当前位置:文档之家› 运筹学之习题

运筹学之习题

运筹学之习题
运筹学之习题

运筹学习题

1.某商业集团公司在A1,A2,A3三地设有三个仓库,它们分别存40,20,40个单位产品,而其零售店分布在地区B i,i=1,┅,5,他们需要的产品数量分别是25

2.某饲养场所用混合饲料由n种配料组成,要求这种混合饲料必须含有m种不同的营养成分,并且每一份混合饲料中第i种营养成分的含量不能低于b j。已知每单位的第j种配料中所含第i种营养成分的量为a ij,每单位的第j种配料的价格为c j。在保证营养的条件下,应如何配方,使混合饲料的费用最省。试建立这个营养问题的数学模型,然后将其化成标准形式的线性规划问题。

3.用图解法求解下列线性规划问题:

(1)

12

12

1

2

min3

..20

612

2

x x

s t x x

x

x

+

?

?+≥

?

?

≤≤

?

?≥

?

(2)

12

12

12

1

2

min2

..2512

28

4

3

x x

s t x x

x x

x

x

+

?

?+≥

??

+≤

?

?≤≤

?

?≤≤

?

4.用单纯形法求解下列线性规划问题:

(1)

123

123

123

123

min2

..360

210

20

0,1,2,3

j

z x x x

s t x x x

x x x

x x x

x j

?=--+

?

++≤

?

?

-+≤

?

?+-≤

?

?≥=

?

(2)

1234

123

124

min3

..224

6

0,1,2,3,4

j

z x x x x

s t x x x

x x x

x j

=+++

?

?-++=

?

?

++=

?

?≥=

?

3

5.用两阶段法求解下列问题:

(1)

123

1234

1234

2

max342

..30

4

0,1,2,3,4

j

z x x x

s t x x x x

x x x x

x

x j

?=++

?

+++≤

?

?

++≤

?

?≥

?

?≥=

?

36 -2(2)

12

12

12

12

min24

..232

3

,0

z x x

s t x x

x x

x x

=+

?

?-≥

?

?

+≥

?

?≥

?

-

6.写出下面线性规划的对偶规划:

(1)

12

12

12

12

12

12

min1010

..525

3

32

24

,

x x

s t x x

x x

x x

x x

x x

+

?

?+≥

?

?+≥

?

?

+≥

?

?+≥

?

??

4

8

为自由变量

(2)

123

123

123

123

123

min24

..2342

263

355

,

x x x

s t x x x

x x x

x x x

x x x

++

?

?

++≥

?

?

++≥

?

?++≥

?

?≥

?0,为自由变量7.用对偶单纯形法求解下面问题:

123

123

123

123

min234

..23

234

,,

x x x

s t x x x

x x x

x x x

++

?

?++≥

?

?

-+≥

?

?≥

?0

8.某厂生产A,B两种产品,每件产品均要在甲,乙,丙各台设备上加工。

每件第j种产品在第i台设备上加工消耗工时为a ij,i=1,2,3;j=1,2.现在各台设备可用于生产这两种产品的工时分别为b i,i=1,2,3.每件第j种产品可提供利润c j,j=1,2.根据需要A,B产品的生产量不能少于k j>0件,j=1,2.而生产的A,B数量必须取整数。问如何安排生产能使该厂利润最大?试建立该问题的数学模型。

9.用分枝定界法解下述ILP问题:

(1)

12

12

12

12

max32

..2314

9

,

z x x

s t x x

x x

x x

=+

?

?+≤

?

?

+≤

?

?≥

?

23

0,且为整数

(2)

12

12

12

12

12

min114

..24

516

4

,

z x x

s t x x

x x

x x

x x

=--

?

?

-+≤

?

?

+≤

?

?-≤

?

?≥

?

2

2

0,且为整数10.用分枝定界法求解下面的混合整数线性规划问题:

12

12

12

121

max32

..2314

9

,

z x x

s t x x

x x

x x x

=+

?

?+≤

?

?

+≤

?

?≥

?

23

0,为整数

11.写出下述问题的数学规划模型。

将机床用来加工产品A,6小时可加工100箱,若用机床加工产品B,5小

时可加工100箱。设产品A和产品B每箱占用生产场地分别是10和20个体积单位,而生产场地(包括仓库)允许15000个体积单位的存储量。若机床每周加工时数不超过60小时,产品A生产x1(百箱)的收益为(60-5x1)x1元,产品B生产x2(百箱)的收益为(80-4x2)x2元,又由于收购部门的限制,产品A的生产量每周不能超过800箱。试制订最优的周生产计划,使机床生产获最大收益。

12.求以下无约束非线性规划问题的最优解:

()()()2

22

12121212

2

24121

21

(1)min ,22016(2)min ,12x x x x x x x x x x x x x

=+++--=+-f f

13.写出下列问题的K-T 条件,并求出它们的K-T 点。

(1) ()()22

1222

121212

min 32..5040,x x s t x x x x x x ?-+-?

