当前位置:文档之家› 高等结构动力学总结

高等结构动力学总结

高等结构动力学总结
高等结构动力学总结

结构动力学课程总结与进展综述

首先谈一下我对高等结构动力学课程得认识。结构动力学研究结构系统在动力荷载作用下得位移与应力得分析原理与计算方法。它就是振动力学得理论与方法在一些复杂工程问题中得综合应用与发展,就是以改善结构系统在动力环境中得安全与可靠性为目得得.这门课得主要内容包括运动方程得建立、单自由度体系、多自由度体系、无限自由度体系得动力学问题、随机振动、结构抗震计算及结构动力学得前沿研究课题。既有线性系统得计算,又有非线性系统得计算;既有确定性荷载作用下结构动力影响得计算,又有随机荷载作用下结构动力影响得随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼得计算.我们就是航空院校,当然我们所修得高等结构动力学主要针对得就是飞行器结构。这门课程很难,我通过课程与考试学到了不少东西,当然,也有很多东西不懂,我得研究方向就是动力学结构优化设计,其中我对于目前得灵敏度分析研究比较感兴趣,这门课程就是我以后学习得基础。

二十世纪中叶,计算机科学发展迅速,有限元方法得到长足进步,使得力学,特别就是结构力学得研究方向发生了重大变化,研究范围也得以拓宽。长期处于被动状态得结构分析,转化到主动得结构优化设计,早期得结构优化设计,考虑得就是静强度问题。但实践指出,许多工程结构,例如飞行器,其重大事故大多与动强度有关。同理,在航天、土木、桥梁等具有结构设计业务得工作部门,运用结构动力学优化设计技术,必将带来巨大得经济效益。20世纪60年代,动力学设计也称动态设计(dynamicdesign)开始兴起,但真正得发展则在八、九十年代,现正处于方兴未艾之际。“动态设计”一词常易引起误解,逐被“动力学设计"所取代.进入90年代以来,结构动力学优化设计得研究呈现出加速发展得态势,在许多方面取得了令人耳目一新得成果。尽管如此,它得理论与方法尚有待系统与完善,其软件开发与应用与工程实际还存在着较大得距离,迄今尚存在着许多未能很好解决甚至尚未涉足得问题。因此,结构动力学优化设计今后得研究任重而道远,将充满众多困难与障碍,面临各种新得挑战,但它得学术价值与发展前景也异常诱人与辉煌。

在结构动力学优化设计得初期采用得就是分布参数设计法,它属于解析方法,Niordson率先应用此种方法研究了简支梁固有频率最大化得设计问题,利

用拉格朗日乘子法导出了梁最优截面应满足得方程.由于该方程直接求解得困难,故构造了一个数值渐进解得迭代求解公式,获得了梁截面得最佳分布。鉴于分布参数设计方法本身得局限性,人们在后来得结构动力学优化中将注意力转向了准则设计与数学规划两类方法。

准则设计法就是通过力学概念或工程经验来建立相应得最优设计准则。其优点就是物理意义明确,方法相对简单,优化中结构重分析次数少,收敛速度较快。数学规划法以规划论为理论基础,数学严谨,适用面广,且收敛性有保证.其缺点就是计算量较大,收敛较慢,特别对于多变量得结构优化问题更甚。70年代以后,结构优化设计中得数学规划法吸收了准则法得优点,根据力学特征进行了某些改进,如显式逼近、变量连接、选择有效约束、引入倒数变量、采用对偶求解技术等,使计算效率得到了显著提高。在结构动力特性优化设计中采用较多得数学规划方法有:罚函数法、乘子法、序列线性规划法与二次规划法等.

动力学优化可分为三个层次:优化结构元件得参数,称为参数优化或尺优化(sizingoptimization);优化结构得形状,称为形状优化(shapeoptimi zation);优化结构得拓扑结构,称为拓扑优化(topology optimization).拓扑优化难度最大,但它就是优化中最具有生命力得研究方向。来瞧两种发展比较好得优化方法,一种就是随机载荷作用下,以均方响应为约束得结构动力学设计方法;另一种就是关于结构动力学形状优化设计,杆系结构得动力学形状优化,一般选择结点坐标(位置)作为设计变量,但通常可同时考虑截面尺寸优化,此时出现构件尺寸与结构几何形状两类设计变量,因此优化方法与策略总体上亦分为两类。一类方法就是将两类变量统一同时处理,采用无量纲化,构造近似问题求解,另一种就是广义渐进移动法。根据一般力学得基本概念,通过变量灵敏度分析,逐渐改进结构设计模型,最终达到优化设计得目得。该方法概念清楚,计算简单,适用于静力学与动力学领域得位移、应力、局部失稳与固有频率等约束条件下结构优化设计。

