只求快不求稳;

(4)合理的泥水压力,是保证泥水平衡和控制地表沉降的关键;

(5)在不同的地层中掘进,泥浆的指标需及时调整,在粘性土层中泥浆质量要求可适当降低,泥水盾构在粘质土地层中施工,开挖的粘土和水混合在一起,可以行成隧道施工的循环泥浆;

(6)粘土地层由于泥水分离效果差,泥浆密度上升很快,很容易影响正常掘进;

(7)泥浆循环操作要平稳,适当的加大循环流量,可以减少因堵塞出现的大的压力波动;

(8)现场值班工程师要及时、认真记录掘进参数并进行汇总,对掘进参数进行分析、总结,为以后的掘进工作提供理论指导依据;

(9)在粘土地层,粘度低比重较小的泥浆有利于盾构快速掘进。

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

高水压下泥水盾构掘进技术

高水压下泥水盾构掘进技术 黄学军 (中铁隧道集团二处联合掘进机二公司北京东燕郊 101601) 摘要:介绍在高水压下隧道泥水盾构施工存在的问题和解决方案 关键词:泥水盾构高水压隧道掘进技术 1.概述 盾构法隧道在穿越江河或海底时,隧道的静水压力通常很大。首先盾构自身的密封系统性能良好是隧道安全施工的重要保证,同时,由于盾构在高水压下施工,给施工增添了许多难度。选择合适的泥水压力和掘进参数、制定可行的隧道防水方案、选择合适的注浆方案和浆液配比,防止盾构在掘进过程中出现顶部及周围土体坍塌、隧道上浮等,保证盾构隧道的安全施工。当盾构穿越的土体为砂层,更应该根据具体的土层性质及地下水压力的大小选择合适的掘进参数并制定针对性的措施防止掌子面前方土体在高水压作用下发生的土体坍塌甚至流砂等一系列工程事故。 2.高水压下盾构法施工难点 (1)掌子面的稳定 盾构在掘进过程中,掌子面一直处于平衡状态,但由于盾构所处于高水压下,地下水的涌出及泥砂等被带出,会造成掌子面坍塌、地表陷降或下沉。因此,盾构在超高水压下掘进,必须采取措施来维持掌子面,它是泥水盾构在超高水压下砂层中掘进的一个难点。 (2)防止隧道周围土体坍塌 盾构在超高水压下掘进,当穿过的岩层为砂性土层时,由于盾构施工的扰动、纠偏力度过大或者盾构隧道背填注浆的不密实,同时受到高水头压力作用,隧道周围土体易发生土体坍塌,造成地表沉降。通过对地层情况的勘察分析,制定可行的方案,防止盾构穿越地段隧道周围土体发生坍塌。 (3)防止隧道上浮 盾构在超高水压区掘进时,由于隧道受地下高压水及泥浆的包裹,所以隧道较长时间内处于悬浮状态。同时,由于同步注浆浆液的初凝时间较长,注浆压力控制不当,浆液随地下水窜入建筑物外围地层中,造成隧道上浮。 (4)泥浆的泄露和喷出 为保证掌子面前土体的稳定,泥浆压力必须与切口水(土)压力保持平衡,当泥浆压力过大,同样也会造成泥浆向隧道后方流窜,甚至通过盾尾泄露至隧道内或通过隧道顶部岩层窜出地表。防止此类现象的发生是保证盾构安全施工的一个重要因素。 (5)盾尾密封及铰接密封等部位的抗高水压 盾构法施工区别与矿山法施工,优点就在于其施工的安全性。由于盾构的密封性能好,所以将盾构外部的泥土及地下水全部封堵在盾壳外部。因此,保证盾构良好的密封性能是盾构法施工成败的关键,在高水压下施工又提高了对盾构密封材料的要求。 (6)管片接缝防水 盾构隧道是通过拼装的管片实现隧道的一次成型。在高水压下,保证隧道的防水及抗渗等级是衡量工程质量的一项重要的标准。而管片接缝部位是盾构隧道防水的薄弱部位,加强管片接缝防水工作,提高隧道防水能力。 3.盾构在高水压下掘进技术 3.1稳定掌子面控制措施 为保证盾构能顺利通过,在对该地段进行详细探测后,拟采取以下处理措施:选择合适的推

大盾构掘进注浆技术交底

大盾构掘进注浆技术交底-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

表格编号 技术交底书 1311 第 1 页项目名称广州市轨道交通地铁四号线南延5标项目经理部 共页交底编号4N5B-GCB- 工程名称广州市轨道交通四号线南延段施工5标土建工程 设计文件编号/ 施工部位大盾构始发掘进技术交底 交底日期2015年月日 技术交底内容: 1、技术交底范围 本交底适用于广州轨道交通四号线南延段施工5标【中间风井-南沙客运港站】大盾构区间盾构始发注浆及盾构掘进同步注浆施工。 2、工程概况 本次施工设计范围为中间风井~南沙客运港区间隧道全长1491.466 m,中风井-客运港站采用开挖直径11.71m泥水盾构施工;从中间北端头始发,始发后沿海港大道前进,掘进至YDK65+998.776后以800m的曲线半径右转至科技大道,最终掘进至南沙客运港站吊出。 3、施工准备 (1)砂浆准备 原材准备 1)砂要求采用细度模量 1.6~2.3 的细砂,不允许夹杂有 5mm 以上的豆石或杂物,需要时需对砂子进行过筛处理; 2)水泥、粉煤灰、膨润土不可有结块现象,细骨料中不可有大粒径的异物。 砂浆拌制 1)浆液配合比严格按工程师通知配合比配制; 2)原材料计量误差要控制在规范要求范围内; 3)投料顺序按水、水泥、砂依次进行;