?+-≤?+-=??≥? 2 0 (2)

()()221222

122

min 11..20

10

x x s t x x x ?-+-+??+-≤??-≤??

14.某人外出旅游,需将n 个物品供他选择装入行李袋,但行李袋的重量不能超过w 。第i 件物品的重量为a i 。价值为c i ,求这人应装哪几件物品使总重量不超过w ,但总价值最大。把这个问题看成多阶段决策问题并利用最优化原理找出递推公式。

15.有个畜牧场,每年出售部分牲畜,出售y 头牲畜可获利()y ?元。留下t

头牲畜再繁殖,一年后可得到at(a>1)头牲畜。已知该畜牧场年初有x 头牲畜,每年应该出售多少,留下多少,使N 年后还有z 头牲畜并且获得的收入总和最大。把这个问题当作多阶段决策问题,利用最优化原理找出递推公式。 16.用动态规划方法解下列非线性规划问题

(1) 2

123123123max 492..410,,z x x x s t x x x x x x ?=++?

++≤??≥?

23 0

(2)

12max ..n i z s t x x x a x ?=+

??

+++=??≥??

0,i=1,2,,n

17.用Kruskal 算法求下图所示网络中的最小树.

18.用Dijkstra 算法求下图所示有向网络中自点1到其他点的最短有向路.

19.用Ford-Fulkerson 算法求下图所示有向网络中从S 到T 的最大流.

20.用对偶算法求下图所示有向网络中从s 到t 其值为3的最小费用流

.

21.一汽车出租公司有三个支队,某天需供应汽车到四个目的地,其供需要求和

22设abc,ab,bc,ac,bdef,def 是六个字母组,现希望用每组中的一个字母分别表示它们,并且不回混淆,问是否可能?为什么?

23.求下图所示图的最大基数对象.

24. 求下图所示网络的最大权对象.

25.某单人到理发店,顾客到达服从最简单流,平均每小时到达3人,理发时间服从负指数分布,平均15分钟,试求

a.顾客来理发店不必等待的概率.

b.理发店内顾客的平均数.

c.顾客在理发店内平均停留时间.

26.系统{N(t);t ≥0},顾客带来服从参数为λ的最简单流,但顾客发现系统人多就不愿意排队等候,顾客接受服务的决心大小用概率a n 表示,这一概率与系统人数成反比,11

n a n =+,n 表示顾客的数目。服务时间服从参数为μ的负指

数分布(

1)λ

ρμ

=<,试证明这系统组成生灭过程,并求出0.,,,,,,n q q p p L L W W ελ 27.设有c 个M/M/1/∞系统,顾客到达都是参数

c

λ

的最简单流。服务时间服从参数为μ的负指数分布。另有一个M/M/c/∞系统,顾客到达服从参数为λ的

最简单流,每个服务台都服从参数为μ的负指数分布,

ρμ

=<,试比较这两者的:空闲概率p 0,等待概率1-p 0,等待队长L q ,队长L ,等待时间W q 及逗留时间。

28.某铁路局为经常油漆车厢,考虑了两个方案:方案一是设置一个手工油漆工场。年总开支为20万元(包括固定资产投资,人工费,使用费)。每节车厢油漆时间服从μ1=6(小时)的负指数分布。方案二是建立一个喷漆车间,年总开支为45万元,每节车厢的油漆时间服从μ2=3(小时)的负指数分布。设要油漆的车厢按最简单流到达,平均每小时1/8节。油漆工场常年开工(即每年开工时间为365×24=8760(小时)),每节车厢闲置的时间损失为每小时15元。问铁路局应采用哪个方案更好。

29.某单位有10部电梯,设电梯工作寿命服从负指数分布,平均工作15天,有一个修理工,修一部电梯的时间服从负指数分布,平均需时2天。求平均发生故障的电梯数及每部电梯平均停工时间。

30.某工厂欲新建一个车间,生产一种新产品。有三种方案可以选择。方案甲:从国外引进设备,固定成本800万元,每件产品的可变成本为10元;方案乙:采用一般国产自动化设备,固定成本500万元,每件产品的可变成本12元;方案丙:采用自动化较低的国产设备,固定成本300万元,每件产品的可变成本为15元。该工厂决定生产规模为每年产80万件,试确定最优生产方案。一般地,