另一个与我比较紧密得课题就是灵敏度分析。灵敏度反映了设计变量或参数得改变对目标或约束函数得影响。在结构优化设计中,灵敏度信息被用来确定最优解得搜索方向,建立近似方程或用于构造优化迭代计算公式以及进行结构动力优化设计得修改。为此,灵敏度分析就是结构优化设计中时常面临得必须给予解

决得问题。现有得灵敏度求解方法主要有三类:解析法、数值法与两者混合得半解析法.解析法效率高,精度有保障.数值法与半解析法求解过程简单,易于工程实现。在结构动力学优化设计问题中,由于目标与约束函数通常为设计变量得高次非线性、隐式与复合函数,故其函数得性态与灵敏度分析远比结构静力结构静力优化中得函数要复杂得多。此外,灵敏度分析除了要求解结构特征值得灵敏度外,有时还需求出特征向量或结构动力响应得物理量(位移、应力等)对设计变量得灵敏度。我导师在灵敏度分析方向做过不少东西,这也就是我将来主要得研究方向。

目前得结构动力学优化设计比较热切得课题有:

1)关于结构动力学优化得反问题性质及解得存在性问题

尽管桁架结构得解得存在性初步得到了解决,在一定程度上可为连续体结构优化解得存在性研究提供借鉴作用,但鉴于连续体结构优化描述很难参数化,它仍然就是一块未开垦之地。另外,如何判断优化问题得解真正收敛到了最优值也就是意义重大得课题.

2) 关于结构动力学优化算法及重分析技术得研究

由于结构动力特性就是优化设计变量得复杂函数,且往往不存在显式表达式。实际结构得动力学优化,常就是多约束非线性规划问题。在数学上,如何结合结构动力学优化问题得特点,寻求此非线性规划问题得有效解法就是值得重视得.

另外,绝大数得结构动力学优化问题难以通过解析法求解,而数值解得寻优实际上就是一个迭代过程,要用到迭代修改过程中修改后得结构动力特性.因此,寻求简便得重分析技术就是很重要得,特别就是对大型得离散设计变量优化问题。否则,每步迭代过程中繁复得特征值计算会占用很多机时,使优化方法本身变得低效率高成本。

3) 关于结构动力学形状、拓扑与布局优化得研究

如何进一步研究、发展考虑结构动力学设计要求得双向拓扑优化方法;怎样将拓扑形式进行数学描述或参数化,连续体结构拓扑优化过程中还存在一些特殊问题,如“棋盘效应",最优拓扑对有限元网格敏感性、高效得单元删除策略,图像处理技术等,有待进一步研究与完善。目前结构动力学优化基本上主要集中在桁

架、梁、板、壳等单一得结构形式上,如何将现有方法推广到大型、复杂与组合结构体系上或开发复杂结构多级、多层次自适应拓扑优化方法,这值得进一步得研究,也将为结构动力学优化得工程应用打开突破口.

4) 关于结构动力学优化软件得系统开发及工程应用问题

目前结构动力学优化应用得面与实际成效远落后于优化理论得进展,其原因就是多方面得,其中涉及对具有动力优化功能软件得系统开发,特别就是国内具有自主知识产权得动力学优化软件得开发,这也成为阻碍其工程应用得又一重要因素。所以开发一种具有友好得用户界面与合宜得图象处理模块,能够实现优化过程与成果得可视化,且能与有关专业得CAD/CAE软件连接或在它得框架内成为它得一个子系统得软件就变得非常迫切起来.

参考文献

【1】王栋,马建军,用高阶梁单元计算结构附带集中质量得灵敏度,2014、【2】魏鹏飞,结构系统可靠性及灵敏度分析研究,西北工业大学博士研究生学位论文,2015。

【3】王庆,徐斌,何佳琦,机械科学与技术,2012、

【4】 Hu Liu, Weihong Zhang,Tong Gao、 A parative study of dynamic analysis methods forstructural

topology optimization under harmonic force ex

citations、 Structural and Multidisciplinary Optim

ization,2014、

【5】 MARIANA SILVA SOHN ,TOPICS IN STRUCTURAL TOPOLOGY OPTIMIZATION,2009、

【6】 Wanqun Chen? QingshunBai ? Kai Yang?Qiang Zhang ?Yingchun Liang,Dynamics design optimizati

on and experimentalvalidation of a miniaturized mac

hine tool for micro-milling,German Academic S

ociety for ProductionEngineering(WGP),2013、

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

高等结构动力学大作业

Advanced Structural Dynamics Project The dynamic response and stability analysis of the beam under vertical excitation Instructor:Dr. Li Wei Name: Student ID:

