当前位置:文档之家› 史上最全的高分辨率卫星介绍)

史上最全的高分辨率卫星介绍)

史上最全的高分辨率卫星介绍)
史上最全的高分辨率卫星介绍)

史上最全的高分辨率卫星介绍[转帖]

Worldview-I

―WorldView‖卫星系统

Digitalglobe的下一代商业成像卫星系统由两颗(WorldView-I和WorldView-II)卫星组成,其中WorldView-I于2007年7月发射,WorldView-II于2008年发射。

WorldView-I运行在高度450公里、倾角980、周期93.4min的太阳同步轨道上,平均重访周期为1.7天,星载大容量全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像。卫星还将具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。

WorldView-II卫星预计2009年-2010年发射,运行在770km高的太阳同步轨道上,能够提供0.5米全色图像和1.8米分辨率的多光谱图像。该卫星使Digitalglobe公司能够为世界各地的商业用户提供满足其需要的高性能图像产品。星载多光谱遥感器不仅将具有4个业内标准谱段(红、绿、蓝、近红外),还将包括四个额外(海岸、黄、红边和近红外2)。多样性的谱段将为用户提供进行精确变化检测和制图的能力,由于WorldView卫星对指令的响应速度更快,因此图像的周转时间(从下达成像指令到接收到图像所需的时间)仅为几个小时而不是几天

WorldView-I设计指标

Radarsat-2卫星介绍

Radarsat-2卫星于2007年12月14日在哈萨克斯坦的拜科努尔航天发射基地成功发射,是目前世界上最先进的商业卫星。1995年11月发射的加拿大雷达卫星(Radarsat)是一个兼顾商用及科学试验用途的雷达系统,其主要探测目标为海冰,同时还考虑到陆地成像,以便应用于农业、地质等领域。该系统有5种波束工作模式,即:(1)标准波束模式,入射角20°~49°,成像宽度100公里,距离及方位分辨率为25米x28米;(2)宽辐射波束,入射角20°~40°,成像宽度及空间分辨率分别为150公里和28米x35米;(3)高分辨率波束,三种参数依此为37°~48°,45公里及10米x10米;(4)扫描雷达波束,该模式具有对全球快速成像能力,成像宽度大(300公里或500公里),分辨率较低(50米x50米或100米x100米),入射角为20°~49°;(5)试验波束,该模式最大特点为入射角大,且变化幅度小49°~59°,成像宽度及分辨率分别为75公里及28米x 30米。与其他星载SAR系统比较,Radarsat SAR有以下三个特点:(1)具有45公里,75公里,100公里,150公里,300公里和500公里的不同辐射宽度成像能力;(2)分别为11.6MHz,17.3MHz, 30.0 MHz雷达带宽的选择性操作使距离分辨率可调;(3)较强的数据处理能力。

作为Radarat-1的后续星,Radarsat-2除延续了Radarsat -1的拍摄能力和成像模式外,还增加了3米分辨率超精细模式和8米全极化模式,并且可以根据指令在左视和右视之间切换,由此不仅缩短了重访周期,还增加了立体成像的能力。此外,Radarsat-2可以提供11种波束模式及大容量的固态记录仪等,并将用户提交编程的时限缩短到4-12小时,这些都使R-2的运行更加灵活和便捷。Radarsat -1号和2号双星互补,加上雷达全天候全天时的主动成像特点,可以在一定程度上缓解卫星数据源不足的问题,并推动雷达数据在国内各个领域的广泛应用和发展。

General Spacecraft Information 卫星说明

Synthetic Aperture Radar 合成孔径雷达(SAR )

Launch weight 重量:

2200 kg 2200公斤

Design lifetime 设计寿命:

7 years 7年

SAR antenna dimensions 合成孔径雷达天线尺寸:

15m x 1.5m 15米x 1.5米

Solar arrays (each) 太阳能电池阵列(每个):

3.73mx 1.8m 3.73mx 1.8m

Bus dimensions :

3.7mx 1.36m 3.7mx 1.36m

Radar Instrument Characteristics 雷达仪器特点

Frequency Band 频段:

C-Band (5.405 C波段(5.405千兆赫)

Bandwidth 带宽:

100 MHz 100兆赫

Polarization 偏振:

HH, HV, VH, VV HH, HV, VV and VH

Orbit Characteristics 轨道参数

Orbit 轨道:

Sun-synchronous 太阳同步轨道

Altitude 高度:

798 km 798公里

Inclination 倾角:

98.6 degrees 98.6度

Period 周期;

100.7 minutes 100.7分钟

Orbits per day Orbits per day;

14 14

Repeat Cycle 重复周期;

24 days 24天

Coverage Access (500km swath) Coverage Access (500km swath)

North of 70°北纬70度:

Daily 每天

North of 48°北纬48度:

Every 1-2 days 每1-2天

Equator 赤道:

Every 2-3 days 每2-3天

Quick Bird卫星

Quick Bird卫星于2001年10月18日由美国Digital Globe公司成功发射,是目前世界上能提供亚米级分辨率的成熟商业卫星,具有较高的地理定位精度,海量星上存储,单景影像比其它的商业高分辨率卫星高出2—10倍。而且Quick Bird卫星系统每年能采集七千五百万平方公里的卫星影像数据,存档数据每天以史无前例的速度在递增。在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里。通过对卫星所获取的数据的应用和商业民用化普及证明,目前该卫星的技术在世界商业卫星领域内为技术最领先的,该系统成功的为各个领域的遥感数据应用用户提供了高质量的卫星数据产品,其稳定性和灵活性已经得到了各应用行业的认可 .