若该厂生产规模为年产Q0万件,试讨论最优方案的选择。

31.某工厂为提高经济效益,决定研制具有现代化管理水平的经营管理信息系统,以加强市场的预测和管理决策,现有三种方案可供选择,各方案的性能和

个月,在停工期间该工程队可将施工机械搬走或留在原处。如搬走,一种方案是搬到附近仓库里,需花费2000元。一种是搬到较远的城里,需花费4000元。但当发生洪水时第一种方案将受到50000元的损失。如留在原处,一种方案是花1500元筑一护堤,防止河水上涨发生高水位的侵袭,若不筑护堤,发生高水位侵袭将损失10000元。如发生洪水时,则不管是否筑护堤,施工机械留在原处都受到60000元的损失。据历史资料,该地区夏季高水位发生的概率是0.02,试用决策树法找出最优方案。

33.某公司欲开发一个新项目。估计成功率为40%,一旦成功可获利润8000元。如果失败,则亏损4000元。该公司若请咨询部门帮助调查,则需要咨询费500元。在成功的情况下,咨询部门给出正确预报的概率为0.8,在失败的情况下,咨询部门给出正确预报概率为0.6,问该公司是否值得求助于咨询部门的帮助?该公司是否应该开发新项目?

34.假设甲,乙双方交战,乙方用三个师的兵力防卫一座城市,有两条公路可通过该城.甲方用两个师的兵力进攻这座城,可能两个师各攻一条公路,也可能都攻同一条公路。防守方可用三个师的兵力防守一条公路,也可以用两个师防守一条公路,用一个师防守另一条公路。哪方军队在某一条公路上的数量多,哪方军队就控制这条公路。如果军队数量相同,则有一半机会防守方控制这条公路,一半机会进攻方攻入该城。把进攻方作为局中人1,攻下这座城市的概率作为支付,写出该问题的矩阵对策。

35.求下列矩阵对策的最稳妥策略。

(1)

1232

5364

0242

??

?

?

?

??

(2)

6565

1421

8575

0262

??

?

-

?

?

?

??36.用线性规划方法解下面对策问题。

121

122

343

-

??

?

-

?

?

-

??

37.考虑一对策,其特征函数为

{}(){}(){}(){}(){}(){}(){}()14,230,1,251,37,1,2,310,2,36

V V V V V V V =======

求(1)分配集. (2)核心. (3)核仁. (4)证明(){}4,6,06V x x x =-≤≤是稳定集. (5)Shapley 值。

38.某个理事会,有5个理事,其中2个理事有否决权,通过一个提案必须有半数以上理事同意,且都不能投弃权票。通过提案得到为1,否则得到为0.求这个合作对策的核心,核仁,Shapley 值,稳定集。

《运筹学》题库

运筹学习题库 数学建模题(5) 1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: 试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则 max z =70x 1+120x 2 . 2、某公司生产甲、乙两种产品,生产所需原材料、工时和零件等有关数据如下: 建立使利润最大的生产计划的数学模型,不求解。 解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z = 4x 1+3x 2 . 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:

建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:建立线性规划数学模型: 设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则 max z =10x 1+6x 2+4x 3 . 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。每种物品的重量合重要性系数如表所示。设登山队员可携带的最大重量为25kg,试选择该队员所应携 试建立队员所能携带物品最大量的线性规划模型,不求解。 解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I 5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如下图所示: 根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。 解:设每月生产A 、B 、C 数量为321,,x x x 。 6、A 、B 两种产品,都需要经过前后两道工序,每一个单位产品A 需要前道工序1小时和后道工序2小时,每单位产品B 需要前道工序2小时和后道工序3小时。可供利用的前道工序有11小时,后道工序有17小时。 每加工一个单位产品B 的同时,会产生两个单位的副产品C ,且不需要任何费用,产品C 一部分可出售盈利,其余只能加以销毁。 出售A 、B 、C 的利润分别为3、 7、2元,每单位产品C 的销毁费用为1元。预测表明,产品C 最多只能售出13个单位。试建立总利润最大的生产计划数学模型,不求解。

运筹学试题及答案

运筹学A卷) 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分) 1.线性规划具有唯一最优解就是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为 则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0) 3.则 A.无可行解 B.有唯一最优解medn C.有多重最优解 D.有无界解 4.互为对偶的两个线性规划, 对任意可行解X 与Y,存在关系 A.Z > W B.Z = W C.Z≥W D.Z≤W 5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束

