当前位置:文档之家› SSPQ-P系列双线分配器的工作原理

SSPQ-P系列双线分配器的工作原理

SSPQ-P系列双线分配器的工作原理
SSPQ-P系列双线分配器的工作原理

SSPQ-P

系列双线分配器的工作原理

一、概述

SSPQ-P系列(原ZV-B系列)双线分配器适用于公称压力为40MPa的干油或稀油双线式集中润滑系统中,作为一种定量给油装置。通过二条供油管交替压送润滑脂,实现定量给各润滑点供送润滑剂的双线分配器。分配器有带给油螺钉、带运动指示调节装置和带行程调节装置三种型式。

1、带给油螺钉的分配器,给油量不能调节,只有选择不同给油指数的给油螺钉来改变给油量。

2、带运动指示调节装置的分配器,给油量可在零至额定给油量范围内调节,并能通过观察运动指示调节装置来判断分配器是否正常工作。

3、带行程开关调节装置的分配器,给油量可在零至额定给油量范围内调节,并能通过行程开关发送讯号来控制润滑点的供油状况,每块分配器仅可带一件限位开关调节装置。

二、技术参数

型号公称压力

MPa

启动压力

MPa

控制活塞工

作油量mL

每出油口额定给油量

mL/循环

给油口数配带装置

※SSPQ※-P0.5

40 ≤10.3 0.5

1~8

给油螺钉,运动指示调节装置

※SSPQ※-P1.5 1.5 给油螺钉,运动指示调节装置,行程开关调节装

※SSPQ※-P3.0 3.0 1~4 运动指示调节装置

给油口数为单数时,其中有一给油口的给油量为额定给油量的2倍。

使用介质为锥入度不低于220(25℃,150g)1/10mm的润滑脂(NLGI0#~3#)或粘度等级大于N68的润滑油,工作环境温度为-20℃~80℃。

三、型号说明

四、工作原理

双线分配器与每两个润滑点相连通的活塞孔中分别有一个控制活塞和一个工作活塞,两个进油口分别与两条供油管3a、3b连接,当供油管一条加压力时,另一条则卸荷。

如上图所示,由泵输送来的润滑脂,经供油管3a进入分配器控制活塞的上端,控制活塞首先向下移动(这时控制活塞下端挤压的润滑脂则进入卸荷的供油管3b),使工作活塞的上腔与控制活塞的上腔连通,然后工作活塞向下移动,这时受工作活塞的挤压的润滑脂经过控制活塞的环形槽被压送到出油口6至润滑点,完成第一周期的给油动作。切换至供油管3b供油开始第二周期的给油动作,分配器活塞按相同的顺序反向进行前述动作,出油口5排送润滑脂。

五、外形尺寸

步进电机环形分配器

步进电机环形分配器 (1)工作原理 步进电机控制主要有三个重要参数即转速、转过的角度和转向。由于步进电机的转动是由输入脉冲信号控制,所以转速是由输入脉冲信号的频率决定,而转过的角度由输入脉冲信号的脉冲个数决定。转向由环形分配器的输出通过步进电机A、B、C相绕组来控制,环形分配器通过控制各相绕组通电的相序来控制步电机转向。 如图1给出了一个双向三相六拍环形分配器的逻辑电路。电路的输出除决定于复位信号RESET外,还决定于输出端Q A、Q B、Q C的历史状态及控制信号-EN使能信号、CON正反转控制信号和输入脉冲信号。其真值表如表1所示。 图1 步进电机环形分配器 表1 真值表

(2)程序设计 程序设计采用组合逻辑设计法,由真值表可知: 当CON=0时,输出Q A、Q B、Q C的逻辑关系为: 当CON=1时,输出Q A、Q B、Q C的逻辑关系为: 当CON=0,正转时步进机A、B、C相线圈的通电相序为: 当CON=1,反转时各相线圈通电相序为: Q A、Q B、Q C的状态转换条件为输入脉冲信号上升沿到来,状态由前一状态转为后一状态,所以在梯形图中引入了上升沿微分指令。 PLC输入/输出元件地址分配见表2。 表2 PLC输入/输出元件地址分配表 根据逻辑关系画出步进电机机环形分配器的PLC梯形图,如图2所示。 CON10 Z EN CLK A B C A B C 1ΦΦ100100 01↑101110 01↑001010 01↑011011 01↑010001 01↑110101 01↑100100 PLC IN代号PLC OUT代号 X0CLK Y0Q A X1EN Y1Q B X2RESET Y2Qc X3CON