成像参数:

GeoEye-1简介

美国GeoEye-1卫星是一颗迄今技术最先进、分辨率最高的商业对地成像卫星,由GeoEye美国公司于2008年9月6日发射成功,是首个使用军用级GPS的非军用卫星,能准确告之此卫星在天空的确切位置。卫星拥有0.41m全色(黑白)分辨率和1.65m多谱段(彩色)分辨率, 目标定位精度可达3米。该卫星以全色模式工作时每天能够拍摄总面积达7×105平方千米的图像(数据量达数十亿字节),以多谱段模式工作时每天将能够拍摄总面积达3.5×105平方千米的图像。和目前在轨的任何商用系统相比,它将在给定时间内收集更多的图像。该卫星于2008年10月7日成功获取了全球第一幅0.5米级高分辨率的卫星影像图,影像上地物清晰,充分展示了GeoEye-1卫星数据的高精度优势。在卫星侧视角度超过50°时,它仍能保证优秀的成像质量。

GeoEye-1高分辨率卫星影像能够实现大比例尺的地形图制作、细微地物的解译与判读等应用。这包括用于国防和情报部门的大型地区绘图、州和当地政府的城市规划和绘图、保险和风险管理、环境监控和灾难救援,这些图像还是在线地图搜索引擎的理想选择。

GeoEye-1技术指标

?分辨率/成像幅宽

—全色: 0.41-meter

—多光谱: 1.65-meter

—幅宽15.2 km

?定位精度<3m

?星载固态存储器1.0 Terabit

?全色数据每天获取能力700,000 sq km

?多光谱数据每天获取能力350,000 sq km

?11 Bit 动态范围

?下传速率

—700 Mbps

—150 mbps

?下传天线装有万向节的X波段天线

?重访周期: 2.8 天

?轨道: 98°,太阳同步,10:30 a.m.

?轨道高度: 684 km

?设计寿命: 7 years (可用燃料>10年)

?发射质量: 2050 kg

?波音Delta II 运载火箭

?星下点数据幅宽15.2km

?单景面积(sq km) 231 sq km

?星下点全色单片数据最大采集能力125 sq km/sec

?点状目标全色数据最大采集能力(50 km间距) 1,100 sq km/min 5 点/min

ALOS介绍

先进的对地观测卫星ALOS是JERS-1与ADEOS的后继星, 2006年1月24日发射,分辨率可达2.5米。卫星载有三个传感器:全色立体测绘仪(PRISM) ,高性能可见光与近红外辐射计-2(AVNIR-2),相控阵型L波段合成孔径雷达(PALSAR)卫星采用先进的陆地观测技术,能够获取全球高分辨率陆地观测数据,主要应用目标为测绘、环境观测、灾害监测、资源调查等领域,

ALOS卫星技术参数介绍:

发射时间2006年1月24日

运载火箭H-IIA

卫星质量约4,000kg

生产电量约7000W(生命末期)

设计寿命3-5年

轨道太阳同步轨道

重复周期:46天重访时间:2天高度:691.65km

倾角:98.160

姿态控制

精度

2.0 x 10-40 (配合地面控制点)

定位精度1米

数据速率240Mbps(通过数据中继卫星) 120Mbps(直接下传)

星载数据

数据记录仪存储量(90GB)

存储器

AVNIR-2传感器:

新型的AVNIR-2传感器比ADEOS卫星所携带的AVNIR具有更高的空间分辨率,主要用于陆地和沿海地区的观测,为区域环境监测提供土地覆盖图和土地利用分类图.为了灾害监测的需要, AVNIR-2提高了交轨方向能力,侧摆角度为+ 440,能及时观测受灾地区。用于精确地面观测。

AVNIR-2传感器光谱模式:

高分辨率卫星影像数据报价

GeoEye-1/IKONOS卫星影像数据价格表 说明: 1. 所有影像未经镶嵌处理。 2. 存档与编程: A. 存档数据:3个月前采集的Geo Ortho Kit数据 B. 编程数据:未采集的数据和3个月以内新采集的数据 3. 标准交付期: A. 存档数据:合同签订后5-10个工作日 B. 编程数据:数据接收成功后10-15个工作日 4. 起订面积: A. 存档数据:49km22 (最短边长不小于5公里) B. 编程数据:100km22 (最短边长不小于5公里)

5. 编程费用:标准编程免收编程费,如需加急编程,每个工作区收取38000 元编程费。 6. 运保费:人民币500元。 7. 含云量规定:实际含云量面积低于20%的影像为合格产品,若要求云量覆 盖在10%以内的影像每平方公里加价25%,要求云量覆盖在5%以内的影像每平方公里加价50%。 8. 目标仰角规定:标准拍摄目标仰角在60°- 90°之间。若要求拍摄目标仰 角在72°-90°之间,每平方公里需加收10%的附加费。 QuickBird/WorldView-1/WorldView-2影像数据价格表一、真彩色\彩红外\全色\4波段多光谱(MS1): 二、4波段捆绑(Pan+MS1)\ 4波段融合数据: 三、立体像对(基础产品):