B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量 6、下例错误的说法就是 A.标准型的目标函数就是求最大值 B.标准型的目标函数就是求最小值 C.标准型的常数项非正 D.标准型的变量一定要非负 7、m+n-1个变量构成一组基变量的充要条件就是 A.m+n-1个变量恰好构成一个闭回路 B.m+n-1个变量不包含任何闭回路 C.m+n-1个变量中部分变量构成一个闭回路 D.m+n-1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解 9、有m个产地n个销地的平衡运输问题模型具有特征 A.有mn个变量m+n个约束…m+n-1个基变量 B.有m+n个变量mn个约束 C.有mn个变量m+n-1约束 D.有m+n-1个基变量,mn-m-n-1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数就是

运筹学习题精选

运筹学习题精选

运筹学习题精选 第一章线性规划及单纯形法 选择 1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量 2.约束条件为0 AX的线性规划问题的可行解集 b ,≥ =X 是………………………………………( B ) A.补集 B.凸集 C.交集 D.凹集 3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。 A.内点 B.外点 C.顶点 D.几何点 4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的 5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D) A.外点 B.所有点 C.内点 D.极点 6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解 7.满足线性规划问题全部约束条件的解称为…………………………………………………( C ) A.最优解 B.基本解 C.可行解 D.多重解 8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。 A.和 B.差 C.积 D.商 9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A ) 第 2 页共 30 页

第 3 页 共 30 页 A .多重解 B .无解 C .正则解 D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。 A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空 计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。 2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量, 表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2 B C 基 b 1x 2x 3x 4x 5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G

运筹学II习题解答

第七章决策论 1.某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 (1)悲观法:根据“小中取大”原则,应选取的经营策略为s3; (2)乐观法:根据“大中取大”原则,应选取的经营策略为s1; (3)折中法(α=0.6):计算折中收益值如下: S1折中收益值=0.6?50+0.4?(-5)=28 S2折中收益值=0.6?30+0.4?0=18 S3折中收益值=0.6?10+0.4?10=10 显然,应选取经营策略s1为决策方案。 (4)平均法:计算平均收益如下: S1:x_1=(50+10-5)/3=55/3 S2:x_2=(30+25)/3=55/3 S3:x_3=(10+10)/3=10 故选择策略s1,s2为决策方案。 (5)最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示; 第二,确定每一方案在不同状态下的最小遗憾值,并找出每一方案的最大遗憾值如圆括号中所示; 第三,大中取小,进行决策。故选取S1作为决策方案。

2.如上题中三种状态的概率分别为: 0.3, 0.4, 0.3, 试用期望值方法和决策树方法决策。 (1)用期望值方法决策:计算各经营策略下的期望收益值如下: 故选取决策S2时目标收益最大。 (2)用决策树方法,画决策树如下: 3. 某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3), 估计可能的概率为:P (θ1) =0.5, P (θ2)=0.3,P (θ3)=0.2。已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。根据过去的经验,地质构造与出油量间的关系如下表所示: P (I j|θi) 构造差(I1) 构造一般(I2) 构造好(I3) 无油(θ1) 0.6 0.3 0.1 贫油(θ2) 0.3 0.4 0.3 富油(θ3) 0.1 0.4 0.5 假定勘探费用为1万元, 试确定:

运筹学习题

一、线性规划:基本概念 1、下面的表格总结了两种产品A和B的关键信息以及生产所需的资源Q, R, S: 满足所有线性规划假设。 (1)在电子表格上为这一问题建立线性规划模型; (2)用代数方法建立一个相同的模型; (3)用图解法求解这个模型。 2、今天是幸运的一天,你得到了10000美元的奖金。除了将4000美元用于交税和请客之外,你决定将剩余的6000美元用于投资。两个朋友听到这个消息后邀请你成为两家不同公司的合伙人,每一个朋友介绍了一家。这两个选择的每一个都将会花去你明年夏天的一些时间并且要花费一些资金。在第一个朋友的公司中成为一个独资人要求投资5000美元并花费400小时,估计利润(不考虑时间价值)是4500美元。第二个朋友的公司的相应数据为4000美元和500小时,估计利润为4500美元。然而每一个朋友都允许你根据所好以任意比例投资。如果你选择投资一定比例,上面所有给出的独资人的数据(资金投资、时间投资和利润)都将乘以一个相同的比例。 因为你正在寻找一个有意义的夏季工作(最多600小时),你决定以能够带来最大总估计利润的组合参与到一个或全部朋友的公司中。你需要解决这个问题,找到最佳组合。 (1)为这一问题建立电子表格模型。找出数据单元格、可变单元格、目标单元格,并且用SUMPRODUCT函数表示每一个输出单元格中的Excel等式。 (2)用代数方法建立一个同样的模型。 (3)分别用模型的代数形式和电子表格形式确定决策变量、目标函数、非负约束、函数约束和参数。 (4)使用图解法求解这个模型。你的总期望利润是多少? 3、伟特制窗(Whitt Window)公司是一个只有三个雇员的公司,生产两种手工窗户:木框窗户和铝框窗户。公司每生产一个木框窗户可以获利60美元,一个铝框窗户可以获利30美元。Doug制作木框窗户,每天可以制作6扇。Linda制作铝框窗户,每天可以制作4扇。Bob切割玻璃,每天可以切割48平方英尺。每一扇木框窗户使用6平方英尺的玻璃,每一扇铝框窗户使用8平方英尺。 公司需要确定每天要制作多少窗户才能使得总利润最大。 (1)为这个问题建立一个电子表格模型,找出数据单元格、可变单元格、目标单元格,