1.Problem description and thepurpose of the project 1.1 calculation model An Eular beam subjected to an axial force. Please build thedifferential equation of motion and use a proper difference method to solve this differentialequation. Study the dynamic stability of the beam related to the frequency and amplitude of the force. As shown in the Fig 1.1. Fig1.1 1.2 purpose and process arrangement a.learninghow to create mathematical model of thecontinuous system and select proper calculation method to solve it. b.learning how to build beam vibration equation and solve Mathieu equation. https://www.doczj.com/doc/f517179335.html,ing Floquet theory to judgevibration system’s stability and analyze the relationship among the frequency and amplitude of the force and dynamic response. This project will introduce the establishment of the mathematical model of the continuous system in section 2, the movement equation and the numerical solution of using MATLAB in section 3,Applying Floquent theory to study the dynamic stability of the beam related to the frequency and amplitude of the force in section 4. In the last of the project, we get some conclusions in section 5.

学习建筑力学心得word精品

学习建筑力学心得 《建筑力学》由理论力学、材料力学、结构力学三部分组成,它是土木工程专业一门重 要的专业基础课。《建筑力学》课程中的基本规律、原理和方法,是人们通过观察生活和生产实践 中的各种现象,进行多次科学实验,经过分析,综合和归纳所总结出来的。从很久以前到日益发展的现代社会,力学总是和人类的发展与进步息息相关。人类在远古时代就开始制作各种和力学相关的物品,例如弓箭、房屋、船以及乐器等等,这些都是简单的结果。随着现代社会的进步,人们对于结构设计的规律以及结构的强度和刚度逐渐有了更深的认识并且积累了经验,这表现在古代建筑的辉煌成就中,如埃及的金字塔、中国的万里长城、北京的故宫等等。虽然在这些结构中隐含力学的知识,但其归根并没有形成一门学科,随着现代社会的进步和发展,人们逐渐从这些结构和实践中总结出经验,形成了现代的力学一建筑力学。 现代社会所有的有关建筑的和力学室密不可分的,没有可靠的力学与结构分析 就没有安全而又实用的建筑物。特别是建筑力学对现代建筑的意义更为重要,每一 座好的建筑在开始建造前都要通过大量的实验验证和安全评估,否则将产生 诸多不良的影响,甚至损失难以估计。首先要考虑建筑结构的合理性,如何在实际 情况下选取合适节省材料的结构方式完成工程很重要。最重要的是要考虑到安全因 素,从整体的静力分析到有线单元的衍架与混凝土结构再到外部环境因素,例如风 载荷、地震、建筑物的本身质量等等以及有特殊设计要求的特殊场地,这 些都是和建筑力学密不可分的。 建筑力学是需要我们认真对待的,他几乎应用到所有角落。建筑是随着人类文 明进一步发展的,再好的。理论都需要可靠的实践来证明,同理好的理论和方法也 尤为重要,例如现代在计算机领域的应用,我们可以通过模拟软件来模拟模块的受 力及有线单元的使用等,很方便的促进了力学的分析和复杂问题的计算,所以他们 是相符发展和影响的。总之,力学和建筑是分不开的,作为一个建筑力学的学习 者,特别是对我这样对建筑工程感兴趣的学生来说,掌握最基本的分析方法和培养 良好的科学习惯尤为重要,并为以后的学习和工作打下坚实的基础,当一个工程在 我们手中像长城一样伫立不随着人类社会的进步和发展,人类逐渐 从建筑建构和实践中总结经验,发展成现代的力学理论与方法。这些理论和方法几 乎被应用到了所用领域。建筑的发展和力学是不可分的,可以说没有可靠的力学与 结构分析就没有安全而又实用的优秀建筑。尤其是对于现代建筑的意义更为重要, 每一座好的建筑建造前都要通过很多次的实验验证。如何用最少的材料建 造最安全适用的房屋是有一套过程的,通过对建筑模型的力学分析,如它的抗弯能 力,弹性性能等。尤其在一些大型桥梁建筑中使用的钢筋结构和拉杆等,在长期的负荷作用下如何保持结构的受力均衡和稳定,在做工程建造前必须有着严密的计算分析及准备方案。例如,在建设青藏铁路时,为了保证铁路地基的长年冷冻状态,在铁路两旁的地基中插入了数千根散热棒,否则地基会由于长期的工作解冻,坍塌裂缝,造成铁轨受力不均,造成不可预计的损失,这些都是要在实际工程中考虑和解决的问题,只有正确地利用力学才能把一座座优美坚固的建筑呈现在地上。 总结,建筑力学是一门技术基础课程,它为土木工程的结构设计及施工现场受 力问题的解决提供基本的力学知识和计算方法,我会努力学好建筑力学这门课程, 通过理论与实践相结合来不断的提高自己的能力,为祖国建设做出更大的贡献。

