当前位置:文档之家› 数字几何模型的表达

数字几何模型的表达

数字几何模型的表达
数字几何模型的表达

从根本上说,在CAD / CAM 系统中只有两种模型,即内部模型和外部模型。通常将在计算机内部按某种数据结构形式表示、并能以数据文件或图形方式显示和输出的模型称为内部模型;而在计算机外部,即在设计者头脑中存在的模型,则称为外部模型.对设计和加工一体化的要求而言,使内、外两种模型完全一致是最理想的情况。但在目前的技术条件下,由于受软、硬件环境的限制,实现这一点还有些困难。

内部模型按所构造对象的不同,总起来可以分为规则形体模型和非规则形体模型二大类.规则形体模型可以用欧氏几何进行描述,如平面多面体、二次曲面体、雕塑曲面体等,统称为几何模型。它是由几何信息和拓扑结构两部分组成,通常可以分为线框(Wire 一frame Model )、表面(Surface Model )和实体(Solid Model )三种模型形式。对此已经有了一整套的理论和方法,并有许多商品化的几何造型系统供用户使用。非规则形体模型则不能用欧氏几何进行描述,如山水、草木、云烟等,因此需通过有别于构造几何模型的方法才能在计算机内表示它们的模型。

当然,现实世界中的客观对象往往会更丰富多彩,很难完全真实地用计算机内部的数据结构表达其所有的信息。而且点、线、面的几何形式已远远难以满足设计和修改的方便性以及CAD / CAPP / CAM 的集成所需。近年来发展起来的特征模型、产品模型以及尚在探索中的仿生模型等模型新技术,皆是出于这方面的努力。完全可以相信,随着人们的认知能力、知识表达手段以及软、硬件实现等技术的进一步提高,计算机中展示的模拟世界必将越来越直观和完整。

1 .线框模型

线框模型是CAD 技术发展过程中最早应用的一种三维模型。这种模型由一系列空间直线、圆弧和点组合而成,用来描述产品轮廓外形。具有数据结构简单,模型数据量小及易处理等特点,曾广泛应用于厂房布局、管路布设、机构模拟、干涉检验、产品几何形貌的粗略设计、机床加工刀具轨迹分析和有限元网络的自动生成等。但线框模型中线之间缺少表面的数据,而且分不清物体的内部和外部。它的局限性可概括为:

1 )多义性,易混淆这是由于线框模型没有实体形状的感觉,分不清可见边与不可见边,从而不能进行消隐处理而造成的。

2 )无法识别曲面轮廓圆柱体的轴向轮廓线取决于观察者所在的角度,在线框模型中由于无法识别而被省略,这样就容易造成混乱.按固定角度生成经线或许可以指明带曲面边界(如圈柱、球等)的物体形状。但图形上这些实际并不能存在的线会进一步引起混乱,尤其对不均匀剖面的物体更是如此。

3 )不能判断零件之间是否干扰线框模型没有表面的信息,不能在物体表面间进行干扰探测,这给三维机械运动分析,厂房布置和复杂管道装配等带来了很大困难。

4 )不能计算模型的几何特性和物理性质由于缺乏面和体的数据,使得表面积、体积、重量、重心和转动惯量等特性的计算都不能进行。

5 )不能自动给出立体的阴影色调效果色调变化和阴影效果是增加图形真实感的有力手段,已为三维造型技术所广泛应用,但它不能用于象线框那样没有表面信息的模型。

2 .表面模型

若把线框模型中棱线包围的部分定义为面,所形成的模型就是表面模型了,它比线框模型高级,其数据结构是在线框模型的基础上再附加一些指针,使棱线有序地连接。

采用表面模型,形体的边界确实可以全部定义了,但是形体的实心部分在边界的哪一侧是不明确的。其局限性可概括为:

1 )没有实体的概念,有时会引起混淆。

2 )算出的体积不一定可靠,取决于表面定义的准确性。

3 )不易实现消隐,内部结构不易显示。

尽管不如实体模型明确完整,但表面模型由于具有比线框模型更高级、更优越,以及易于实现等特点,在工程领域有广泛的应用场合,特别是进行类似汽车外形设计这种有复杂表面设计的工作。