运筹学重点习题及答案

综合习题二 1、自己选用适当的方法,对下图求最小(生成)树。(12分) 解:(1)最小树为图中双线所示 (2)最小树长14 2、用破圈法求下面网络的最短树 解:最小树如下图所示 由于q=5,p=6,则q=p-1,故已得最短树。 最小树长为12 2、用标号法求下列网络V1→V7的最短路径及路长。(12分) V 1 2 3 3 5 2 4 5 5 6 V 3 V 2 V 4 V 5 V 6 5 6 V 1 V 2 V 4 4 3 5 3 V 3 V 5 V 6 5 2 2 V 1 V 7 V 5 V 6 V 4 V 3 V 2 5 4 3 5 3 1 7 6 1 7 3 1

解: 最短路径:v 1→v 3→v 5→v 6→v 7 L=10 4、解: 第一轮: (1) 在G 中找到一个回路{v 1,v 2,v 3,v 1}; (2) 此回路上的边[v 1,v 3]的权数6为最大,去掉[v 1,v 3]。 第二轮: (1)在划掉[v 1,v 3]的图中找到一个回路{v 2,v 3,v 5,v 2}; (2)去掉其中权数最大的边[v 2,v 5]。 第三轮: (1)在划掉[v 1,v 3],[v 2,v 5]的图中找到一个回路{v 2,v 3,v 5,v 4,v 2} (2)去掉其中权数最大的边[v 3,v 5]。 第四轮: (1)在划掉[v 1,v 3],[v 2,v 5],[v 3,v 5]的图中找到一个回路{ v 4,v 5,v 6,v 4} (2)去掉其中权数最大的边[v 5,v 6](或可以去掉边[v 4,v 6],这两条边的权数都为最大)。 (2分) 在余下的图中已找不到任何一个回路了,此时所得图就是最小树,这个最小树的所有边 v 1 v 5 4 3 4 v 6 v 3 v 5 V 2 7 V 4 V 1 (v 1(v 1, 4) (v , 6) 1, 13) 5(v 1, 5)

运筹学试题

运筹学试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

运筹学试题 一、填空题(本大题共8小题,每空2分,共20分) 1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。 2.线性规划模型有三种参数,其名称分别为价值系数、___和___。 3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。 4.求最小生成树问题,常用的方法有:避圈法和 ___。 5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。 6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。 7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。 8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。 二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。 9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】 A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解 10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】 A.b列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零

11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】 A.3 B.2 C.1 D.以上三种情况均有可能 12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】 13.在运输方案中出现退化现象,是指数字格的数目【】 A.等于 m+n B.等于m+n-1 C.小于m+n-1 D.大于m+n-1 14.关于矩阵对策,下列说法错误的是【】 A.矩阵对策的解可以不是唯一的 C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失 D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值 【】 A.2 8.—l C.—3 D.1 16.关于线性规划的原问题和对偶问题,下列说法正确的是【】 A.若原问题为元界解,则对偶问题也为无界解

《运筹学》课后习题答案

第一章线性规划1、 由图可得:最优解为 2、用图解法求解线性规划: Min z=2x1+x2 ? ? ? ? ? ? ? ≥ ≤ ≤ ≥ + ≤ + - 10 5 8 24 4 2 1 2 1 2 1 x x x x x x 解: 由图可得:最优解x=1.6,y=6.4

Max z=5x 1+6x 2 ? ?? ??≥≤+-≥-0 ,23222212 121x x x x x x 解: 由图可得:最优解Max z=5x 1+6x 2, Max z= + ∞

Maxz = 2x 1 +x 2 ????? ? ?≥≤+≤+≤0,5242261552121211x x x x x x x 由图可得:最大值?????==+35121x x x , 所以?????==2 3 21x x max Z = 8.