卫星编程级别说明: 1.S级:优先级别最低的编程订单,适用于对影像获取时间要求不严格的客户,以及订单竞争不激烈的地区。优点是单价比较低,客户可以自己设定采集开始和截止时间, 或接受DG提供的采集周期;缺点是获取时间比较长.云量覆盖率不大于15% 。 2.S+级:优先级别比S级订单高,适用于急于获取合格影像的客户,以及订单竞争一般激烈的地区。优点是客户可以自己设定采集开始和截止时间,或接受DG提供的采集周期,单价相对较低,可以保证获取影像的质量。云量覆盖率不大于15% 。 3.AS级:优先级别较高,适用于急于获取合格影像的客户,以及订单竞争激烈的地区。客户必须接受DG提供的采集周期,并接受分批交付。优点是订单优先级别高,如果在DG提供的采集周期内没有完成采集,客户可以选择用DG现有的其他存档数据免费填充未完成的区域,或继续延长订单的采集周期。如果客户选择取消编程订单的未完成部分 并用免费存档数据填充未完成区域,应在原AS级订单取消后180天进行免费数据的申请;如果客户选择延长采集周期,DG会重新评估并给出新的采集周期,客户必须接受这个新的采集周期。云量覆盖率不大于15% 。 4.SS级:优先级别最高的编程订单,目标区域宽度要求小于13.5 公里,南北长度小于165 公里。DG会在未来2周的时间内,指定一个日期进行单次接收,客户可以提前48 小时确认订单,订单一旦确认,不能取消,无论云量多少均收全款。适用于灾害分析、

高分辨率卫星影像在新能源工程测量中的应用研究

高分辨率卫星影像在新能源工程测量中的应用研究 摘要:本文讨论了在新能源工程测量项目中利用0.4米WorldView高分辨率卫星立体像对作为数据源来进行地形图测量的作业方法,检测了DOM和DEM的高程精度,能够满足1:2000山地的平面和高程精度要求,为风电场测量工作提供了可靠的工程技术手段参考。 关键词:高分辨率卫星;立体像对;DEM;风电 随着国家能源产业政策的调整,风能、太阳能等新兴能源产业的投资也越来越多。与传统的火力发电厂相比,新能源测量工程项目要求获取较大面积且比例尺较大的地形图,且大多选址在无人活动的山区或丘陵地区,地物相对较少,而且风电场平面地物测量重点主要是风电场内道路、电力线、通讯线以及风机位附近的地物,对远离风机位的一般地物要求不是特别严格。采用常规的工程测量手段难以满足项目建设周期要求,而且人员劳动强度大,测量成本较高。因此,如何快速有效地提供满足规范要求的地形图产品成为项目推进的关键。 近年来高分辨率卫星的高速发展,迎来了大比例尺航天测图的新时代。例如美国GeoEye卫星影像分辨率已经达到了0.4m、WorldView-3卫星影像分辨率达到0.3m。近年发射的高分辨遥感卫星大都具有侧视成像能力,具备与航空立体像对接近的基高比,使星载遥感立体像对获取DEM(数字高程模型)成为可能。 利用高分辨率卫星影像立体像对进行立体量测得到DEM,能够大大缩短DEM 生产周期,提高生产效率。针对风电场地形图测量往往面积较大、地形较复杂的特点,非常适合利用高分辨率卫星立体像对作为数据源来进行地形图测绘。本文将结合河南某风电场测量工程讨论使用0.4米WorldView高分辨率卫星立体像对作为数据源来进行地形图测量的作业方法。 1 高分辨率遥感卫星简介 本文所使用的数据是美国WorldView-3卫星0.4米分辨率的立体像对,WorldView-3为DigitalGlobe公司的第四代高分辨率光学卫星,于2014年8月发射,最高分辨率达到0.3米,是目前市面上分辨率最高的商业光学卫星。 2 技术路线 结合武汉适普软件有限公司的VirtuoZo SAT卫星影像系统,本文总结制定了从获取数据到地形图绘制的全套作业流程,如图1所示: 3 新能源工程应用 在宁夏某风电场测图工程中利用WorldView-3卫星0.4米高分辨率立体像对内业测量地形图32.7km2。该工程位于山区,植被主要是灌木和高度为2-4m的树木。 3.1像控点测量 购买的卫星数据面积在120km2左右,需要成图的测区面积在24km2左右,本文在影像的四周和中部均匀布设15个像控点,像控点选在明显地物的几何中心且高程没有突变的地方,如道路交叉角处,利用HeCORS系统进行RTK坐标测量。 3.1像控点测量 购买的卫星数据面积在120km2左右,需要成图的测区面积在24km2左右,本文在影像的四周和中部均匀布设15个像控点,像控点选在明显地物的几何中心且高程没有突变的地

国产高分辨率卫星影像自动化高精度处理

国产高分辨率卫星影像自动化高精度处理----------卫星影像基于已有DOM/DEM自动化处理测试报告1、测试情况 1.1.数据情况 影像类型景数单景全色大小单景多光谱大小 高分一号31624M156M 天绘一号15976M137M资源1号02C7300M*2103M资源三号6 1.12G606M 1.2参考数据 参考DOM:影像分辨率为2米; 参考DEM:1:1万分幅DEM,格网间距为5米。 1.3机器性能 电脑工作站一台,其主要性能配置如下: CPU:Intel Xeon E5-269016核 RAM:128G 磁盘驱动器:Samsung SSD850

2 、作业流程 3、效率统计 3.1预处理 已有DEM和DOM预处理可在任务开展前,电脑全自动化进行预 处理,本次任务预处理1:10000分幅参考DEM2871,参考DOM40.5G,利用晚上时间(18小时)完成。 3.2自动定向纠正与融合处理 备注:以下时间全为计算机自动计算的时间,不需额外人工处理 影像类型全色影像自动定向与纠正全色与多光谱影像配准纠正与融合 高分一号4.5分钟/景(总共20景,7核 并行,90分钟完成) 1.2分钟/景(总共31景,12核并行, 37分钟完成) 天绘一号9分钟/景(总共9景,5核并 行,85分钟完成) 6分钟/景(总共15景,15核并行, 106分钟完成) 资源三号25分钟/景(总共5景,单核 处理,128分钟完成) 45分钟/景(总共5景,单核处理, 220分钟完成)