按生成方式的不同,表面模型有以下几种:

l )基本面通过对一条线的扫描(s weePing )操作得到。例如,对一条直线的平移得到一个平面;对一条圆弧移动,则得到一个圆柱面。

2 )旋转面对一个平面绕某一轴进行旋转即可生成旋转面。当然这里得到的仍不是实体,而是面。

3 )相交面和相贯面用已定义的表面可以建立起相交面。例如,通过倒角在正方体和圆柱体之间用样条曲线自动生成的相交面。

4 )分析法表面用X 、Y 、Z 的数学公式可建立分析法表面,再根据数学方法计算出轮廓,即可自动产生表面。

5 )雕塑曲面也叫自由曲面,它不是由一个数学公式得出,一般都是用显示经纬样条曲线的方法在三维空间中显示它们。雕塑曲面模型常用于设计和制造汽车外壳、飞机机体、轮船船体、涡轮机叶片等。

6 )组合表面它通过四边形网络和纵横边界构成。每个网格叫做拓扑矩形(四条边不一定互相垂直),以横边界构成平滑的网格,用插值法定义网格内的平面。

3 .实体模型

如果要处理完整的三维形体,最终必须使用实体模型,方能明确、无误地反映物体的三维形貌。

实体模型是三维模型中最重要的,也是出现最晚的。一般需要在图形工作站上才能有效地进行。使用实体模型的优点可以概括为:

1 )完整地定义了立体图形,能区分外部。

2 )能进行消隐和干涉校验。

3 )能提供清晰的剖面图。

4 )能准确计算质量特性和有限元网格.

5 )可以加人颜色选择和色调浓淡控制。

6 )方便了机械运动的模拟。

4 .特征模型

激烈的市场竟争要求产品设计制造的周期越短越好。现有的CAD 系统往往只能进行低层次的几何元素调用,难以满足需要。人们希望能针对所设计零件的功能和结构直接进行特征的组装,生成特征模型(Feature Model ) ,并在产品设计过程中能利用特征的属性(Attributes )进行推理和决策,从而大大加快设计进程,且可望综合解决CAD / CAPP / CAM 一体化的任务。

所谓“特征”,指的是所有与产品设计制造乃至整个产品生命周期有关的工程概念。一般分为形体特征(Form Feature )、精度特征(Precision Feature )、材料特征(Material Peature )和技术特征(Technological Feature )四部分。所谓形体特征,是具有工程意义的几何抽象。它是“面”的概念,而不是“体”的信息,如螺纹、圆孔、键槽等。精度特征指产品的名义几何(Nominal Geomotry )所允许的误差,主要包括尺寸误差、形状公差及表面粗糙度等,它决定加工产品时的切削速度、工艺流程等参数。材料特征是那些与产品的材料型号、等级、热处理要求有关的参数。技术特征是有关产品的性能指标、操作规范等方面的信息。

作者:汽车模具https://www.doczj.com/doc/f016147393.html, https://www.doczj.com/doc/f016147393.html,

高中数学 立体几何 2.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(教师版)

八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正. 一、有关定义 1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球. 2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 二、外接球的有关知识与方法 1.性质: 性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等; 性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理); 性质4:球心在大圆面和小圆面上的射影是相应圆的圆心; 性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心). 初图1 初图2 2.结论: 结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心; 结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆; 结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处; 结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上; 结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球. 3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度); 三、内切球的有关知识与方法 1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性). 2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆). 3.正多面体的内切球和外接球的球心重合. 4.正棱锥的内切球和外接球球心都在高线上,但不一定重合. 5.基本方法:

最新几何图形计算公式汇总

小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 中小学教师信息技术考试理论试题 一选择题(40分,每一题1分) 1.下面选项是对信息的实质的理解和说明,其中错误的选项是________. A. 信息就是计算机的处理对象 B. 信息就是关于事物运动的状态和规律的知识 C. 信息就是信息,既不是物质,也不是能量 D. 信息就是人类同外部世界进行交换的内容的名称 2. 信息技术在教学中常用作获取学习资源的工具,人们常说,"因特网是知识的海洋".