图4.2 同步注浆系统点位布置图 (2)注浆时只需用双活塞注入泵将储存在砂浆箱中的浆液通过管路泵送到盾壳上的同步注浆点既可。 (3)注浆可根据需要采用自动控制或手动控制方式,自动控制方式即预先设定注浆压力,由控制程序自动调整注浆速度,当注浆压力达到设定值时,自行停止注浆。手动控制方式则由人工根据掘进情况随时调整注浆流量,以防注浆速度过快,而影响注浆效果。一般不从预留注浆孔注浆,以大大降低从管片渗漏水的可能。为了能够适应不同的注浆量和压力要求,注浆量和压力也可以在控制操作电脑屏上进行人工调整。 (4)同步注浆通过盾尾注浆孔在盾构推进的同时压注,在每个注浆孔出口设置压力传感器,以便对各注浆孔的注浆压力和注浆量进行检测与控制,从而实现对管片背后的对称均匀压注。为防止注浆使管片受力不均产生偏压导致管片错位造成错台及破损,同步注浆时对称均匀的注入十分重要。 盾尾 盾尾注浆 浆液注入 1 2 3 4 6 5

泥水盾构操作规程

盾构机掘进基本操作指导书 (包括刀盘转速、掘进速度、油缸推力、方向姿态等控制) 1、安全操作规程 1.1.基本注意事项 (1).遵守岗位内安全规程 ●盾构机操作、维修人员必须是受过专业训练的,必须具备相应的操作资格。 ●进行机械操作或维修时,请遵守相关的技术资料和项目部下发的文件中所 有安全规则、注意事项及顺序。 ●身体不适、服用药物(催眠药)时及酒后不要操作, 因为发生危机时,容易造成判断失误。 ●多人共同作业时,一定要设指挥员,根据制定的方案操作。 (2).设臵安全联锁装臵 ●请确认所有的防护装臵、防护罩是否装在正常位臵。如果破损,请马上修理。 ●请认真了解盾构联锁、溢流阀等安全装臵。 ●请勿随便调节盾构联锁装臵、溢流阀。 解除盾构联锁装臵请参照盾构联锁装臵的使用说明。 ●一旦误用安全装臵,将会造成重大人身事故。 (3).电气、液压的设定,不要随便变更 ●为防止电气火灾,请勿变更热继电器等设定值。 ●为防止盾构机损伤,请勿变更溢流阀压力等液压设定值。 (4).正确穿戴工作服和安全保护用品 过肥的服装、饰品等有可能被机械部件上的物品钩住,有油的工作服因易 燃,也不得穿用。 ●请勿忘记根据工作内容穿戴保 护眼镜、安全帽、口罩、手套等。 特别是用锤子打击销子等金属片、 异物时可能飞散,必须使用保护眼 镜、安全帽、手套等保护用具。

1.2.盾构掘进过程中的注意事项 (1).掘进中必须特别注意的事项 ●掘进中,机器有时会突然侧滚。所以进入掘进机内时,请充分注意因突然侧滚造 成的跌倒、滚落。 特别是在高处时,必须要用安全带。 ●因传送带或土沙压送泵运转中的振动,造成后续台车的翻到,伤及 作业者的危险性是存在的,请切实装好防翻部件,并认真确认。(2).注意电机的散热 ●电机散热装臵周围闭塞时,就不能散热,有损伤内部、发生火灾的可能, 因此,请保持电机散热装臵的正常运转,不要挡住电机前后风路。(3).推进油缸靴撑和管片间的注意事项 ●推进油缸靴撑和管片间有夹住手脚的危险。注意不要把手脚臵于其间。(4).注意异常声音、异常情况等 ●如果对器具的异音、异常不加以注意,零部件将可能破损而飞散,并有因部件 飞散而造成人员伤害的危险。 机器发生异音、异常时,请立即中止掘进,进行点检、维修。

