当前位置:文档之家› 比焓的定义

比焓的定义

比焓的定义

比焓就是1kg工质的焓值。也就是1千克工质的热力学能(内能)u 加上推动功pv。至于加v和l要看具体情况,v是不是气态时的比焓,l 是不是液态时的比焓。比如计算烟气焓值时,低位热值就是其中的水蒸气凝结水时的热值计算,是不是用这个焓值。

蒸汽焓值焓值是指空气中含有的总热量,通常以干空气的单位质量为基准,称作比焓。工程中简称为焓,是指一千

蒸汽焓值焓值是指空气中含有的总热量,通常以干空气的单位质量为基准,称作比焓。工程中简称为焓,是指一千 蒸汽焓值 空气中的焓值是指空气中含有的总热量,通常以干空气的单位质量为基准,称作比焓。工程中简称为焓,是指一千克干空气的焓和与它相对应的水蒸气的焓的总和。在工程上,我们可以根据一定质量的空气在处理过程中比焓的变化,来判定空气是得到热量还是失去了热量。空气的比焓增加表示空气中得到热量;空气的比焓减小表示空气中失去了热量。 在计算气流经过换热器的换热量的时候,气流一侧的换热量计算通过焓差计算相当简便:Q= M*(H_out-H_in) ,其中,Q是换热量,M是气流质量流量,H为气流比焓值。其实这不只针对气流,对于气液两相的制冷剂流动,也是同样的计算方法。 空气焓值的定义及空气焓值的计算公式: 空气的焓值是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i表示,单位是kj/kg干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之和。 湿空气焓值计算公式化: i=1.01t+(2500+1.84t)d 或i=(1.01+1.84d)t+2500d (kj/kg干空气) 式中: t—空气温度? d —空气的含湿量 g/kg干空气 1.01 —干空气的平均定压比热 kj/(kg.K) 1.84 —水蒸气的平均定压比热kj/(kg.K)

2500 —0?时水的汽化潜热 kj/kg 由上式可以看出:(1.01+1.84d)t是随温度变化的热量,即“显热”;而2500d 则是0?时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。 上式经常用来计算冷干机的热负荷。

空调常用参数

1 在循环工况下,经济性下降更多的原因是,由于存在怠速,加速,减速等工况,平均车速一般会低于60KM/h。在行驶相同距离的情况下,循环工况下的平均输出功率要小,导致空调功率占总功率的比重较大,因此经济性下降较多。 2 比容:单位质量的物质所占有的容积称为比容,用符号"V"表示,单位为"立方米/千克"。物质的比容与压力和温度有关,-般随压力增大而减小,随温度增大而增大。由于固体和液体是不可压缩的物质,它们的比容受压力和温度的影响比气体要小得多单位容积物质的质量称为密度,单位为"千克/立方米"。由定义可知,密度是比容的倒数。物质密度和比容一样,受温度和压力的影响,但影响方向相反。 3 熵(entropy)指的是体系的混乱的程度,物理学上指热能除以温度所得的商,标志热量转化为功的程度。熵的定义式是:dS=dQ/T,因此计算某一过程的熵变时,必须用与这个过程的始态和终态相同的过程的热效应dQ来计算。 4 比焓:定义:指空气中含有的总热量,简称焓。 1kg或者1mol工质的焓称为比焓,用h表示,即 对应的单位是J/kg 或者J/mol。78K时,h=6.02kj/kg。300K时,h=79.6kj/kg。5定义: 在工程热力学中,单位质量工质的熵,称为比熵。熵和比熵均为工质的热力学状态参数。工程热力学中规定:系统吸收热量的值为正,系统放出热量的值为负。

在可逆过程中,系统与外界交换的热量的计算公式与功的计算公式具有相同的形式。对于微元可逆过程,单位质量工质与外界交换的热量可以表示为 δq=Tds式中,s称为比熵,单位为J/ (kg·K) 或kJ/ (kg·K)。比熵的定义为 ds=δq/T即在微元可逆过程中工质比熵的增加等于单位质量工质所吸收的热量除以工质的热力学温度所得的商。 6 等熵压缩:等熵压缩就是绝热压缩,系统与外界无能量交换。在热力学中,可逆绝热压缩是等熵过程。这时对体系进行压缩所作的功等于体系内能的增加。据热力学第二定律,W+Q=△U(内能增量) 绝热——Q=0,膨胀W<0,△U<0——内能减少,温度降低 绝热——Q=0,压缩W>0,△U>0——内能增加,温度升高 7 空调器的能效比,就是名义制冷量(制热量)与运行功率之比,即EER和COP。 8 对流热换热系数:流体与固体表面之间的换热能力,比如说,物体表面与附近空气温差1℃,单位时间单位面积上通过对流与附近空气交换的热量。单位为W/(m^2·℃)。表面对流换热系数的数值与换热过程中流体的物理性质、换热表面的形状、部位、表面与流体之间的温差以及流体的流速等都有密切关系。物体表面附近的流体的流速愈大,其表面对流换热系数也愈大。如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热(或吸热)量也较大。对流换热系数可用经验公式计算,通常用巴兹公式计算。 9 导热系数:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米·度),w/(m·k)(W/m·K,此处的K可用℃代替)。 根据傅立叶定律,热导率的定义式为 其中,x为热流方向。 为该方向上的热流密度,W/m^2 为该方向上的温度梯度,单位是K/m 对于各向同性的材料来说,各个方向上的热导率是相同的。 10 导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换 11 辐射换热:辐射是电磁波传递能量的现象。热辐射是由热运动产生的电磁波