结构力学个人总结

结构力学个人总结 本页是精品最新发布的《结构力学个人总结》的详细文章,。篇一:结构力学心得体会 结构力学心得体会 本学期结构力学的课程已经接近尾声。主要是三部分内容,即渐近法、矩阵位移法和平面刚架静力分析的程序设计。通过为期八周的理论课学习和六次的上机课程设计,我收获颇丰。 而对结构力学半年的学习,也让我对这门学科有了很大的认识。结构力学是力学的分支,它主要研究工程结构受力和传力的规律以及如何进行结构优化的学科。工程力学是机械类工种的一门重要的技术基础课,许多工程实践都离不开工程力学,工程力学又和其它一些后绪课程及实习课有紧密的联系。所以,工程力学是掌握专业知识和技能不可缺少的一门重要课程。 首先,渐近法的核心是力矩分配法。计算超静定刚架,不论采用力法或位移法,都要组成和验算典型方程,当未知量较多时,解算联立方程比较复杂,力矩分配法就是为了计算简洁而得到的捷径,它是位移法演变而来的一种结构计算方法。其物理概念生动形象,每轮计算又是按同一步骤重复进行,进而易于掌握,适合手算,并可不经过计算节点位移而直接求得杆端弯矩,在结构设计中被广泛应用,是我们应该掌握的基本技能。本章要

求我们能够熟练得运用力矩分配法对钢架结构进行力矩分配和传递,然后计算出杆端最后的弯矩,画出钢架弯矩图。 其次,与上一学期所学的力法和位移法那些传统的结构力学基本方法相比,本学期所学的矩阵位移法是通过与计算机相结合,解决力法和位移法不能解决的结构分析题。其核心是杆系结构的矩阵分析,主要包括两部分内容,即单元分析和整体分析。矩阵位移法的程序简单并且通用性强,所以应用最广,范文 TOP100也是我们本学期学习的重点和难点。本章要求我们掌握单位的刚度方程并且明白单位矩阵中每一个元素的物理意义,可以熟练的进行坐标转换,最为重要的是能够利用矩阵位移法进行计算。 最后,是平面钢架静力分析的程序设计。其核心是如何把矩阵分析的过程变成计算机的计算程序,实现计算机的自动计算。我们所学的是一种新的程序设计方法—PAD软件设计方法,它的程序设计包括四步:1、把计算过程模块化,给出总体程序结构的PAD设计;2、主程序的PAD设计;3、子程序的PAD设计;4、根据主程序和子程序的PAD设计,用程序语言编写计算程序。要求我们具备结构力学、算法语言,即VB、矩阵代数等方面的基础知识。在上机利用VB 进行程序设计解答实际问题的过程中,我们遇到了各种各样的难题,每一道题得出最后的结果都不会那么容易轻松。第一,需要重视细节,在抄写程序代码时,需要同组人的分工合作,然后再把每一部分的代码合成一个整体然后运行,这

结构动力学读书报告

《结构动力学》 读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1. (1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi (它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: @7710 二送 结构动力学 (1)式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划 分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程

结构力学培训心得体会(精)