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研究

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研 究 摘要:本文以南京纬三路过江隧道工程超大直径泥水平衡盾构机穿越江中深槽段施工为例,通过对风险源的分析与应对措施研究,提出了超大泥水平衡盾构长距离穿越深水浅覆土地区应对措施。 1.工程背景 南京纬三路过江通道工程采用直径14.93m泥水平衡盾构,盾构穿越江中深槽段总长度为586m,该段掘进全部位于江中段,是工程中风险最高、难度最大的施工区段。在该段深槽线路范围内,线路位于右偏R=1500m的圆曲线内,线路为V字型,坡度从-3.892%过最低点(SDK4+780)后变为2.45%。江底最低覆土深度为14.46m(到盾构机顶部),水深最深为34.9m(2009年9月数据)。江中段地质情况见表1。 表1 地质分层分段情况表 2.施工风险分析 2.1地质勘测准确性风险 由于江底深水地质勘测难度大、成本高,准确性也难以保证,江底隧道地质勘探具有极大的局限性,遇到未勘查清楚的不良地质或存在未查明的地下障碍物的风险十分可能发生。因此,施工准备阶段和施工过程中,需要通过对筛分渣样的分析达到地质预测的目的,可部分揭示开挖面前方地层情况。同时江底可能会出现特异性的障碍物,如废弃铁块、沉船等影响盾构掘进。 2.2盾构机的适应性、可靠性风险 盾构机选型极大程度上是工程成功的决定性因素,盾构机穿越江底掘进过程中,盾构机选型尤为重要,主要表现在以下几个方面: (1)刀盘、刀具磨损:盾构机长距离掘进对刀盘、刀具磨损大;在软硬不均的地层及卵石地层掘进时,刀具不可避免的产生卡刀或偏磨等问题。 (2)泥浆泵及管路磨损、堵塞:泥水循环回路泥浆中的砂石成分会磨损泥浆泵及排送管路,导致盾构机排渣不畅; (3)主轴承磨损,密封件防水失效:因主轴承在长距离掘进被磨损可能导致密封件防水失效,泥浆向盾构机内渗漏,保压系统失衡; (4)盾尾密封:盾尾密封系统的不适应性或受管片及周围土体的磨损影响,导致盾构间隙增大或油脂仓保压失效,盾构机发生渗漏; (5)数据采集系统、传感器失灵:受开挖面恶劣条件影响,盾构工作面数据采集系统、传感器有失效风险,盾构掘进参数或正面舱压等指标无法准确显示; (6)液压推进系统漏油:液压推进系统漏油,推力不足可能导致盾构后退风险; (7)注浆管路堵塞:由于浆液残留结块等原因可能导致注浆管路堵塞,无法进行正常的同步注浆; (8)主轴承断裂:由于主轴承磨损或在掘进复杂地层中偏心力矩致过大可导致主轴承断裂。 2.3江底冒浆风险 由于隧道穿越复合地层、上软下硬地层控制难度大,卵砾石层、粉砂岩层等地层表现为孔隙较大的特点,要依据地层条件及时调整泥浆质量和泥水压力,加

复杂条件下的大直径泥水盾构掘进参数控制

万方数据

万方数据

构转向困难,应该更换边滚刀和周边刮刀。隧道最小转弯半径550nl,如通过以上步骤还不能转向,就需要使用仿型刀,设定开挖角度范围,增大开挖面直径辅助盾构转向。 图1掘进方向控制 Fig.1Excavationdirectioncontrol 2.3同步注浆量及压力的控制 在掘进过程中,控制好同步注浆量及注浆压力,及时填充掘进留下的空隙,保证管片的稳定性,提高隧道的防水性能,是控制地面沉降的必要手段。盾构机同步注浆系统有6根注浆管,圆周方向分布在盾构机尾盾上,注浆量根据开挖直径、管片外径计算出理论注入量。实际则需根据地层特点、盾构姿态等来控制,基本原则是注入量不小于理论注入量,确保顶部两根管路的注入量。注浆压力通常大于同等水平位置开挖舱泥水压力0.02~0.03MPa,压力低则注入量不够,过高会损坏盾尾密封刷或通过地层空隙进入开挖仓。因砂浆凝固会导致注浆管路堵塞,因此每掘进1环,在掘进的最后20cm就停止注浆。在盾构机完成掘进拼装管片时,每隔45—75rain注一次,每次每根管注入0.01一O.02m3。盾构掘进时也应留意注浆量,如遇到松散砂卵石地层或有地下空洞等导致注入量增加时应放慢掘进速度以保证填充密实。因盾构自重,砂浆会向下流,一般盾构上部注浆量要占到总注入量的一半以上,只有保证顶部注入量,才能最大限度地减少地表沉降。 2.4盾尾密封油脂系统 盾尾密封有3道,前、中、后,每一道的压力设定非常重要,假如设定压力过小,油脂注入量少,盾尾密封刷易损坏出现漏浆涌水现象。压力过大,油脂消耗量增大,造成经济损失。3道密封的压力设定以开挖仓土压力及注浆压力为依据,最外层压力应比开挖仓底部压力高约0.1MPa,中层取开挖仓底部压力或等于外层设定压力,内层则比中间层压力减少0.1MPa或与之相同,压力设定完毕后还应统计油脂消耗,并适当调整注脂泵的压力。经计算,每掘进1环,盾尾油脂理论消耗量在100~110kg(视掘进时间而定),可以依据该值调整注脂泵压力保证注入量即可…。 2.5泥水循环系统的控制 根据目前掘进距离统计,盾构机停止掘进80%的原因来自泥水循环系统,包括泵站停机、管路破损、泵及管路堵塞、泥水处理设备故障等(见图2)。 图2泥水循环控制系统 Fig.2Controlsystemofslurrycycle 2010年第12卷第12期67万方数据