4、成果展示 4.1控制点分布情况 备注:因计算机保密要求,以下所有图片均为彩色打印再扫描得到的,色彩有些偏色。 图1高分一号全色影像基于底图匹配控制点分布情况 图2天绘全色影像基于底图匹配控制点分布情况

高重访高分卫星影像价格表

北京揽宇方圆信息技术有限公司 高重访高分卫星影像价格表 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、PlanetScope卫星 1、数据价格 PlanetScope卫星群上百颗卫星每天对地球自主拍摄,无需用户编程。针对该卫星高重访覆盖的优势,特推出多期覆盖优惠包,具体如下: 卫星分辨率期数要求数据单价订购规则

1)适用范围:此数据价格只针对中国境内区域,中国境外区域数据价格另议。 2、产品类别 1)存档规则:数据获取30天以上为存档数据。 2)编程计划提交:请提前一周提交编程计划申请。 2、产品类别

三、RapidEye卫星 1、数据价格 1)适用范围:此数据价格只针对中国境内区域,中国境外区域数据价格另议。 2、产品类别 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

公司形象展示

信誉证书、荣誉证书、相关资质证书 卫星遥感影像技术服务ISO(9001)认证证书复印件

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

高分辨率卫星影像报价

北京揽宇方圆信息技术有限公司 高分辨率卫星影像报价 单片产品单位:元/平方公里产品类型存档S级编程/90天内编程S+级编程 Worldview-3 0.3米真彩色 330550640 0.3米全色+4个多光谱 Worldview-30.3米全色+8个多光谱420690800 Geoeye Worldview-2 Wordview-3 0.4米真彩色 220244360 0.4米全色+4个多光谱 Worldview-2 Worldview-3 0.4米全色+8个多光谱330380430 Geoeye Worldview-2 Wordview-3 0.5米真彩色 195220330 0.5米全色+4个多光谱 Worldview-2 Worldview-3 0.5米全色+8个多光谱310340400 Worldview-10.5米全色146179280 Quickbird(快鸟) 0.6米真彩色 195220330 0.6米全色+4个多光谱

ikonos 0.8米真彩色 130190300 0.8米全色+4个多光谱 pleiades 0.5米真彩色 195195220 0.5米全色+4个多光谱 rapideye5米多光谱121215资源三号 2.1米全+5.8米多光谱4000 高分一号2米全色+8米多光谱4000 高分二号0.8米全色+3.2米多光谱20000 锁眼卫星全色6000 默认的数据产品级别是:没有经过地形校正的产品,只经过了辐射校正、传感器和卫星平台引起的误差校正,具有地图投影。用户可以直接通过相关专业软件结合自己的DEM、RPC参考模型、亚米级精度的地面控制点来做正射校正。 立体产品单位:元/平方公里产品类型存档S级编程/90天内编程S+级编程全色340440840 4波段5406401152 8波段8909901511 IKONOS4105101020 Pleiades-1540640840 立体相对100平方公里起订 北京揽宇方圆信息技术有限公司

高分辨率卫星影像数据正射图制作工艺及应用

高分辨率卫星影像数据正射图制作工艺及应用 朱继东程晓阳刘宏陈绍光 (北京天目创新科技有限公司北京 100088) 摘要:本文阐述了应用高分辨率卫星获取地球表面影像数据制作正射影像图的工艺及在抗震救灾、全国第二次土地调查中的应用。随着航天技术的发展和普及,针对卫星影像数据的相关应用处理技术将成为我国地理信息相关产业空间信息获取和保障的重要手段。 关键词:卫星;数据;正射影像图 应用卫星获取地球表面影像数据制作正射影像图,可以为地理信息系统及时提供可靠的地形信息,测地卫星能不断地对地球拍摄,提供新的地表信息,卫星影像数据全部采用通用的电子计算机处理,工艺简便,生产效率高。所以,应用卫星影像数据制作正射影像图具有很大优势。目前,美国QuickBird(快鸟)和World View-1(视界-1)影像分辨率分别达到0.61米和0.47米像素,为制作大、中比例尺正射影像图创造了必要条件。随着航天技术的不断发展和普及,应用卫星影像数据制作大、中比例尺正射影像图将会成为重要的技术途径。 一、基于卫星影像数据的地表正射影像图基本制作工艺 应用卫星影像数据制作正射影像图的整个工艺流程,都是在通用的电子计算机中进行,采用专门遥感处理软件进行数据处理。 1.1控制资料 ●导航矢量数据 针对成果的精度要求,利用少量精度相对较高的矢量资料作为控制资料。 ●已有地形图 利用现有的1:10000或1:50000比例尺的地形图作为控制资料。 ●实测控制点 利用外业GPS实测控制点作为控制资料,适合高精度成果。 1.2 处理软件 PCI Geomatica10.1专业遥感影像处理软件,PhotoShop等其它辅助软件。 1.3正射影像制作流程 针对通用的快鸟捆绑数据正射影像图制作流程见图1。