12 12125.max 2328416412 0,1,2maxZ .j Z x x x x x x x j =+?+≤? ≤?? ≤??≥=?如图所示,在(4,2)这一点达到最大值为2 6将线性规划模型化成标准形式: Min z=x 1-2x 2+3x 3 ????? ??≥≥-=++-≥+-≤++无约束 321 321321321,0,05232 7x x x x x x x x x x x x 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥ 0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’ ????? ? ?≥≥≥≥≥≥-=++-=--+-=+-++0 ,0,0'',0',0,05 232 '''7'''543321 3215332143321x x x x x x x x x x x x x x x x x x x

运筹学习题

运筹学复习题 第一章 线性规划及单纯形法 一、单选题 1. 线性规划具有无界解是指 A. 可行解集合无界 B. 有相同的最小比值 C. 存在某个检验数0k λ>,且0(1,2,,)ik a i m ≤= D. 最优表中所有非基变量的检验数非零 2. 线性规划具有唯一最优解是指 A. 最优表中非基变量检验数全部非零 B. 不加入人工变量就可进行单纯形法计算 C. 最优表中存在非基变量的检验数为零 D. 可行解集合有界 3. 线性规划具有多重最优解是指 A. 目标函数系数与某约束系数对应成比例 B. 最优表中存在非基变量的检验数为零 C. 可行解集合无界 D. 基变量全部大于零 4. 使函数Z=-x 1+x 2+2x 3 减小最快的方向是 A. (-1,1,2) B. (1,-1,-2) C. (1,1,2) D. (-1,-1,-2) 5. 当线性规划的可行解集合非空时一定 A. 包含点X =(0,0,···,0) B. 有界 C. 无界 D. 是凸集 6. 线性规划的退化基可行解是指 A. 基可行解中存在为零的非基变量 B. 基可行解中存在为零的基变量 C. 非基变量的检验数为零 D. 所有基变量不等于零 7. 线性规划无可行解是指 A. 第一阶段最优目标函数值等于零 B. 进基列系数非正 C. 用大M 法求解时,最优解中还有非零的人工变量 D. 有两个相同的最小比值 8. 若线性规划不加入人工变量就可以进行单纯形法计算 A. 一定有最优解 B. 一定有可行解 C. 可能无可行解 D. 全部约束是小于等于的形式 9. 设线性规划的约束条件为 1231242224 01234 (,,,)j x x x x x x x j ?++=? ++=??≥=? 则非退化基本可行解是 A. (2, 0,0, 0) B. (0,2,0,0) C. (1,1,0,0) D. (0,0,2,4) 10. 设线性规划的约束条件为 1231242224 01234 (,,,)j x x x x x x x j ?++=? ++=??≥=? 则非可行解是 A. (2,0,0, 0) B. (0,1,1,2) C. (1,0,1,0) D. (1,1,0,0) 11. 线性规划可行域的顶点一定是 A. 可行解 B. 非基本解 C. 非可行解 D. 是最优解 12. 1234min z x x =+

运筹学试卷及答案

运筹学考卷

学 院: 专 业: 学 号: 姓 名: 装 订 线 考试时间: 第 十六 周 题 号 一 二 三 四 五 六 七 八 九 十 总分 评卷得分 一、 单项选择题。下列每题给出的四个答案中只有一个是正确的,将表示正确 答案的字母写这答题纸上。(10分, 每小题2分) 1、使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤,在 基变量中仍含有非零的人工变量,表明该线性规划问题( ) A. 有唯一的最优解; B. 有无穷多个最优解; C. 无可行解; D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中( ) A .b 列元素不小于零 B .检验数都大于零 C .检验数都不小于零 D .检验数都不大于零 3、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非零变量的个数( ) A. 不能大于(m+n-1); B. 不能小于(m+n-1); C. 等于(m+n-1); D. 不确定。 4、如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足( ) A. 0d +> B. 0d += C. 0d -= D. 0,0d d -+>> 5、下列说法正确的为( ) A .如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解 B .如果线性规划的对偶问题无可行解,则原问题也一定无可行解 C .在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数 D .如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