盾构掘进施工技术交底

穗莞深城际轨道交通SZH-3标虎长盾构区间 盾构掘进施工技术交底 一、概况 虎长盾构区间采用两台直径8810mm的日本奥村土压平衡盾构机掘进施工。左右线两台盾构机先后从明挖段工作井始发,掘进至虎门商贸城站南端头井吊出。区间左线长度为2893.084m、右线长度为2894.2m,衬砌结构为C50钢筋混凝土预制管片,内径7700mm、外径8500mm。 盾构掘进施工分为始发,掘进和接收三个阶段,施工中根据每个阶段施工特点采取针对性的技术措施,保证施工安全,满足质量和环保要求。在盾构起始段200m进行试掘进,并根据试掘进调整,确定掘进参数。在盾构到达接收工作井100m前,对盾构轴线进行测量并作调整,保证盾构准确进入接收洞门。 二、施工准备 1、人员准备: ⑴项目部管理人员:工区长,副工区长,工区总工,现场工程师。 ⑵盾构掘进队:带班员,拼装员,电瓶车司机,注浆员等。 ⑶盾构地面队:搅拌站调度、搅拌手,龙门吊司机、司索工,电瓶车充电员等。 ⑷盾构机修队:盾构机械维修员。 ⑸盾构电工队:盾构电气检修员。 ⑹盾构吊装队:广东力特吊装公司。 ⑺盾构组装队:上海力行公司。 ⑻盾构测量队:地面沉降测量员,盾构姿态测量员,管片姿态测量员等。 2、施工机具准备: ⑴两台直径8810mm日本奥村土压平衡盾构机 ⑵搅拌站一座 ⑶电瓶车两台 ⑷循环水箱一个 ⑸发电机一台及配套发电机房一座 ⑹电瓶车充电房一座 ⑺龙门吊四台

⑻350吨履带吊一台 ⑼地面自生产加工房一座 三、施工工艺 1、盾构吊运与组装 根据盾构部件情况、场地情况,制定详细的盾构组装放啊,然后根据相关安全操作规程使用350吨履带吊,200吨汽车吊,60吨龙门吊将盾构机各部件吊运至基坑内,并由力行组装队对盾构机进行组装。 2、盾构机现场调试 根据盾构机主要功能及使用要求制定调试大纲,主要调试内容如下: ⑴盾构壳体 ⑵切削刀盘 ⑶管片拼装机 ⑷螺旋运输机 ⑸皮带运输机 ⑹同步注浆系统 ⑺集中润滑系统 ⑻液压系统 ⑼铰接装置 ⑽电气系统 ⑾渣土改良系统 ⑿盾尾密封系统 对各系统进行空载调试,然后进行整机空载调试,详细记录盾构运转状况,并进行评估。 3、盾构始发 制定详细的始发方案,使用反力架作为盾构机的推进支撑面,精确确定盾构始发标高等已定参数,始发掘进前对洞门土体进行质量检查,对洞门加固的旋喷桩做抽芯检测,制定洞门密封破除方案,使用止水帘布扇形压板对洞门进行密封,确保始发安全。始发掘进时对盾构姿态进行复核。在负环管片定位时,确保管片环面与隧道轴线垂直。始发掘进时重点保护6,7号台车之间的延长管线,对盾构掘进,壁后注浆,管片拼装,出土及材料运输进行工序磨合,尽量在正常掘进时做到环环相扣,工序衔接得当。始发掘进时严格控制盾构的姿态和推力,加大检测力度,根据监控结果调整掘进参数。

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

盾构试掘进技术总结

中铁十局集团有限公司 CHINA RAILWAY TENTH GROUP CO.LED 大连地铁201标盾构100m试掘进 技术参数总结 中铁十局集团济南铁路工程有限公司 二O一一年五月

一、工程概况 大连市地铁二号线西安路站~交通大学站区间,本区间隧道起讫里程为DK16+803.630~CK18+462.893。本区间主要采用盾构法施工,在靠近交通大学站一端采用矿山法。本盾构区间隧道起讫里程为DK16+803.630~CK18+130.000,右线全长1326.370m,左线全长为1342.225m。区间左线设置断链,在左DK17+616.398=左DK17+600.000处设置长链16.398m。区间在DK16+796.63处设盾构始发井,在DK16+992处设区间联络通道,在DK17+481.662处设区间风井兼联络通道及泵房,在DK18+135.5处设盾构接收井。 西安路站至交通大学站区间平面线路出西安路站后沿南北向向南,通过半径为300m的曲线转入偏东西方向,再通过半径450m曲线接入黄河路,到达交通大学站。区间纵断布置形式呈“V”字形,最大纵坡为25‰。区间为双线地下隧道,左右线路为上下重叠至区间终点左右线逐渐分离并行。盾构段隧道开挖断面直径为6m,盾构隧道衬砌的管片采用厚300mm,宽1200mm,每环由6片管片拼装而成,拼装方式采用错缝拼装。