全色卫星影像 多光谱卫星影像 高光谱卫星影像

北京揽宇方圆信息技术有限公司 全色卫星影像多光谱卫星影像高光谱卫星影像 随着光谱分辨率的不断提高,光学遥感的发展过程可分为:全色(Panchromatic)→彩色(Color Photography)→多光谱(Multispectral)→高光谱(hyspectral)。 注: 全色波段(Panchromatic band),因为是单波段,在图上显示是灰度图片。全色遥感影像一般空间分辨率高,但无法显示地物色彩。实际操作中,我们经常将之与波段影象融合处理,得到既有全色影象的高分辨率,又有多波段影象的彩色信息的影象。 全色波段,一般指使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段。全色遥感影象也就是对地物辐射中全色波段的影象摄取,因为是单波段,在图上显示是灰度图片。全色遥感影象一般空间分辨率高,但无法显示地物色彩。 多光谱遥感 多光谱遥感:将地物辐射电磁破分割成若干个较窄的光谱段,以摄影或扫描的方式,在同一时间获得同一目标不同波段信息的遥感技术。 原理:不同地物有不同的光谱特性,同一地物则具有相同的光谱特性。不同地物在不同波段的辐射能量有差别,取得的不同波段图像上有差别。 优点:多光谱遥感不仅可以根据影像的形态和结构的差异判别地物,还可以根据光谱特性的差异判别地物,扩大了遥感的信息量。 航空摄影用的多光谱摄影与陆地卫星所用的多光谱扫描均能得到不同普段的遥感资料,分普段的图像或数据可以通过摄影彩色合成或计算机图像处理,获得比常规方法更为丰富的图像,也为地物影像计算机识别与分类提供了可能。

高光谱 高光谱遥感起源于20世纪70年代初的多光谱遥感,它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。同传统遥感技术相比,其所获取的图像包含丰富的空间、辐射和光谱三重信息。 高光谱遥感技术已经成为当前遥感领域的前沿技术。 高光谱遥感具有不同于传统遥感的新特点: 1)波段多:可以为每个像元提供十几、数百甚至上千个波段; 2)光谱范围窄:波段范围一般小于10nm; 3)波段连续:有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱; 4)数据量大:随着波段数的增加,数据量成指数增加; 5)信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加。 优点: 1)有利于利用光谱特征分析来研究地物; 2)有利于采用各种光谱匹配模型; 3)有利于地物的精细分类与识别; 异同点 国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为多光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为高光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspectral)阶段(陈述彭等,1998)。 高光谱和多光谱实质上的差别就是:高光谱的波段较多,普带较窄。(Hyperion有233~309个波段,MODIS有36个波段) 多光谱相对波段较少。(如ETM+,8个波段,分为红波段,绿波段,蓝波段,可见光,热红外(2个),近红外和全色波段) 高光谱遥感就是多比多光谱遥感的光谱分辨率更高,但光谱分辨率高的同时空间分辨率会降低。

高景一号卫星影像与美国WORLDVIEW卫星对比

北京揽宇方圆信息技术有限公司

高景一号卫星影像与美国WORLDVIEW卫星对比 1、中国高景一号卫星介绍: 中国高景一号卫星 高景一号卫星是中国航天科技集团公司自主研制的商业高分辨率遥感卫星,是未来商业遥感卫星系统首发星,由两颗0.5米分辨率的光学卫星组成,具有专业级的图像质量、高敏捷的机动性能、丰富的成像模式和高集成的电子系统等技术特点。据介绍,高景一号单颗卫星重约500公斤,全色分辨率0.5米,多光谱分辨率2米,轨道高度500公里。幅宽12公里,具有连续条带、多条带拼接、多目标和立体等多种成像模式。 2、美国地球之眼-1号卫星介绍:

美国地球之眼1号卫星 地球之眼-1所提供的地面图片是目前分辨率最高的商用图片。地球之眼-1所携带的摄像机的最高分辨率为黑白0.41米(全色),彩色1.65米(多光谱),但此分辨率的图片仅提供给美国政府部门。这颗卫星是美国的第一次在商用卫星上使用美国军用级的高精度全球定位系统(GPS),定位精度高达3米。卫星可以在星下点60度范围内自由偏移,卫星星载的计算机程序控制卫星反应轮组,当飞过事先设定的拍摄地点时,程序会启动反应轮组向反方向转动,使卫星悬停在拍摄地点上空约两分钟,拍摄一张高清的900亿像素图片。每天环绕地球12至13圈拍摄地球各个角落的卫星图像,它提供范围15.2千米的地球表面图像。 从上面的数据来看,美国地球之眼-1号卫星比中国高景一号卫星还有略微的领先优势,但是,对于中国来说,高景一号的意义远不于此,它打破了高分辨率卫星遥感市场被国外垄断的局面,实现了“从无到有”的突破,接下来会向“从有到优”迈进,据悉待2022年左右建成“16+4+4+X”完整星座后,中国在这方面的应用会更上一层楼的。 北京揽宇方圆信息技术有限公司