(完整版)初中几何基本图形归纳(基本图形常考图形)86168

初中几何常见基本图形

C

F E D C B A F E D C B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 为 a 2 5; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长 C B A 300

D C A 45 A B C 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450: ①△ABE ∽ECD ②设BE=x ,则CD=a x ax 22-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有 ()22234x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点: ①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。 14、如图,E 是正方形ABCD 对角线上一点,EF ⊥CD ,EG ⊥BC : ①AE=FG ;②AE ⊥FG 。 15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合: ①EF 是BD 中垂线; ②BE=DE ,若AB=3,AD=5,设DE=x ,则()2 2 253x x =-+。 16、将矩形ABCD 顶点A 沿BD 翻折,A 落在E 处,如图: ①BD 是AE 中垂线,AB=BE ;②△BEF ≌△DCF ;③BF=DF 。 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见基本图形

F E D C B A F E D B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: BD 长为 a 2 5 ; ②当BD 是角平分线时,BD 长为①当D 是AC 中点时, a 224-。 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的 点,且∠AED=450 :①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 C B A 300

E D C B A 45 A B C 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠ 时,∠ DAE=400; ②当∠ BAC=1000 BAC=x 0 时, ∠ DAE= 2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()222 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

高中数学《立体几何》重要公式、定理

高中数学《立体几何》重要公式、定理 1.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 3.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 4.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 5.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 7.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a . (2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb . 8.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ?存在实数λ使a=λb . P A B 、、三点共线?||AP AB ?AP t AB =?(1)OP t OA tOB =-+. ||AB CD ?AB 、CD 共线且AB CD 、不共线?AB tCD =且AB CD 、不共线. 9.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 10.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角 线所表示的向量. 11.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1 k ≠

初中几何基本图形归纳基本图形常考图形资料全

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD= C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 AP平分BAC PB=PC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点:

①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: ①当D 是AC 中点时,BD 长为 a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠ AED=450:①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE= 2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x , 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。

立体几何公式

立体几何公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

立体几何公式 一、平面图形 名称符号周长C和面积S 1、正方形 a—边长 C=4a S=a2 2、长方形 a和b-边长C=2(a+b) S=ab 3、三角形 a,b,c-三边长; h-a边上的高;s-周长的一半; A,B,C-内角其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形 d,D-对角线长;α-对角线夹角 S=dD/2·sinα 5、平行四边形 a,b-边长; h-a边的高;α-两边夹角 S=ah =absinα 6、菱形 a-边长;α-夹角; D-长对角线长; d-短对角线长 S=Dd/2 =a2sinα 7、梯形 a和b-上、下底长; h-高; m-中位线长 S=(a+b)h/2 =mh 8、圆 r-半径; d-直径; C=πd=2πr S=πr2 =πd2/4 9、扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 10、弓形 l-弧长; b-弦长; h-矢高; r-半径;α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 11、圆环 R-外圆半径;r-内圆半径;D-外圆直径;d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 12、椭圆 D-长轴;d-短轴;S=πDd/4 二、立方图形 名称符号面积S和体积V 1、正方体 a-边长S=6a2 ; V=a3 2、长方体 a-长;b-宽;c-高;S=2(ab+ac+bc) ; V=abc 3、棱柱 S-底面积; h-高; V=Sh 4、棱锥S-底面积 h-高;V=Sh/3 5、棱台 S1和S2-上、下底面积 h-高;V=h[S1+S2+(S1S1)1/2]/3 6、拟柱体 S1-上底面积;S2-下底面积;S0-中截面积;h-高 V=h(S1+S2+4S0)/6

初中几何基本图形归纳(基本图形+常考图形)

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD=C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 ①AC平分BAD ②AB=CB ③BC∥AD AP平分BAC PB=PC ①AB=AC ②BD=CD ③AD BC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、B E交于F : ①△AE B≌△A DC ②∠B FD =600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a: ①AF :DF:AD =2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF =a 3 3 3、如图Rt △ABC 中,∠C =900 ,∠B=300 ,AC=a,D 是AC 上的点: ①内切圆半径为 a 2 1 3 ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900 ,AB=AC =a ,D 是AC 上的点:

F E D B A F E D C B A D C B A D C A 45 A B C a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长为 5、如图,如图R t△ABC 中,∠B AC=900,A B=A C=a ,E、D是BC 、AC上的点,且∠ AE D=450:①△ABE ∽ECD ②设BE=x,则C D=a x ax 2 2-。 6、如图A B=AC,∠A =360 ,则:BC = 2 1 5-AB 。 7、如图AB=A C,D 是BC 上一点,AE=AD,则: 2 1 ∠BAD=∠ED C。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD,B E=BA,则当:①∠BA C=1000时,∠DAE =400;②当∠BAC=x 0时,∠D AE=2 180x -0 。 9、如图,△BC A中,D是三角形内一点, ①当点D 是外心时,∠B DC= 21 ∠A;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠AC B=900 ,DE 是AB 中垂线,则①AE=B E,若AC=3,BC=4,设AE=x, 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E是正方形A BCD 对角线BD 上一点,AE 交BC 延长线于点F ,H是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽EC F; ③EC ⊥C H; ④EC 是以BG 为直径的圆的切线。 12、如图,AB CD 、CGFE 是正方形:①△DCG ≌CBCE; ②BE ⊥DG 。 ? C B A 300 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