本盾构100m试掘进阶段主要在300m小半径曲线上,下坡段坡度为5‰。右线隧道从始发井开始至100m试掘进主要穿越?7中风化钙质板岩。?7中风化钙质板岩岩性特征:灰色,层状结构,层理和节理裂隙较发育,矿物主要为云母、石英、方解石,遇稀盐酸起泡,局部夹石英岩脉,岩芯呈柱状。揭露层顶高程-24.90~9.70m,层顶埋深 3.70~33.50m。根据岩石抗压强度结果,本场地中等风化板岩为较软岩,岩芯较完整,局部较破碎,岩石质量等级为Ⅳ级。根据设计 院提供的资料,中风化钙质板岩最大天然抗压强度为36Mpa。

大型泥水盾构现场施工中的泥水处理

精心整理大型泥水盾构施工中的 泥 水 分

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧 施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

土压时,产生泥水平衡效果。 2、泥水管理控制 (1)、进浆泥水指标 泥浆能否在渗入土壤时形成优质泥膜,能否稳定切口前方土体, 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。 泥水比重的范围应在1.15~1.30 g/cm3,下限为1.15 g/cm3,上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.30 g/cm3。甚至可达1.35 g/cm3。

泥水平衡盾构机施工方案

针对本项目的特性技术方案简述 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序 4.3 交通疏解方案

五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

盾构隧道掘进机的发展史

盾构隧道掘进机的发展史 1818年,英国工程师布伦诺尔设计出一种挖掘机,在泰晤士河底下挖掘隧道。他观察过一种名叫凿船虫的蛀木软体动物,发现这种虫子利用圆管形硬壳支撑孔洞四周的特朵铖,继续向前钻进。于是受到启发,制造了一个箱形铁壳(称为盾构),利用千斤顶在松软的土壤中向前推进。挖掘工人则在铁壳内一面挖掘,一面在隧道内壁衬砖。这便是人类的第一台盾构机。1825年至1841年间,利用布仑诺尔设计的盾构凿通韦平到罗瑟海斯的世界第一条水下隧道,长约1100米。 1865年,英国桥梁工程师巴洛发明一种盾构,并注册了专利,这种盾构是圆筒形,直径较布仑诺尔设计的为小,不用砖铺砌隧道内壁,而用铁块砌块。巴洛和工程师格雷特黑德利用这种盾构在一年之内凿通泰晤士河床下的第二条隧道。格雷特黑德还改进了挖隧道技术,以压缩空气抵消外面的水压。1890年,伦敦用这种技术建成了世界上第一条地下铁道。 盾构机全名叫盾构隧道掘进机,是一种隧道掘进的专用工程机械,现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能,涉及地质、土木、机械、力学、液压、电气、控制、测量等多门学科技术,而且要按照不同的地质进行“量体裁衣”式的设计制造,可靠性要求极高。盾构掘进机已广泛用于地铁、铁路、公路、市政、水电等隧道工程。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。 盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时文撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。 据了解,采用盾构法施工的掘进量占京城地铁施工总量的45%,目前共有17台盾构机为地铁建设效力。虽然盾构机成本高昂,但可将地铁暗挖功效提高8到10倍,而且在施工过程中,地面上不用大面积拆迁,不阻断交通,施工无噪音,地面不沉降,不影响居民的正常生活。不过,大型盾构机技术附加值高、制造工艺复杂,国际上只有欧美和日本的几家企业能够研制生产。 盾构机根据工作原理一般分为手掘式盾构,挤压式盾构,半机械式盾构(局部气压、全局气压),机械式盾构(开胸式切削盾构,气压式盾构,泥水加压盾构,土压平衡盾构,混合型盾构,异型盾构)。

隧道盾构掘进施工主要工艺

隧道盾构掘进施工主要工艺 1、盾构始发与到达掘进技术 1.1 始发掘进 所谓始发掘进是指利用临时拼装起来的管片来承受反作用力,将盾构机推上始发台,由始发口贯入地层,开始沿所定线路掘进的一系列作业。本工程中每台盾构机都要经过两次始发掘进,第一次是盾构机组装、调试完后从三元里站始发,第二次是盾构机通过广州火车站后二次始发。 1.1.1 始发前的准备工作 (1)始发预埋件的设计、制作与安装 盾构机始发时巨大的推力通过反力架传递给车站结构,为保证盾构机顺利始发及车站结构的安全,需要在车站的某些位置预埋一些构件。同时盾构机盾尾进入区间后为减小地层变形需要立即进行回填注浆,为了防止跑浆也需要在车站侧墙上预埋构件以实现临时封堵。 三元里车站始发预埋件大样及预埋位置如图:隧盾-施组-SD01、02所示。 (2)洞门端头土体加固 三元里车站隧道端头上覆2米厚〈8〉类土(岩石中等风化带),开挖后侧壁基本稳定。始发前不对端头进行加固。 (3)端头围护桩的破除 始发前需要对洞门端头围护桩予 以拆除,确保盾构机顺利出站。三元里 站端头围护桩厚1.1米,洞门预留孔直 径6.62米。计划对围护桩进行分块拆除 如图7-1-1。 环形及横向拉槽宽度50cm,竖向 拉槽宽度20cm,竖向槽沿围护桩接缝凿 除。 盾构机推进前割断连接钢筋,拉开 钢筋砼网片,清理石碴并处理外露钢筋 头,避免阻挂盾壳。围护桩拆除后,快 速拼装负环管片,盾构机抵拢工作面,避免工作面暴露太久失稳坍塌。拉槽 图7-7-1 凿除分块示意图