结构力学培训心得体会 浅谈结构变形图在定性结构力学教学中的应用 许凯 (武汉科技大学城市建设学院) 2008年7月25日至27日,我参加了《结构力学骨干教师高级研修班》培训。三天的培训使我受益良多,感谢两位主讲老师带给我们的新观点、新方法,这些新的理念引发了我对今后结构力学教学工作的诸多思考。 结构力学是结构工程师的看家本领,正因为如此,结构力学教学中能力和素质的培养应为教学工作的主导,应将能力培养贯穿教学活动的始终和各个环节,袁老师认为结构力学中有三个方面的能力要重点训练培养,它们是:经典方法分析能力,计算机分析能力和定性分析能力。也就是“一个基础、两座大厦”。这个比喻非常的形象,点出了结构力学教学的重点以及结构力学今后的发展方向。 “定性结构力学”培养的是学生定性的分析和判断能力。定性分析是结构力学以及其它所有力学进行分析和计算的概念性基础。工程中的概念设计、估算判断、计算模型建立、计算结果分析等都要用到定性分析。因此,对于没有条件开设这门课的高校,应该把该课程的内容融入到经典结构力学的教学中去,对此,我在教学工作中也做过一些尝试,今后考虑如何系统化,并以提高学生的综合素质与能力为着眼点。 一、由变形图确定弯矩图 正确绘制梁与刚架在荷载作用下的变形图,有助于确定结构内力图的大致形状,校核原结构的弯矩图是否正确,在定性结构力学中,具有十分重要的意义。 例如,对于各种形式的拱(见图1,a、b、c),如果让学生死记弯矩图的形状,一是不容易记住,二是不能理解其力学本质。通过绘制变形图(图中虚线部分,将杆件受拉一侧标记为+),很容易地得到弯矩图的大致形状。至于变形图的绘制,其实并不复杂,只要注意满足约束条件,注意荷载方向与变形趋势之间的关系,以及注意结点的特性等基本要素,再辅以适当的练习,就可以掌握其方法,并在结构的定性分析中灵活应用了。 更深一层地,可以用变形图对结构做进一步的分析和判断,例:用变形图判断混凝土拱结构的开裂部位。根据变形图(见图1,c),判断构件可能出现裂缝的部位(见图1,d)。

高等结构动力学读书笔记

宁波大学研究生期末考试答题纸(答案必须写在答题纸上) 姓名:王冠琼 _____________ 学号:1111083022 ____________ 课程名称:高等结构动力学

结构动力学和静力学的本质区别为是否考虑惯性力的影响。结构产生动力反应的内因(本质因素)是惯性力。惯性力的出现使分析工作变得复杂,而对惯性力的了解和有效处理又可使复杂的动力问题分析得以简化。在结构动力反应分析中,有时可通过对惯性力的假设而使动力计算大为简化,如在框架结构地震反应分析 中常采用的层模型。惯性力的产生是由结构的质量引起的,对结构中质量位置及其运动的描述是结构动力分析中的关键,这导致了结构动力学和结构静力学中对结构体系自由度定义的不同。 动力自由度(数目):动力分析中为确定体系任一时刻全部质量的几何位置所需要的独立参数的数目。独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。 3.结构动力问题的分类 一般可以将动力荷载分为确定性荷载和非确定性荷载。 确定性荷载的变化规律是完全确定的,无论是周期的还是非周期的,它们均可以用确定性的函数来表达。常见的确定性荷载有:简谐荷载、周期荷载、冲击荷载和持续长时间的非周期荷载。 非确定性荷载又称为随机荷载,它随时间的变化规律是预先不可以确定的,而是一种随机过程,例如,地震荷载、风荷载和作用在船舶与海洋结构物上的波浪力等。随机过程虽然不可以表示为时间的确定性函数,但是它们受统计规律的制约,需要用概率统计的方法来研究随机荷载作用下结构振动。 此外,有些荷载具有明显的非线性性质,例如,作用在海洋结构物上的波浪力是非线性的,非线性的荷载将激起机构系统的非线性振动。 综上所述,可以将结构的动力问题划分为: ①线性确定性振动,即结构自身是线性的并且承受线性荷载的作用; ②线性随机振动,即结构自身为线性的,荷载为随机的; ③非线性确定振动,即结构系统自身性质或者荷载为非线性的; ④非线性随机振动,即结构系统自身性质为非线性的而荷载为随机的,或者为非线性随机荷载。 4.结构系统的动力自由度及其离散 动力问题的特点之一是要考虑结构体系的惯性力,所以在确定计算简图时,必须明确系统的质量分布及其可能发生的位移,以便全面合理地确定系统的惯性力。系统振动时,确定任一时刻全部质量位移所需要的独立的几何参变量的数目,称为结构系统的动力自由度。要准确地描述系统的惯性力,合理地选择动力自由度是十分重要的。 一切结构系统都具有分布质量,因而都是无限自由度系统。但是除了某些简单的结构可以作为无限自由度处理以外,大多数的工程结构作为无限自由度计算将是极其困难的。在结构动力计算时,为了避免过于繁杂和数学上的困难,一般将结构处理为有限自由度系统,这一过程称为结构系统的离散。 以下是几种常用的离散方法: 1)集中质量法图1-1简支梁上有?三个较重的质量,其质量远大于梁结构自身的质量。若将梁的质量也集中到这些质量块上,则转化为有若干个质量块的有限自由度系统。对于在平面内振动的质量块,存在三个自由度即两个线位移和一个转角,相应地,每个质量块便有两个惯性力和一个惯性转矩,如果质量块的尺寸相对于梁的长度是较小的, 则可以忽略质量块的尺寸效应,即不计惯性转矩。因而转角也就可以不作为动力自由