运筹学例题

某昼夜服务的公交线路 解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 s.t. x1 + x6≥60 x1 + x2≥70 x2 + x3≥60 x3 + x4≥50 x4 + x5≥20 x5 + x6≥30 x1,x2,x3,x4,x5,x6 ≥0 解得50,20,50,0,20,10(x1到x6)一共需要150人 一家中型的百货商场 解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6≥15 x3 + x4 + x5 + x6 + x7≥24 x4 + x5 + x6 + x7 + x1≥25 x5 + x6 + x7 + x1 + x2≥19 x6 + x7 + x1 + x2 + x3≥31 x7 + x1 + x2 + x3 + x4≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 解得12.0.11.5.0.8.0(x1到x7) 最小值36 某工厂要做100套钢架 设x1,x2,x3,x4,x5 分别为5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 s.t. x1 + 2x2 +x4≥100 2x3+2x4 +x5≥100 3x1+x2+2x3+3x5≥100 x1,x2,x3,x4,x5≥0 解得30,10,0,50,0 只需要90根原料造100钢架某工厂要用三种原料1、2、3 设设x ij 表示第i 种(甲、乙、丙)产品中原料j 的含量。 目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13≥0 -0.25x11+0.75x12 -0.25x13≤0 0.75x21-0.25x22 -0.25x23≥0 -0.5 x21+0.5 x22 -0.5 x23≤0 x11+x21 +x31≤100 x12+x22 +x32≤100 x13+x23+x33≤60 x ij≥0 , i = 1,2,3; j = 1,2,3 解得x11=100,x12=50,x13=50原料分别为第1种100 第2种50 第3种50 资源分配 解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。xk=分配给第k个工厂的设备台数。 已知s1=5, 并有S2=T1(s1,x1)=s1-x1,S3=T2(s2,x2)=s2-x2从Sk与Xk的定义,可知s3=x3 以下我们从第三阶段开始计算。Maxr3(s3,x3)=r3(s3,x3)即F3(s3)= Maxr3(s3,x3)=r3(s3,x3). 第二阶段F2(s2)=max[r2(s2,x2)+f3(s3)]第一阶段当s1=5时最大盈利为f1(5)=max[r1(5,x1)+f2(5-x1)] 得出2个方案⑴分配给甲0台乙0台丙3台⑵分配甲2台乙2台丙1台,他们的总盈利值都是21. 背包 设Sk=分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日Xk=在第k种咨询项目中处理客户的数量已知s1=10,有S2=T1(s1,x1)=s1-x1. S3=T2(s2,x2)=s2-3x2. S4=T3(s3,x3)=s3-4x3,第四阶段F4(s4)=maxr4(s4,x4)=r4(s4,[s4/7])第三阶段F3(s3)=max[r3(s3,x3)+f4(s3-4x3)]第二阶段F2(s2)=max[r2(s2,x2)+f3(s2-3x2)]第一阶段已知s1=10,又因s2=s1-x1有F1(10)=max[r1(10,x1)+f2(10-x1)] 综上当x1*=0,x2*=1,x3*=0,x4*=1,最大盈利为28 京城畜产品 解:设:0--1变量xi = 1 (Ai 点被选用)或0 (Ai 点没被选用)。这样我们可建立如下的数学模型:Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤720 x1 + x2 + x3 ≤2 x4 + x5 ≥1 x6 + x7 ≥1 x8 + x9 + x10 ≥2 xi≥0 且xi为0--1变量,i = 1,2,3,……,10 函数值245 最优解1,1,0,0,1,1,0,0,1,1(x1到x10的解) 高压容器公司

运筹学习题

第二章思考题、主要概念及内容图解法、图解法的灵敏度分析 1. 考虑下面的线性规划问题: max z=2x1+3x2; 约束条件:x1+2x2≤6, 5x1+3x2≤15, x1,x2≥0. (1) 画出其可行域. (2) 当z=6时,画出等值线2x1+3x2=6. (3) 用图解法求出其最优解以及最优目标函数值. 2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解.(1) min f=6x1+4x2; 约束条件:2x1+x2≥1, 3x1+4x2≥3, x1,x2≥0. (2) max z=4x1+8x2; 约束条件:2x1+2x2≤10, -x1+x2≥8, x1,x2≥0. (3) max z=3x1-2x2; 约束条件:x1+x2≤1, 2x1+2x2≥4, x1,x2≥0. (4) max z=3x1+9x2;

约束条件:x1+3x2≤22, -x1+x2≤4, x2≤6, 2x1-5x2≤0, x1,x2≥0 3. 将下述线性规划问题化成标准形式: (1) max f=3x1+2x2; 约束条件:9x1+2x2≤30, 3x1+2x2≤13, 2x1+2x2≤9, x1,x2≥0. (2) min f=4x1+6x2; 约束条件:3x1-x2≥6, x1+2x2≤10, 7x1-6x2=4, x1,x2≥0. (3) min f=-x1-2x2; 约束条件:3x1+5x2≤70, -2x1-5x2=50, -3x1+2x2≥30, x1≤0,-∞≤x2≤∞. (提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.) 4. 考虑下面的线性规划问题:

运筹学试题及答案汇总

3)若问题中 x2 列的系数变为(3,2)T,问最优解是否有变化; 4)c2 由 1 变为 2,是否影响最优解,如有影响,将新的解求出。 Cj CB 0 0 Cj-Zj 0 4 Cj-Zj 3 4 Cj-Zj 最优解为 X1=1/3,X3=7/5,Z=33/5 2对偶问题为Minw=9y1+8y2 6y1+3y2≥3 3y1+4y2≥1 5y1+5y2≥4 y1,y2≥0 对偶问题最优解为 y1=1/5,y2=3/5 3 若问题中 x2 列的系数变为(3,2)T 则P2’=(1/3,1/5σ2=-4/5<0 所以对最优解没有影响 4)c2 由 1 变为2 σ2=-1<0 所以对最优解没有影响 7. 求如图所示的网络的最大流和最小截集(割集,每弧旁的数字是(cij , fij )。(10 分) V1 (9,5 (4,4 V3 (6,3 T 3 XB X4 X5 b 9 8 X1 6 3 3 X4 X3 1 8/5 3 3/5 3/5 X1 X3 1/3 7/5 1 0 0 1 X2 3 4 1 -1 4/5 -11/5 -1/3 1 - 2 4 X 3 5 5 4 0 1 0 0 1 0 0 X4 1 0 0 1 0 0 1/3 -1/ 5 -1/5 0 X5 0 1 0 -1 1/5 -4/5 -1/3 2/5 -3/5 VS (3,1 (3,0 (4,1 Vt (5,3 V2 解: (5,4 (7,5 V4 V1 (9,7 (4,4 V3 (6,4 (3,2 Vs (5,4 (4,0 Vt (7,7 6/9 V2 最大流=11 (5,5 V4 8. 某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过 A、B、C 三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:ⅠⅡⅢ设备能力(台.h A 1 1 1 100 B 10 4 5 600 C 2 2 6 300 单

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

运筹学复习题目加答案

一、单选题 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2.下列说法中正确的是( )。 A .基本解一定是可行解 B .基本可行解的每个分量一定非负 C .若B 是基,则B 一定是可逆 D .非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( ) A.多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。 A .多重解 B .无解 C .正则解 D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。 A .多余变量 B .自由变量 C .松弛变量 D .非负变量 7.在运输方案中出现退化现象,是指数字格的数目( )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 二、判断题 1.线性规划问题的一般模型中不能有等式约束。 2.对偶问题的对偶一定是原问题。 3.产地数与销地数相等的运输问题是产销平衡运输问题。 4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。 5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。 6.线性规划问题的基本解就是基本可行解。 三、填空题 1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数 所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。 2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为: 3. 线性规划解的情形有 4. 求解指派问题的方法是 。 5.美国的R.Bellman 根据动态规划的原理提出了求解动态规划的最优化原理为 6. 在用逆向解法求动态规划时,f k (s k )的含义是:

最全的运筹学复习题及答案78213

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为 250,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋 90根,长度为4米的钢 筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当 于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

2019管理运筹学课后答案

第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数的值仍然保持原值。如果同时存在最小θ值,说明有离基变量,则该问题在两个顶点上同时达到最优,为无穷多最优解。无界解:若某个非基变量xNk 的检验数σk> 0 ,但其对应的系数列向量P k' 中,每一个元素a ik' (i=1,2,3,…,m)均非正数,即有进基变量但找不到离基变量。

最全的运筹学复习题及答案78213

最全的运筹学复习题及 答案78213

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250 ,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋 90根,长度为4米的 钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相 当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学考试复习题及参考答案

《运筹学试题与答案》 一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者 写“F”。 1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。( ) 2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。( ) 3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。( ) 4. 满足线性规划问题所有约束条件的解称为可行解。( ) 5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。( ) 6. 对偶问题的对偶是原问题。( ) 7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。( ) 8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。( ) 9. 指派问题的解中基变量的个数为m+n。( ) 10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。( ) 11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。( ) 12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。( ) 13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。( ) 14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。( ) 15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。 ( ) 二、单项选择题 1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。 A. 增大 B. 不减少 C. 减少 D. 不增大 2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。 A. 非基变量的检验数都为零 B. 非基变量检验数必有为零 C. 非基变量检验数不必有为零者 D. 非基变量的检验数都小于零 3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。 A. 非负条件 B. 顶点集合 C. 最优解 D. 决策变量 4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。 A. (4,4) B. (1,2) C. (2,3) D. 无法判断 5、下列数学模型中,()是线性规划模型。 MaxZ= 10x1+x2-3x3 x21+5x2≤15

相关主题
文本预览
相关文档 最新文档