1.2 盾构机始发流程 盾构机始发前首先将反力架连接在预埋件的位置,吊装盾构机组件在始发台上组装、调试;然后安装400宽的负环钢管片,盾构机试运转;最后拆除洞门端墙盾构机贯入开挖面加压掘进。 盾构机始发流程见下图: 盾构机始发时临时封堵操作工艺流程如下: 安装反力架、始发台 盾构机组件的吊装 组装临时钢管片、 盾构机试运转 拆除端头维护桩 盾构机贯入开挖面加压掘进(拼装临时管片) 盾尾通过入,压板加 固、壁后回填注浆 端头地层加固 检查开挖面地层 始发准备工作 拆除端头围护桩 掘 进 安装螺栓、橡胶帘布板及钢压板 上拉压板,置于盾构机通过位置 盾尾通过始发口 下拉压板 盾尾同步注浆

泥水盾构泥水系统技术

泥水盾构泥水系统技术 傅德明 上海申通地铁集团公司 2010.3 1 泥水盾构简介 ?1818年,英国的布鲁诺从蛀虫钻孔得到启示,提出盾构掘进隧道设想。 ? 1825--1843年,布鲁诺在伦敦泰吾士河下用盾构法修建458m长的矩形隧(11.4m× 6.8m)。 ? 1830年,英国的罗德发明“气压法”辅助解决隧道涌水。

1874年Greathead提出泥浆盾构专利 1896年,开始应用刀盘式盾构掘进机 不 ?20世纪60年代初,穿越不稳定和含水地层的隧道工程辅助技术有:降水法、气压 法、地层加固法和冻结法。 ?气压法最经济有效,由于安全和健康等原因,希望有一种能不干扰地面和使工人不 在气压下施工的隧道掘进机,欧洲国家提出“局部气压方法”,但这种对工作面不能提供不变的和有规则的支护。 ?英国隧道专家建议在隔舱板前用喷水“水力盾构”,但水不能支护开挖面,无法阻 止开挖面不停地流动。这种情况与充满水的挖槽相类拟,从而提出在开挖面用类同槽壁法的支护,这样就诞生了泥水加压盾构掘进机。 ?1967年,英国开发成功首台泥水加压平衡盾构。 ?1974年,日本开发成功首台土压平衡盾构。 ?1987--1991年,英国、法国采用11台盾构掘进深50km长的英法海峡隧道,创造单 台盾构连续掘进21km的记录。 ?1989--1996年,日本采用8台世界最大直径14.14m泥水加压盾构,掘进东京湾海 峡隧道,2条隧道各长9.4km。 英国体系泥水盾构

?1964年英国Mott, Hay和Anderson的John Bartlett 申请了泥水加压平 衡盾构掘进机原理专利(英国专利号1083322)。 ?1971年开挖直径4.1m、长140m的试验段。英国体系泥水加压平衡盾构掘 进机与同类德国体系相对照,其研制的特征是有长槽的鼓轮状的切削头、提取来自压力室的泥浆,有粗和细两套分离装置,以及以控制弃土出口压力(阀或泵)的方法保持开挖面的压力。当时,英国由于缺乏能适合促进这种技术的隧道工程,这种技术的发展受到了限制。 日本体系泥水盾构 ?日本工程师相信液体支护隧道开挖面的原理、他们称为“泥水加压平衡盾 构”(即泥水加压平衡盾构)。 ?1970年日本铁建公司在京叶线森崎运河下,羽田隧道工程中采用了直径 7.29m的泥水加压盾构施工,土质为冲积粉砂土层和洪积砂层,N值为2-50,施工 长度为865× 2条=1712延米,见图1。 ?直径7.29m泥水加压盾构掘进机,在隧道施工中获得了极大的成功,它是 当代时最大直径的泥水加压平衡盾构。 ?纵观日本在近30年的泥水盾构发展,自日本泥水盾构问世以来,泥水盾 构一直持续发展。

大型泥水盾构施工中的泥水处理

大型泥水盾构施工中的 泥 水 分 离 处 理 系 统

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧道的一种专用施工机械,盾构施工法也已成为当今城市隧道和地铁工程中不可缺少的一种施工法。 为了满足城市隧道建设的地表沉降控制和加快施工速度,泥水加压式盾构逐渐发展并成熟,泥水加压式盾构用泥浆代替气压,用管道输送代替轨道出土,加快了掘进速度,改善了劳动条件和施工环境,能较好地稳定开挖面和防止地表隆陷,成为当今一种划时代的盾构新技术。 1996年,上海采用直径11.22m泥水加压式盾构,成功穿越7m 浅覆土河床和4.2m超浅覆土软土地层,完成延安东路南线水底公路隧道施工,标志着中国隧道施工技术已达到国际先进水平。 近来,上海市相继开始建设大连路和复兴东路越江隧道工程,并采用直径11.22m泥水加压式盾构施工,为该施工工艺在软土地基中施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱水后,排去分离后的水,经调整槽进行再次调整,使其成为优质泥水后再循环到开挖面。 二、泥水平衡机理及指标 1、泥水平衡机理 泥水平衡盾构是在切削刀盘与隔板之间形成的密封舱中,注入满足施工要求压力的泥浆,使其在开挖面形成泥膜,支承正面土体,并由安装在正面的大刀盘切削土体表层泥膜,由刀盘开口进入密封舱与泥水混合后,形成高密度泥浆,由排泥泵及管道输送至地面进行处理,整个过程通过建立在地面中央控制室内的泥水平衡自动控制系统统一管理。盾构掘进机设有操作步骤设定,各操作步骤间设有联锁装置,制约因误操作而引起事故,施工安全可靠。 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