理论力学学习心得

篇一:理论力学学习体会 理论力学学习体会 —理论力学所培养的能力 习每一门科目都会给我们带来一种能力的培养,学习数学是去学习思维,学习历史是去学习智慧......那么学习理论力学呢? 很多 人觉得理论力学很枯燥,学起来的时候感觉彻底颠覆了自己的思维,像高中学习的物理什么的 都变成错的了,有时候解下一道题时又感觉上一道的理论是错的,最后都不知道到底该用哪种 方法去理解了。其实,这只是在初学的时候所有的感觉。 理论 力学的学习本身就是一种思维的学习,不过又不仅仅是这样,其中的实际问题的探讨又能帮助 我们提高解决实际问题的能力,看待事物的灵活性等等。 中,一题多解的例子更多,可以用动力学普遍定理求解,也可以用达朗贝尔原理求解,或用动 力学普遍方程求解.我们在学习过程中,相同题型尽量用不同方法求解,做到各种方法融会贯 通.久而久之,就会使我们的思维变得灵活,遇到问题勤于思考、善于思考,广开思路,通过 自己的探索,找出最佳方案. 利用 知识之间的内在联系增强创新意识。 抓住 概念与定理之间的逻辑关系培养逻辑思维能力。 的绝对运动,先将其看作由相对运动、牵连运动组合而成,然后研究三种运动之间的速度关 系、加速度关系,再利用这些关系求解绝对运动的速度、加速度.在学习这些内容时,我们 要善于思考,然后注意分析的过程和解决的办法.一旦理解了这些解决问题的思路,就可以 触类旁通,并灵活应用. 借助 多种形式培养表达能力。受力分析时,需要准确、清晰地画出受力图;运动分析时,需要准 确、清晰地画出速度图、加速度图;计算求解时,需要列出各种方程式。通过这些,可以培养 我们的图像以及数学语言的表达能力。

结构动力学课程总结

结构动力学课程学习总结 本学期我们开了《结构动力学》课程,作为结构工程专业的一名学生,《结构动力学》是我们的一门重要的基础课,所以同学们都认真的学习相关知识。《结构动力学》是研究结构体系在各种形式动荷载作用下动力学行为的一门技术学科。它是一门技术性很强的专业基础课程,涉及数学建模、演绎、计算方法、测试技术和数值模拟等多个研究领域,同时具有鲜明的工程与应用背景。学习该门学科的根本目的是为改善工程结构系统在动力环境中的安全和可靠性提供坚实的理论基础。通过该课程的学习,可以掌握动力学的基本规律,有助于在今后工程建设中减少振动危害。 对一般的内容,老师通常是让学生个人讲述所学内容,课前布置他们预习,授课时采用讨论式,先由一名学生主讲,老师纠正补充,加深讲解,同时回答其他同学提出的问题。对较难或较重要的内容,由教师直接讲解,最后大家共同讨论教材后面的思考题,以加深对相关知识点的理解。 通过本课程的学习,我们了解到:结构的动力计算与静力计算有很大的区别。静力计算是研究静荷载作用下的平衡问题。这时结构的质量不随时间快速运动,因而无惯性力。动力计算研究的是动荷载作用下的运动问题,这时结构的质量随时间快速运动,惯性力的作用成为必须考虑的重要问题。根据达朗伯原理,动力计算问题可以转化为静力平衡问题来处理。但是,这是一种形式上的平衡,是一种动平衡,是在引进惯性力的条件下的平衡。也就是说,在动力计算中,虽然形式上仍是是在列平衡方程,但是这里要注意两个问题:所考虑的力系中要包括惯性力这个新的力、考虑的是瞬间的平衡,荷载、内力等都是时间的函数。 我们首先学习了单自由度系统自由振动和受迫振动的概念,所以在学习多自由度系统和弹性体系的振动分析时,则重点学习后者的振动特点以及与前者的联系和区别,这样既节省了时间,又抓住了重点。由于多自由度系统振动分析的公式推导是以矩阵形式表达为基础的,我们开始学习时感到有点不适应,但是随着课程的进展,加上学过矩阵理论这门课后,我们自觉地体会到用矩阵形式表达非常有利于数值计算时的编程,从中也感受到数学知识的魅力和现代技术的优越性,这样就大大增强了我们学习的兴趣。