SPOT5一景卫星影像价格

北京揽宇方圆信息技术有限公司 SPOT5卫星影像价格 北京揽宇方圆SPOT5卫星是2.5米全色+10米多光谱,SPOT5卫星2002年发射,2015年停止自主拍摄,北京揽宇方圆分发SPOT系例的全部卫星影像数据。法国的SPOT1-5卫星系列由5 颗星组成,其中SPOT5最为出色。它于2002 年5月发射,高度为830km,轨道倾角为98.7度,太阳同步准回归轨道,回归天数为26天,采用线性阵列式传感器( CCD )和推扫式扫描技术进行成像。SPOT5卫星载有2台高分辨率几何成像仪(HRG )、1台高分辨率立体成像装置( HRS)和1台宽视域植被探测仪( VGT)。它共有5个工作波段,多光谱波段空间分辨率为10m(短波红外空间分辨率为20m),全色波段空间分辨率达到2.5m。 SPOT5国内站接收卫星影像数据价格 数据或服务描述种类单位价格 SPOT5卫星影像 2.5米全色整景29800元2.5米彩色整景44700元2.5米全色1/2景19800元2.5米彩色1/2景29700元2.5米全色1/4景14900元2.5米彩色1/4景22350元2.5米全色1/8景9900元2.5米彩色1/8景14800元5米全色整景14900元5米彩色整景29800元5米全色1/2景9900元5米彩色1/2景19800元5米全色1/4景7450元5米彩色1/4景14900元5米全色1/8景4900元5米彩色1/8景9800元10米多光谱整景14900元10米多光谱1/2景9900元10米多光谱1/4景7450元10米多光谱1/8景4900元 SPOT5分景标准: 1/2景:40公里*40公里 1/4景:30公里*30公里 1/8景:20公里*20公里 SPOT2-4国内站接收卫星影像数据价格中国地面站接收的数据 产品级别全景价格

几种典型高分辨率商业遥感卫星系统

几种典型高分辨率商业遥感卫星系统 1.2.1 IKONOS卫星系统 1.基本情况 IKONOS是空间成像公司(Space Imaging)为满足高解析度和高精度空间信息获取而设计制造,是全球首颗高分辨率商业遥感卫星。IKONOS-1于1999年4月27日发射失败,同年9月24日,IKONOS-2发射成功,紧接着于10月12日成功接收到第一幅影像。 IKONOS卫星由洛克希德—马丁公司(Lockheed Martin)制造,重1600lb,由Athena II 火箭于加利福尼亚州的范登堡空军基地发射成功,卫星设计寿命为7年。它采用太阳同步轨道,轨道倾角98.1o,平均飞行高度681km,轨道周期98.3min,通过赤道的当地时间为上午10:30,在地面上空平均飞行速度为6.79km/s,卫星平台自身高1.8m,直径1.6m。 IKONOS卫星的传感器系统由美国伊斯曼—柯达公司(Eastman Kodak)研制,包括一个1m分辨率的全色传感器和一个4m分辨率的多光谱传感器,其中的全色传感器由13816个CCD单元以线阵列排成,CCD单元的物理尺寸为12μm x 12μm,多光谱传感器分四个波段,每个波段由3454个CCD单元组成。传感器光学系统的等效焦距为10m,视场角(FOV)为0.931o,因此当卫星在681km的高度飞行时,其星下点的地面分辨率在全色波段最高可达0.82m,多光谱可达3.28m,扫描宽度约为11km。传感器可倾斜至26o立体成像,平均地面分辨率1m左右,此时扫描宽度约为13km。IKONOS的多光谱波段与Landsat TM的1—4波段大体相同,并且全部波段都具有11位的动态范围,从而使其影像包含更加丰富的信息。 IKONOS卫星载有高性能的GPS接收机、恒星跟踪仪和激光陀螺。GPS数据经过后处理可提供较精确的星历信息;恒星跟踪仪用以高精度确定卫星的姿态,其采样频率低;激光陀螺则可高频地测量成像期间卫星的姿态变化,短期内有很高的精度。恒星跟踪数据与激光陀螺数据通过卡尔曼滤波能提供成像期间卫星较精确的姿态信息。GPS接收机、恒星跟踪仪和激光陀螺提供的较高精度的轨道星历和姿态信息,保证了在没有地面控制的情况下,IKONOS卫星影像也能达到较高的地理定位精度。 2.成像原理 与Landsat和SPOT-4卫星相比,IKONOS卫星的成像方式更加灵活,其传感器系统采用独特的机械设计,可以十分灵活地以任意方位角成像,偏离正底点的摆动角甚至可达到60o。IKONOS卫星360o的照准能力使其既可侧摆成像以获取异轨立体或缩短重访周期,也可通过沿轨道方向的前后摆动同轨立体成像,具有推扫、横扫成像能力。 IKONOS卫星能获取同轨立体影像。当卫星接近目标时,传感器光学系统先沿着轨道向前倾斜,照准目标区域并采集第一幅影像,接着控制系统操纵传感器向后摆动,大约100s 后再次照准目标区并采集第二幅影像,如图1.1所示。由于IKONOS卫星利用单线阵CCD 传感器,通过光学系统的前后摆动实现同轨立体成像。因此,相应的立体覆盖是不连续的。

卫星影像与航拍的区别

卫星影像图与飞机航拍图的区别 一、卫星影像图与飞机航拍图区别 (一)定义 1、卫星影像图:卫星影像图是以卫星作为遥感平台,通过卫星上装载的对地观测遥感仪器对地球表面进行观测所获得的遥感图像。 2、飞机航拍图:飞机航拍图是以飞机作为遥感平台,在近地点的稳定高度拍摄地面各种目标所获得的图像。 (二)成图原理、方式 1、卫星影像图:以卫星为航天遥感平台(一般大于80km),以扫描方式获取图像,有很多波段,最大可达350多个以上,彩色图像基本上都是波段组合和融合而成,色彩不太真实。 2、飞机航拍图:以飞机为航空遥感平台(小于80km),以光学摄影进行的遥感,一般是黑白,真彩和彩红外摄影,一般最多4个波段,颜色比较真实。 (三)分辨率 1、卫星影像图:比例尺小,分辨率低,清晰度相对较低,一般分辨率可从0.5米—1000米之间;