第三节 盾构通过花岗岩球状风化体的掘进技术

第三节盾构通过花岗岩球状风化体的掘进技术 花岗岩风化土中存在的球状风化核,俗称“孤石”,在广州地区是普遍存在的一种地质现象,尤其在广州地铁三号线天~华区间的施工中多次碰到。花岗岩风化土中的球状风化核,其成因是岩浆中的石英富集部分不容易风化所致。由于其埋藏分布及大小是随机的,很难通过地质钻探探明其分布情况。孤石形状各异,大小从几十公分到几米,岩石单轴抗压强度可以达到100Mpa以上。相对于孤石的强度,周边风化土层强度小很多。盾构推进过程中,很容易出现孤石不能被滚刀破碎,在刀盘前滚动,严重损坏刀具和刀盘的现象。同时孤石通常存在于自稳能力不好的残积层,洞内基本上无条件直接进行处理,因此盾构在存在孤石的花岗岩残积层中掘进,将面临极大的施工风险,严重影响工程进度及成本。 一、盾构通过花岗岩球状风化体存在的问题 1、掘进非常困难并频繁卡刀盘; 2、盾构机姿态难以控制; 3、刀具磨损非常严重,刀圈崩断,刀座、刀盘变形 4、更换刀具困难,花岗岩残积层不稳定,遇水膨胀崩解,泥化以致流淌,必须进行地面或洞内加固,加固后再进行气压换刀,耗用大量时间。 5、掘进震动大,对保护地面建筑物不利。 二、破碎花岗岩球状风化体的方法 1、盾构机直接破除孤石,盾构机直接破除孤石需要满足两个条件: (1)盾构提供足够的切削力破岩。 (2)在孤石被刀具破碎过程中,周边土体不能产生破坏,即孤石不能移动。 2、不能通过盾构机直接破除的孤石,可采取如下方法: (1)对孤石周边风化土层进行地面或洞内预加固,然后再盾构机破岩或人工破岩。 (2)洞内静态爆破或火药爆破。 (3)地面钻孔爆破或冲孔破除孤石。 (4)压气作业条件下人工破除孤石,破除时可采用岩石分裂机等设备。 三、施工中应采取的针对性措施 1、加密补充地质勘探,掌握孤石分布情况。

狮子洋隧道盾构施工技术

狮子洋隧道盾构施工技术 1工程相关简介 1.1 工程概况 狮子洋隧道广深港铁路客运专线的控制性工程,工程位于珠江入海口、虎门大桥上游,处于线路东涌站~虎门站之间,下穿珠江主航道——狮子洋水道,隧道工程全长10.8km,设计时速350公里,是我国首座水下铁路隧道,同时也是目前国内水深最深、长度最长、标准最高的水下盾构隧道,被誉为“中国铁路的世纪隧道”。 狮子洋隧道分为进口(SDⅡ标)、出口(SDⅢ标)两个标段,盾构隧道投入四台直径Φ11.18m气压调节式泥水平衡盾构机,采用“相向掘进,地下对接,洞内解体”方式组织施工。我中铁隧道集团承担狮子洋隧道出口标段(SDⅢ标)的施工任务,合同总价亿元。 SDⅢ标段工程包括引道敞开段180m,明挖暗埋段长597m,工作井长23m,明挖工程总长800m;盾构段左线长4450m,右线长4750m;另外,还包含敞开段雨棚、设备用房、11处联络通道和泵房等附属工程。左线正线长度 5.25km,右线正线长度5.55km。 盾构隧道采用预制拼装式管片衬砌,管片采用“5+2+1”双面楔形通用环管片,错缝拼装。管片内径9.8m、外径10.8m、管片厚度500mm、管片环宽2.0m,楔形量为24mm。盾构隧道以管片自防水为主,接缝采用两道弹性密封止水条防水。 隧道最大纵坡20‰,最小纵坡3‰。盾构隧道最大覆土52.3m,最小覆土7.8m;狮子洋水道最大水深26.4m,水深最大处的隧道覆土26.0m。隧道轨面最低点标高为-60.988m,与百年一遇高潮位的高差约64.2m。 盾构隧道大部分处于微风化泥质粉砂岩、砂岩和砂砾岩中,局部位于淤泥质与粉质黏土中,部分地段穿越软硬不均底层,并通过多处断裂带和风化深槽;穿越基岩的最大单轴抗压强度为,渗透系数达×10-4m/s,石英含量最高达%,岩石地层的黏粉粒(≤75μm)含量达%。地下水主要为第四系地层的孔隙水和白垩系岩层的裂隙水,且具承压性,本标段隧道最大水压为。 本标段工程有工程规模大、设计标准高、涉及工法多、工期紧、工程地质复杂、水压力大、盾构掘进距离长等特点。同时,本工程存在明挖基坑地层软弱、长距离盾构掘进及刀具管理、高水压带压作业以及江底地中盾构对接与拆解等重难点。