结构动力学 读书报告

《结构动力学》读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1.(1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: 结构动力学 (1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程 可用三种等价但形式不同的方法建立,即:①利用达朗伯原理引

结构力学知识点考点归纳与总结

结构力学知识点的归纳与总结 第一章 一、简化的原则 1. 结构体系的简化——分解成几个平面结构 2. 杆件的简化——其纵向轴线代替。 3. 杆件间连接的简化——结点通常简化为铰结点或刚结点 4. 结构与基础间连接的简化 结构与基础的连接区简化为支座。按受力特征,通常简化为: (1) 滚轴支座:只约束了竖向位移,允许水平移动和转动。提供竖向反力。在计算简图中用支杆表示。 (2) 铰支座:约束竖向和水平位移,只允许转动。提供两个反力。在计算简图中用两根相交的支杆表示。 (3) 定向支座:只允许沿一个方向平行滑动。提供反力矩和一个反力。在计算简图中用两根平行支杆表示。 (4) 固定支座:约束了所有位移。提供两个反力也一个反力矩。 5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的 6. 荷载的简化——集中荷载和分布荷载 §1-4 荷载的分类 一、按作用时间的久暂 荷载可分为恒载和活载 二、按荷载的作用范围 荷载可分为集中荷载和分布荷载 三、按荷载作用的性质 荷载可分为静力荷载和动力荷载 四、按荷载位置的变化 荷载可分为固定荷载和移动荷载 第二章几何构造分析 几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变 2.1.2 运动自由度S S:体系运动时可以独立改变的坐标的数目。 W:W= (各部件自由度总和 a )-(全部约束数总和) W=3m-(3g+2h+b) 或w=2j-b-r.注意:j与h的区别 约束:限制体系运动的装置

2.1.4 多余约束和非多余约束 不能减少体系自由度的约束叫多余约束。 能够减少体系自由度的约束叫非多余约束。 注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。 2.3.1 二元体法则 约束对象:结点 C 与刚片 约束条件:不共线的两链杆; 瞬变体系 §2-4 构造分析方法与例题 1. 先从地基开始逐步组装 2.4.1 基本分析方法(1) 一. 先找第一个不变单元,逐步组装 1. 先从地基开始逐步组装 2. 先从内部开始,组成几个大刚片后,总组装 二. 去除二元体 2.4.3 约束等效代换 1. 曲(折)链杆等效为直链杆 2. 联结两刚片的两链杆等效代换为瞬铰

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dF Q F Q M M+d M d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

高等结构动力学总结

结构动力学课程总结与进展综述 首先谈一下我对高等结构动力学课程的认识。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算。我们是航空院校,当然我们所修的高等结构动力学主要针对的是飞行器结构。这门课程很难,我通过课程和考试学到了不少东西,当然,也有很多东西不懂,我的研究方向是动力学结构优化设计,其中我对于目前的灵敏度分析研究比较感兴趣,这门课程是我以后学习的基础。 二十世纪中叶,计算机科学发展迅速,有限元方法得到长足进步,使得力学,特别是结构力学的研究方向发生了重大变化,研究范围也得以拓宽。长期处于被动状态的结构分析,转化到主动的结构优化设计,早期的结构优化设计,考虑的是静强度问题。但实践指出,许多工程结构,例如飞行器,其重大事故大多与动强度有关。同理,在航天、土木、桥梁等具有结构设计业务的工作部门,运用结构动力学优化设计技术,必将带来巨大的经济效益。20世纪60年代,动力学设计也称动态设计(dynamic design)开始兴起,但真正的发展则在八、九十年代,现正处于方兴未艾之际。“动态设计”一词常易引起误解,逐被“动力学设计”所取代。进入90年代以来,结构动力学优化设计的研究呈现出加速发展的态势,在许多方面取得了令人耳目一新的成果。尽管如此,它的理论和方法尚有待系统和完善,其软件开发和应用与工程实际还存在着较大的距离,迄今尚存在着许多未能很好解决甚至尚未涉足的问题。因此,结构动力学优化设计今后的研究任重而道远,将充满众多困难和障碍,面临各种新的挑战,但它的学术价值和发展前景也异常诱人和辉煌。 在结构动力学优化设计的初期采用的是分布参数设计法,它属于解析方 法,Niordson率先应用此种方法研究了简支梁固有频率最大化的设计问题,利用拉