2、飞机航拍图:比例尺较大,分辨率较高,清晰度高,一般分辨率可从0.04米—1米之间。 (四)图像变形 1、卫星影像图:摄影高度较高,因此建筑的投影差方向和大小基本上都一样,变形小。 2、飞机航拍图:摄影高度较低,因此建筑的投影差方向和大小每个地方都不一样,变形大。 (五)成图面积 1、卫星影像图:成图面积大,含信息丰富,拍摄面域广,获取速度快,可做全球动态监测。 2、飞机航拍图:成图面积小,离地面距离相对要近得多, 观察格外清晰、准确, 图像稳定, 精度高,避免了常规调查的盲目性和不必要的无效工作, 极大的节约了时间和精力, 节约了财力和物力。 (六)图像用途 1、卫星影像图:国土,规划,水利等大型工程。 2、飞机航拍图:小面积测绘,应急、抗灾。 (七)优点 1、卫星影像图:

高分辨率卫星影像卫星参数表

北京揽宇方圆信息技术有限公司 表1:商业光学高分辨率卫星参数一览表

北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

卫星影像价格之高分一号、高分二号、资源三号、高分六号卫星价格

高分一号、高分二号、资源三号、高分六号卫星价格 卫星类型价格(元/景)最小起订 高分一号1号星1500整景 高分一号234星2500整景 高分二号3000整景/面积 资源三号3000整景 高分六号卫星3000整景 备注景是一幅卫星影像的通俗讲法,例如, 一景高分一号1号卫星影像,大小为32.5×32.5公里。 高分一号234星是60公里×60公里 高分二号是23.5公里×23.5公里 资源三号是50公里×50公里 高分六号卫星是90公里×90公里 另:卫星是沿着设定的卫星轨道拍摄,拍摄的位置及大 小是固定的 备注说明: 北京揽宇方圆200多颗遥感卫星数据资源,各卫星都有详细的价格体系表,不同行业根据自己遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星影像的价格则主要由以上参数决定。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,遥感行业的国家高新技术企业,整合全球200多颗遥感卫星数据资源,遥感卫星影像数据贯穿中国1960年至今的所有商业卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。公司拥有完全自主知识产权、高

性能、满足大规模遥感数据集中处理的空间大数据管理与服务系统。架构流程化的处理方案,满足海量遥感数据的集中处理需求。 技术能力优势: 1:北京揽宇方圆国内老品牌卫星数据公司,国家遥感行业的高新技术企业,公司注册经营时间久,行业口碑相传,与1800多个行业国家级用户建立了长期稳定的合作关系,在遥感用户当中享有较高的地位。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,专业统一的自主遥感卫星数据查询网址。200多颗卫星影像数据资源,一站式的遥感数据查询中心,让遥感查得放心,才能用得舒心。从耳闻、试用、比较、成为忠粉,让用户们找到合适的遥感数据有种“终于找到你,还好我没放弃”的感受。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10 年以上遥感处理工作经验,并有国家大型项目工作经验,公司拥有完全自主知识产权、高性能、满足大规模遥感数据集中处理的空间大数据管理与服务系统。架构流程化的处理方案,满足海量遥感数据的集中处理需求,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,国家A级纳税人,遥感卫星影像技术ISO900认证的国际质量管理操作体系,公司信誉好,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,数据标准,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

资源三号卫星卫星数据参数遥感影像官方报价

北京揽宇方圆中国领先遥感影像数据服务. 资源三号卫星,简称ZY3,是中国第一颗民用高分辨率光学卫星,卫星2012年1月9日发射,它搭载了四台光学相机,包括一台地面分辨率2.1m的正视全色TDI CCD相机、两台地面分辨率3.6m的前视和后视全色TDI CCD相机、一台地面分辨率5.8m的正视多光谱相机,数据主要用于地形图制图、高程建模以及资源调查等。卫星设置寿命5年,可长期、连续、稳定地获取立体全色影像、多光谱影像以及辅助数据,可对地球南北纬84度以内的地区实现无缝影像覆盖。 主要功能 1、资源三号卫星主要用于1:5万比例尺立体测图和数字影像制作,又可用于1:2.5万等更大比例尺地形图部分要素的更新,还可为农业、灾害、资源环境、公共安全等领域或部门提供服务。

2、卫星应用系统将用于处理2.5米、4米和10米分辨率的卫星影像及其构成的立体测绘影像,测制1:5万地形图及相应测绘产品,开展1:2.5万等更大比例尺地形图的修测与更新,建立基于资源三号卫星的基础地理信息生产与更新的技术应用体系。 3、应用系统建设目标是最终实现业务化运行,长期、稳定、高效地将高分辨率立体影像转化为高质量的基础地理信息产品,并为其他用户部门提供高分辨率遥感影像应用服务。 4、利用资源三号卫星获取的立体影像,在构成的立体视野里,会出现高耸的山体、陡峭的河谷、矗立的灯塔,栩栩如生的公路、房屋、桥梁,通过立体观测,能够完成数字高程模型制作、立体测图等作业,生产现势性强、精度高的基础地理信息产品,结合资源三号卫星多光谱影像及各种专题信息,还可以生产各种融合影像产品、专题产品等,满足各行业部门的应用需求。