干油喷射系统

广州办事处 地址:广州市番禺区洛浦街广州碧桂园雅苑32座101房邮编:201603(上海总部) 传真:86-021-5766 9411(上海总部)1 干油喷射系统 干油喷射润滑是以压缩空气为喷射动力源,用特别设计的喷嘴,每给一次润滑脂就喷射一次,将润滑脂转变成雾状颗粒喷涂在摩擦副上的干油润滑方法。干油喷射润滑和油雾润滑一样,也是依靠压缩空气为动力的一种润滑方式。 由于干油黏度太大,它不能像油雾润滑那样,利用文氏管效应形成雾状。而是靠单独的泵(干油站)来输送油脂。油脂在喷嘴与压缩空气汇合,并被吹散成颗粒状的油雾,随同压缩空气直接喷射到摩擦副进行润滑。这种润滑方法简称喷射润滑。 干油喷射装置特别适用于冶金、矿山、水泥、化工、造纸等行业的大型开式齿轮(如球磨机、回转窑、挖掘机、高炉布料器等)以及钢丝绳、链条的润滑。 原理: 泵(干油站)输送油脂——油脂在喷嘴与压缩空气汇合——被吹散成颗粒状的油雾——直接喷射到摩擦副进行润滑。 控制阀的工作原理 控制阀的结构如图当油脂从阀体下,部进入后,推动柱塞1上升,打开通道口,同时顶开钢球2。压缩空气则经过小孔c进入阀体上的环形槽d,并通过喷嘴与环形槽重叠的三个斜孔b喷出。与此同时,油脂从喷嘴中心孔e排出,在压缩空气动压力作用下,油脂即被吹碎成雾状,呈圆锥形向前喷出。

广州办事处 地址:广州市番禺区洛浦街广州碧桂园雅苑32座101房 邮编:201603(上海总部) 传真:86-021-5766 9411(上海总部) 2 优点:能够超越一定的空间,定向、定量而[均匀地投到摩擦表面,润滑方式简便、经济,在国外已广泛采用。使用方便、工作可靠,用油节省,而且在恶劣的工作环境下,也能获得较好的润滑效果。 有成套系列产品供选择。 应用:冶金、矿山、水泥、化工、造纸等行业的大型开式齿轮(如降磨机、回转窑、挖掘机、高炉布料器等)以及钢丝绳、链条的润滑。 干油喷射润滑系统的操作与维护 使用喷射装置时,还应当注意以下几点: 在新安装或经过检修后的传动装置投入运转前,都要在被润滑的表面上均匀地涂抹一层与喷射装置相同的润滑脂。因为在第一次运转时,干油喷射系统还不能立即提供充分的润滑脂,需要用人工预涂。 1)使用的油脂必须是经过过滤的、质地均匀的、针人度适当的油脂。油脂中混入杂质,不但影响雾化效果,甚至有堵塞喷嘴的危险。为了便于雾化,一般需在润滑脂中加人20%左右的高黏度润滑油(如轧钢机油、汽油机油等),其针人度不低于300。如要加强耐磨性,可在油脂中加入适量的二硫化钼,或使用标准牌号的二硫化钼润滑油膏; 2)压缩空气必须保证足够的压力(即不低于0.45MPa )。空气应保持清净和干燥。有条件时,最好在进气管路中装设气动三大件(即分水滤气器、空气调压阀、油雾发生器),这样可以延长控制阀和喷嘴的使用寿命; 3)手动干油站的最大工作压力应保持在7MPa 以下。新安装的干油喷射装置,使用前整个系统应充满油脂;