结构动力学解题思路及习题解答

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

弹性力学学习心得

弹性力学学习心得 大学时期就学习过弹性力学这门学科,当时的课本是徐芝纶教授的《简明弹性力学》,书的内容很丰富,但是由于课时有限加上我们自身能力的限制,本科期间只学习了前四章内容,学的比较粗略,理解的也不是很多,研一的这学期又有了一次学习的机会,通过杨老师耐心细致的讲解,我觉得弹性力学是一门十分有用并且基础的学科,值得我们去研究学习。 弹性力学与材料力学、结构力学的研究对象和研究方法上存在着一些差异,但是他们之间的界限却又不是那么明显。以弹性力学的平面问题为例,由弹性力学中平面问题的三套基本方程(平衡方程、几何方程和物理方程)和两种边界条件(应力边界、位移边界和混合)联立,就得到了求解两类平面问题(平面应力和平面应变)的一些基本方程。但是要由这些基本方程求得解析解,又是一个复杂而困难的问题。此时,引入结构力学中的力法和位移法,可以使得某些比较复杂的本来是无法求解的问题,得到解答。其中,位移法是以位移分量为基本未知函数,从基本方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,求出位移分量后,再求出形变分量和应力分量的方法。由于位移法能更方便地处理方程中的边界条件,因此,课本中多用位移法来进行求解。在这个章节的学习中,要先复习、回忆结构力学中关于力法、位移法的知识概念,再总结弹性力学按位移求解平面应力问题的步骤和方法。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 通过对弹性力学的二次学习,加上杨老师详尽而又有条理的讲授,我相信将对之后塑性力学和有限元法甚至以后的学习都会有很大帮助。

结构力学主要知识点归纳

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去 其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A、杆件的简化:常以其轴线代表 B、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C、体系简化:常简化为集中荷载及线分布荷载 D、体系简化:将空间结果简化为平面结构 2、结构分类: A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。二、平面体系的机动分析 1、体系种类 A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立 坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:W 3m (2h r ) ,m为刚片数,h为单铰束,r为链杆数。 A 、 W>0, 表明缺少足够联系,结构为几何可变; B、 W=0 ,没有多余联系; C、 W<0, 有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且 没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远 处的体系分析可见结构力学 P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制: A、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示

高等结构动力学 复模态分析基础

复模态分析基础 ?1. 引言1-粘性阻尼单自由度系统自由振动?2. 引言2-对称阻尼矩阵 ?3. 物理空间的复模态 ?4. 状态空间的复模态 ?5. 复模态叠加法 董兴建 上海交通大学振动,冲击,噪声研究所 机械大楼A832

1. 引言1-粘性阻尼单自由度系统自由振动 粘性阻尼单自由度系统自由振动方程 2c n m = 进一步令0mx cx kx ++= 定义:2n k m w =那么有:220 n x nx x w ++= n n z w = 从而有 () 12(cos sin )cos n n t d d t d x e c t c t e A t zw zw w w w q --=+=-衰减系数n 相对阻尼系数 z 特征根: 21,21n n s i zw w z =- -阻尼固有频率 2 1d n w w z =-欠阻尼自由振动解: () 12cos sin cos n n n x c t c t A t w w w q =+=-无阻尼自由振动解: 2 20 n n x x x zw w ++=

实际机械系统中不可避免地存在着阻尼:材料的结构阻尼,介质的粘性阻尼等. 阻尼力机理复杂,难以给出恰当的数学表达 在阻尼力较小时,或激励远离系统的固有频率时,可以忽略阻尼力的存在,近似地当作无阻尼系统 当激励的频率接近系统的固有频率,激励时间又不是很短暂的情况下,阻尼的影响是不能忽略的。 一般情况下,可将各种类型的阻尼化作等效粘性阻尼

有阻尼的n 自由度系统: ()x x x t ++=M C K P n x R ?ΦΛ假定已经得到无阻尼系统下的模态矩阵及谱矩阵作坐标变换 x h =ΦT T T T () t h h h ++=ΦM ΦΦC ΦΦK ΦΦP ()p p p t h h h ++=M C K Q T p =C ΦC Φ 模态阻尼矩阵 虽然主质量矩阵与主刚度矩阵是对角阵,但阻尼矩阵一般非 对角阵,因而主坐标下的强迫振动方程仍然存在耦合。 h

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

相关主题
文本预览
相关文档 最新文档