0602高分辨率卫星测图操作流程

高分辨率卫星测图操作指南 第一部分ERDAS LPS 系统安装 1.硬件配置: 和所有先进的软件一样,电脑配置越好,软件性能表现的越好。以下详述ERDAS LPS 9.2配置的最低要求。 计算机/处理器频率:Intel Pentium 4 750M,推荐2G以上 内存:最小512M,推荐1G以上 硬盘空间:需要足够的空间安装程序和存储工程所需的影像 操作系统:windows2000或者windows XP 32位以上 显示器:Dell 21" P1130 显示器或者相同级别的 显卡:FX4500以上 外部设备: ?TopoMouse? ?Immersion 3D Mouse ?立体图形显示屏Zscreen 2000i ?立体眼镜 建立一个新的worldview工程项目,以青海门源县工程项目为例 第二部分内业加密 1.建立block文件 1.打开ERDAS IMAGINE。 2.在ERDAS IMAGINE 图标板中点击LPS图标,LPS工程管理模块被打开。

3.点击Create new block file图标。弹出Create New block file对话框。 4.在Create New block file对话框,点击Goto按钮,导航到Outputs(输出)目录。 5.在输出目录中,输入工程名字,如:worldview_tour,敲回车(Enter),点击OK按钮。 2.选择模型和提供的信息: 1.上面步骤完成之后,会弹出Model Setup 对话框,在对话框中,从Geometric Model Category列表中选择Rational Functions(有 理函数模型)。 2.从Geometric Mode l列表中选择 worldview RPC。 3.点击OK接收选择的几何模型,关闭 Model Setup对话框。 4.完成之后Block Property Setup将会被打开。平面基准(Horizontal):点击Set按钮,弹出Projection Chooser对话框。 5.(立体卫星影像最初的投影一般均为Geographic (Lat/Lon),基本为WGS84)在Custom 的投影类型(Projection Type)栏中,选择Gauss Kruger,椭球体(Spheroid Name)选择WGS84,基准面(Datum Name)选择WGS84,中央经线(Longitude of central meridian)选择102°:00:00. 000000 E,东西向偏移(False easting)选择500000meters,点击OK。

光学遥感卫星影像云检测方法及应用

光学遥感卫星影像云检测方法及应用 光学遥感卫星影像广泛应用于导航定位、农业调查、环境保护、防灾减灾、海洋开发、城镇化研究等领域,但并非所有影像都可满足信息智能化处理的要求,其中一个很重要的因素就是云层的覆盖。云层不仅对地面场景形成了遮挡,还会在一定程度上改变影像的光谱和纹理信息,给遥感影像产品制作中的多个环节造成诸多不利。 基于上述背景和国内外相关研究现状,确立本文的研究内容,即研究针对光学遥感卫星影像的精确、自动、快速云检测方法,以及云检测结果在光学遥感影像产品制作各环节中的应用。本文研究的最终目的在于提取海量光学遥感卫星影像中的有效、优质信息,提高影像的利用率,为后续高精度影像地图制作和信息化智能处理提供数据支持。 具体地,本文研究内容和对应的研究结论如下:1、研究了单幅光学遥感卫星影像快速自动云检测方法。使用高斯混合模型对影像直方图进行自动拟合,通过分析高斯混合模型中各分量的参数特征和临近关系,自适应地计算云与晴空之间的亮度阈值,然后通过形态学运算与分析,消除阈值分割结果中的噪声,并优化调整云的轮廓,填充小面积云缝,使云区趋于连通的整体。 实验结果表明,此方法在大部分情况下检测准确,可定性识别无云影像或得到含云影像的云掩模。方法适应性强、效率高,不需要辅助信息和人工干预,可满足海量卫星影像自动化质量控制等工作的需要,同时也为后续方法提供初始云检测结果。 2、研究了基于视觉显著性分析的云与高亮度人工目标区分方法。使用自适应二维Gabor滤波器提取高分辨率光学遥感卫星影像上人工目标特有的直线边

缘特征,作为视觉显著性的主要测度,在此基础上提取特征显著区域,实现了高分辨率光学遥感影像上人工目标的自动识别,进而实现了云与高亮度人工目标的区分。 将该方法与高斯混合模型阈值分析方法和形态学优化整合策略相结合,实现了大部分场景(不包括积雪)下光学遥感卫星影像的精确云检测。3、研究了公众地理数据辅助的云与高亮度自然地表区分方法。 通过地理坐标将光学遥感影像与可公开下载获取的公众地理数据相关联,直接判断光学遥感卫星影像上某一位置是否为积雪、冰原等高亮度地表,或者通过差异分析的方式定性识别影像中的不变场景,将它们否定为云,实现云与高亮度 自然地表的区分。将该方法与高斯混合模型阈值选取方法、视觉显著性分析方法和形态学优化整合策略相结合,实现了任意场景下光学遥感卫星影像精确云检测。 4、研究了多视角光学遥感卫星影像云检测方法。以多视角成像的像对为研究对象,利用云层高度特征引起的投影视差,将多视角像对中的晴空场景看作不 变的背景,将云层看作变化的、运动的目标,通过像对间的差异分析,辅之以亮度分析和形态学优化整合,实现了精确、高效的云与晴空场景的区分。 相对于基于单幅影像的云检测方法,该方法更有效地解决了对影像中冰雪、建筑物等高亮度似云目标的误判;更准确地识别了无云场景;更有效地避免了对 小面积云和薄云的漏检;更精确地提取了云的轮廓。5、分析了云层对遥感影像处理过程中辐射校正、几何纠正、合成影像制作、数字地表模型制作等环节造成的不同影响,分别选择了对应的云检测策略,对光学遥感影像产品制作过程进行优化,更好地提取了海量影像中的有效、优质信息,提高了影像的利用率。

相关主题
文本预览
相关文档 最新文档