大盾构掘进注浆技术交底

技术交底书表格编号 1311 项目名称广州市轨道交通地铁四号线南延5标项目经理部第1 页共页 交底编号4N5B-GCB- 工程名称广州市轨道交通四号线南延段施工5标土建工程 设计文件编号/ 施工部位大盾构始发掘进技术交底 交底日期2015年月日 技术交底内容: 1、技术交底范围 本交底适用于广州轨道交通四号线南延段施工5标【中间风井-南沙客运港站】大盾构区间盾构始发注浆及盾构掘进同步注浆施工。 2、工程概况 本次施工设计范围为中间风井~南沙客运港区间隧道全长1491.466 m,中风井-客运港站采用开挖直径11.71m泥水盾构施工;从中间北端头始发,始发后沿海港大道前进,掘进至YDK65+998.776后以800m的曲线半径右转至科技大道,最终掘进至南沙客运港站吊出。 3、施工准备 (1)砂浆准备 原材准备 1)砂要求采用细度模量1.6~2.3 的细砂,不允许夹杂有5mm 以上的豆石或杂物,需要时需对砂子进行过筛处理; 2)水泥、粉煤灰、膨润土不可有结块现象,细骨料中不可有大粒径的异物。 砂浆拌制 1)浆液配合比严格按工程师通知配合比配制; 2)原材料计量误差要控制在规范要求范围内;

图4.2 同步注浆系统点位布置图 (2)注浆时只需用双活塞注入泵将储存在砂浆箱中的浆液通过管路泵送到盾壳上的同步注浆点既可。 (3)注浆可根据需要采用自动控制或手动控制方式,自动控制方式即预先设定注浆压力,由控制程序自动调整注浆速度,当注浆压力达到设定值时,自行停止注浆。手动控制方式则由人工根据掘进情况随时调整注浆流量,以防注浆速度过快,而影响注浆效果。一般不从预留注浆孔注浆,以大大降低从管片渗漏水的可能。为了能够适应不同的注浆量和压力要求,注浆量和压力也可以在控制操作电脑屏上进行人工调整。 (4)同步注浆通过盾尾注浆孔在盾构推进的同时压注,在每个注浆孔出口设置压力传感器,以便对各注浆孔的注浆压力和注浆量进行检测与控制,从而实现对管片背后 盾尾 盾尾注浆 浆液注入 1 2 3 4 6 5

泥水盾构机操作总结

泥水盾构机操作总结 泥水盾构机操作的基本原则是:在控制切口环压力在要求范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口环压力的稳定是保证隧道正常、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口环压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口环压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错胎、崩缺、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过几个月的盾构机实际操作,我对自己操作泥水盾构机和质量控制方面的一些想法做如下总结。 (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的机理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制开挖面变形和地基沉降;在开挖面形成弱透水性泥膜,保持泥水压力有效作用于开挖面。泥浆作为一种运输介质将开挖下来的弃土以流体形式输送,经泥水分离处理设备滤除废渣,将泥水分离。泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。

(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥浆比重应比较高。从理论上讲,泥水比重最好能达到开挖土体的密度。但是,泥浆比重大会引起泥浆泵超负荷运转以及泥水处理困难;泥浆比重小虽可减轻泥浆泵的负荷,但因泥粒渗走量增加,泥膜形成慢,对开挖面稳定不利。因此,在选定泥浆比重时,必须充分考虑土体的地层结构,在保证开挖面的稳定的同时也要考虑泥水分离设备的处理能力。一般情况下,在砂层中,泥浆比重要求偏大一些,在1.20~1.25g/cm3,在粘土层中应当偏小一点,一般在1.10~1.15g/cm3。 (2)泥水粘度 泥水必须具有适当的粘性,以收到以下效果: ①防止泥水中的粘土、砂粒在土仓内的沉积,保持开挖面稳定; ②提高粘性,增大阻力防止逸泥; ③使开挖下来的弃土以流体输送,经泥水分离处理设备滤除废渣,将泥水分离。泥浆粘度低,达不到携带弃土能力和稳定开挖面的要求,粘度太高会影响它的运输能力,易形成堵管。在我们的掘进过程中,一般情况下,在全断面3-1,3-2砂层中,粘度控制在35s~40s,上部有3-1,3-2砂层,中低部为少量4-1粘土时,粘度控制在25~30s,中上部是4-1粘土层,下部有6、7、8号层时,粘度控制在20-25s。在实际掘进中,我们应当结合地层分布情况、泥水分离系统的出渣情况、进出口泥浆粘度和比重的差值、环流系统是否顺畅、地表沉降等原因综合考虑。

相关主题
文本预览
相关文档 最新文档