初中几何基本图形归纳(基本图形+常考图形)

9 2 初 中 几 何 常 见 基 本 图 形 序号 1 基 本 图 形 A C D B 基 本 结 论 2 3 子母型 ① ② 2· C B 4 ③ 2· ④ 2· 5 C C A 6 D B D 7 D 8 90 + 2 A P B C D

16()/2 ∥∥18 AD D E ∥ 20AD AE DE == AB AC BC 1090-2 11①平分 ② ③∥ “二推一” ⊕⊕→⊕ 12 13为中线 1:3:2 平分 14 A 12 B D C A ① “二推二” ② ③⊕⊕→⊕⊕ ④1= 15D E D、E为中点2 ∥ B C A D E、F为中点E F 17 B H D C E、F、G、H A为中点 G E B F C 四边形为平行四边形 A型A AE AD AE DE === BD CD AB AC BC 19 B C X型E D A ∥AD AE AD AE DE === BD CD AB AC BC B C 假A型 A E D B C

d B ④ O∠90° 25 AD P A PD == BC PC PB O 26 P A PD AD PC PB BC P 29 ∠∠ ∠∠180°假子母型A 21D2· B B C 221:1:2 A C C ①过圆心二推三 23 A O R E a/2 ②垂直于弦 ③平分弦 平分弦所对的优弧 ⑤平分弦所对的劣弧 ⊕⊕→⊕⊕⊕ R22+(2)2 24A D C为直径 B 蝶型 D A P B C 规型 A B == O D C 27A型 A O B D P · PB PD BD == PC P A AC C A 28O D B AB BC AC == BD AB AD 2· C D A O 30 B C E ①过圆心“二推一” O②过切点 ③垂直于切线 A C B

高中数学立体几何解析几何 判定&性质&公式整理(全)

高中数学必修二复习 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系: 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

八个无敌模型——全搞定空间几何的外接球和内切球问题

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图1 图2 图3 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162 ==h a V ,2=a ,24164442 222=++=++=h a a R ,π24=S ,选C ; (2 )933342 =++=R ,ππ942 ==R S (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则正三棱锥ABC S -外接球的表面积是 。π36 解:引理:正三棱锥的对棱互垂直。证明如下: 如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥, BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM ⊥,MN SB //, ∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥, 故三棱锥ABC S -的三棱条侧棱两两互相垂直, ∴36)32()32()3 2()2(2222=++=R ,即3642=R , (3)题-1 A A

几何计算公式大全

几何体计算公式大全 长方形的面积=长×宽 长方形的周长=(长+宽)×2 正方形的周长=边长×4 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高平面图形名称符号周长C与面积S 正方形a—边长C=4a S=a2 长方形a与b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长

d-短对角线长S=Dd/2 =a2sinα 梯形a与b-上、下底长 h-高 m-中位线长S=(a+b)h/2 =mh 圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 椭圆D-长轴 d-短轴S=πDd/4 立方图形 名称符号面积S与体积V 正方体a-边长S=6a2 V=a3 长方体a-长 b-宽 c-高S=2(ab+ac+bc) V=abc 棱柱S-底面积 h-高V=Sh 棱锥S-底面积 h-高V=Sh/3 棱台S1与S2-上、下底面积 h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积 S2-下底面积 S0-中截面积

高一数学必修2空间几何部分公式定理大全

必修2空间几何部分公式定理总结 棱柱、棱锥、棱台的表面积 设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即 . 设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即 . 设圆台的上、下底面半径分别为,,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即 . 柱、锥、台的体积公式 柱体体积公式为:,(为底面积,为高) 锥体体积公式为:,(为底面积,为高) 台体体积公式为: (,分别为上、下底面面积,为高) 球的体积和表面积 球的体积公式 球的表面积公式

其中,为球的半径.显然,球的体积和表面积的大小只与半径有关. 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 推论1 经过一条直线和直线外一点有且只有一个平面. 推论2 经过两条相交的直线有且只有一个平面. 推论3 经过两条平行的直线有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 (平行公理)平行于同一条直线的两条直线互相平行. 定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 不同在任何一个平面内的两条直线叫做异面直线. 空间两条直线的位置关系有且只有三种: 共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点. 空间中直线与平面位置关系有且只有三种: 直线在平面内——有无数个公共点 直线与平面相交——有且只有一个公共点 直线与平面平行——没有公共点 直线与平面相交或平行的情况统称为直线在平面外. 两个平面的位置关系只有两种: 两个平面平行——没有公共点 两个平面相交——有一条公共直线 异面直线所成的角 已知两条异面直线,经过空间任一点作直线∥,∥,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作. 异面直线的判定定理 过平面外一点与平面内一点的直线,和平面内不经过该点的直线 是异面直线.