焓,比焓,熵

焓: 1、焓是一个热力学系统中的能量参数。 原理 物体中所有分子做热运动的动能和分子势能和分子、原子内部所具有的能量等的总和叫做物体的热力学能,也叫做内能。热力学能与动能、势能一样,是物体的一个状态量。 初中我们学过,改变物体内能的方式有两个:做功和热传递。 一个物体,如果它跟外界不发生热交换,也就是它既没有吸收热量也没有放出热量,则外界对其做功等于其热力学能的增量: ΔU1=W 如果物体对外界做功,则W为负值,热力学能增加量ΔU1也为负值,表示热力学能减少。 如果外界既没有对物体做功,物体也没有对外界做功,那么物体吸收的热量等于其热力学能的增量: ΔU2=Q 如果物体放热,则Q为负值,热力学能增加量ΔU2也为负值,表示热力学能减少。 一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么物体热力学能的增量等于外界对物体做功加上物体从外界吸收的热量,即: ΔU=ΔU1+ΔU2=Q+W 因为热力学能U是状态量,所以: ΔU=ΔU末态-ΔU初态=Q+W 上式即热力学第一定律的表达式。 化学反应都是在一定条件下进行的,其中以恒容与恒压最为普遍和重要。 在密闭容器内的化学反应就是恒容过程。因为系统体积不变,而且只做体积功(即通过改变物体体积来对物体做功,使物体内能改变,如在针管中放置火柴头,堵住针头并压缩活塞,火柴头会燃烧)(这里很多人质疑为什么体积不变还做体积功,我解释一下,做功的形式有很多种,有的功不通过体积改变的形式来实现,比如电流做功,但是气体只能做体积功,因为是恒容过程,所以体积功为零,并不是说只做体积功就是说这个过程做功了,只是为了说明W=0)所以W=0,代入热一定律表达式得: ΔU=Q 它表明恒容过程的热等于系统热力学能的变化,也就是说,只要确定了过程恒容和只做体积功的特点,Q就只决定于系统的初末状态。 在敞口容器中进行的化学反应就是恒压过程。所谓恒压是指系统的压强p等于环境压强p外,并保持恒定不变,即p=p外=常数。由于过程恒压且只做体积功,所以: W=W体积=-p外(V2-V1)=-(p2V2-p1V1) 其中W为外界对系统做的功,所以系统对外做功为负。压强乘以体积的改变量是系统对外做的功,可以按照p=F/S,V=Sh,∴Fh=pV来理解。 将其代入热一定律表达式得: Q=ΔU-W=U2-U1+(p2V2-p1V1)=(U2+p2V2)-(U1+p1V1) 因为U+pV是状态函数(即状态量)的组合(即一个状态只有一个热力学能U,外界压强p和体积V),所以将它定义为一个新的状态函数——焓,并用符号H表示,所以上式可变为: Q=H2-H1=ΔH 它表明恒压过程中的热等于系统焓的变化,也就是说,只要确定了过程恒压且只做体积功的特点,Q就只决定于系统的初末状态。

化工名词解释

1、逸度系数 Fugacity Coefficiency 气体B的逸度与其分压力之比称为逸度因子(通常称为逸度系数),并用符号φ表示,即:φB=Pb*/pB。逸度因子的量纲为一。由于理想气体的逸度等于其分压力,故理想气体的逸度系数恒等于1 2、粘度 viscosity 液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力.在单位液层面积上施加的这种力,称为切应力或剪切力τ(N/m2).切变速率(D) D=d v /d x (单位:s -1)切应力与切变速率是表征体系流变性质的两个基本参数两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:τ= ηdv/dx =ηD(牛顿公式)其中η与材料性质有关,我们称为“粘度”。 将两块面积为1㎡的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。牛顿流体:符合牛顿公式的流体。粘度只与温度有关,与切变速率无关,τ与D为正比关系。非牛顿流体:不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。 又称黏性系数、剪切粘度或动力粘度。流体的一种物理属性,用以衡量流体的粘性,对于牛顿流体,可用牛顿粘性定律定义之: 式中μ为流体的黏度;τyx为剪切应力;ux为速度分量;x、y为坐标轴;dux/dy为剪切应变率。流体的粘度μ与其密度ρ的比值称为运动粘度,以v表示。 粘度随温度的不同而有显著变化,但通常随压力的不同发生的变化较小。液体粘度随着温度升高而减小,气体粘度则随温度升高而增大。 3、普朗特数 Prandtl Number 普朗特数(Prandtl Number)是由流体物性参数组成的一个无因次数(即无量纲参数),表明温度边界层和流动边界层的关系,反映流体物理性质对对流传热过程的影响。 普朗特数是因纪念德国力学家L.Prandtl 在这方面的贡献而命名的。普朗特数是流体力学中表征流体流动中动量交换与热交换相对重要性的一个无量纲参数,表明温度边界层和流

相关主题
文本预览
相关文档 最新文档