2020高考数学-立体几何中的常用模型

⑵ A 2013 l ∥α l l ∥β α, β α∥β B l ⊥α l ⊥β α∥β C l ⊥α l ∥β α∥β D α⊥β l ∥α l ⊥β 第 6 讲立体几何中的常用模型 §6.1 平行与垂直的直观感受 【例1】⑴ A B 2013 m ∥α m ∥α m,n n∥α m∥β αβ m∥n α∥β C m∥n m ⊥α n ⊥α D m ∥α α⊥β m⊥β A α⊥β α β B α β α β C α⊥γ β⊥γα∩ β= l l ⊥γ D α⊥β α β

§6.2 借助正(长)方体模型研究问题 【例2】 A B C D .

【例3】 ABCD - A 1B 1C 1D 1 P . BD 1 【例4】 ABCD . AB = C D = 2 AC = BD = 3 AD = BC = §6.3 外接球问题 【例5】 3 【例6】 2019 A - BCD AB ⊥ BCD AB = BD = CB = CD = 1 A - BCD P 5 1 2 2

1 E F §6.4 等体积法 【例7】 ABCD - A 1B 1C 1D 1 D 1 - EDF A 1 D 1 C 1 B 1 E F D C A B 【例8】 EF = 1 2 ABCD - A 1B 1C 1D 1 △AEF C 1 E D 1 1 B 1D 1 A - CEF . B 1 F A 1 C B D A AA 1 B 1 C E F

. . β 32π 3 B 4π C 2π b ?β? b ∥γ ? α? β?α? 【习题1】 2012 A . B C D . 【习题2】 2011 A α ⊥ β α β B α β α C α ⊥ γ β ⊥ γ α β = l l ⊥ γ D α ⊥ β α β 【习题3】 a 、b 、c a ∥c ? ? a ∥b ? α ∥γ ? ? α ∥ β ? α、β、γ a ∥γ ? ? a ∥b ? a ∥ c ? ? a ∥α ? α ∥ c ? ? α ∥ β ? a ∥γ ? ? a ∥α ? A B C D 【习题4】 S - ABC SA ⊥ ABC AB ⊥ BC S SA = AB = BC = 1 A C B 【习题5】 2014 A D 1 2 4π 3

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

八个无敌模型—全搞定空间几何的外接球和内切球问题

八个有趣模型——搞定空间几何体的外接球与切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图1图2图3 方法:找三条两两垂直的线段,直接用公式2 2 2 2 ) 2(c b a R+ + =,即2 2 2 2c b a R+ + =,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C )A.π 16B.π 20C.π 24D.π 32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是π9 解:(1)16 2= =h a V,2 = a,24 16 4 4 42 2 2 2= + + = + + =h a a R,π 24 = S,选C; (2)9 3 3 3 42= + + = R,π π9 42= =R S (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM⊥,若侧棱SA=则正三棱锥ABC S-外接球的表面积是。π 36 解:引理:正三棱锥的对棱互垂直。证明如下: 如图(3)-1,取BC AB,的中点E D,,连接CD AE,,CD AE,交于H,连接SH,则H是底面正三角形ABC的中心,∴⊥ SH平面ABC,∴AB SH⊥, BC AC=,BD AD=,∴AB CD⊥,∴⊥ AB平面SCD, ∴SC AB⊥,同理:SA BC⊥,SB AC⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM⊥,MN SB//, ∴SB AM⊥, SB AC⊥,∴⊥ SB平面SAC, ∴SA SB⊥,SC SB⊥, SA SB⊥,SA BC⊥, ∴⊥ SA平面SBC,∴SC SA⊥, 故三棱锥ABC S-的三棱条侧棱两两互相垂直, ∴36 )3 2( )3 2( )3 2( ) 2(2 2 2 2= + + = R,即36 42= R, (3)题-1 A A

相关主题
文本预览
相关文档 最新文档