(整理)微带功率分配器设计

微带功率分配器设计 1. 功率分配器论述: 1.1 定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2 分类: 1.2.1 功率分配器按路数分为:2 路、3 路和 4 路及通过它们级联形成的多路功率分配器。 1.2.2 功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2 根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3 根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3 概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。 (2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.相关技术指标: 2.1 概述: 功率分配器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗、支路端口间的隔离度、每个端口的电压驻波比等。 2.2 频率范围: 频率范围各种射频/微波电路的工作前提,功率分配器的设计结构与工

作频率密切相关。必须首先明确分配器的工作频率,才能进行下面的设计。 2.3 承受功率: 在大功率分配器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种线。 2.4 分配损耗: 主路到支路的分配损耗实质上与功率分配器的功率分配比有关。如理想的两等分功率分配器的分配损耗是3dB,四等分功率分配器的分配损耗6dB,常以S参数S21的dB值表示。 2.5插入损耗: 输入输出间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素,及端口不是理想匹配所造成的功率反射损耗,常以S参数S21的dB 值表示。 2.6 隔离度: 支路端口间的隔离度是功分器的另一个重要指标。如果从每个支路端口输入功率只能从主路端口输出,而不应该从其他支路输出,这就要求支路之间有足够的隔离度,如两支路端口2和3的隔离度用S23或S32的dB值表示。 2.7 驻波比: 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的声压幅值Vmax与波节处的声压Vmin幅值之比。驻波比是表示两端口合理匹配的重要指标,因此每个端口的电压驻波比越小越好。 2.设计原理: 2.1 分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用

干油润滑系统使用说明

宁波北仑DQ4200/4200.42堆取料机干油集中润滑系统 技术说明

目录 1系统技术参数及工作原理………………STI 2 2典型双线系统工作原理……………………STI 4 3FYK分油块…………………………………STI 6 4DRB泵………………………………………STI 8 5SSP双线分配器………………………………STI 16 6YCK-M5压差开关……………………………STI 19 1.系统技术参数及工作原理 宁波北仑DQ4200/4200.42堆取料机干油集中电动润滑系统润滑点部位包括:大车集中润滑系统和回转集中润滑系统.其余润滑系统均采用分油块润滑系统. 大车集中润滑系统原理图 回转集中润滑系统原理图 电动双线集中润滑系统:整个系统由电动干油润滑泵、双线分配器、连接管路和接头等组成。 2.典型双线系统工作原理 润滑泵开始工作后,泵不断地从贮油桶中吸入油 脂,从出油口压出油脂。泵排出的 压力油脂经液动换向阀进入主管1,送至各分配器。此 时,主管2通过XYDF型液动换向阀与回油管相连,处 图A

于卸荷状态。主管1中的油脂进入各分配器的上部进油口(图A所示),利用上部进油口处的压力油推动分配器中的所有活向下运动,并将活塞下腔的油经分配器的下出油口2,定量地送入各润滑点。当所有分配器的下出油口一次送油结束后(即所有分配器中的供油活塞下行到活塞行程的末端停止运动后),主管 1中的压力将迅速上升,当压力达到额定压力后,换 向阀换向。 换向阀换向后,润滑泵输出的压力油进入主管 2,同时主管1卸荷,各分配器的下进油口进油(图B 所示),分配器中的活塞向上运动,将活塞上腔的油 经分配器的上出油口1,定量地送入各润滑点。当所 有分配器的上出油口一次送油结束后,主管2的压力 上升,当压力达到额定压力后,换向阀换向。这样系 统就完成了一次循环,每个润滑点均得到了一次定量 的润滑油脂。 分油块示意图 3.FYK型分油块 用途及特点 分油块有结构紧凑、体积小、安装补脂方便的特点。FYK型分油块是我公司为手动集中供油而设计的一种给油装置。 FYK型分油块分为两种形式,按出油口数量分,又各有8种规格。该分油块通常与油枪或移动式加油泵车配合使用,广泛应用在港口机械、冶金设备等手动集中润滑系统中。 规格型号及技术参数 FYK-A型FYK-B型 规格型号出油口数L1 L2 重量Kg 安装螺钉规格进、出油口螺纹D FYK-A-1 1 80 — 1 GB 70-85 内六角圆柱头螺钉 M10X40 标准产品为Rc1/4 可根据用户要求定 制加工 FYK-A-2 2 110 80 1.3 FYK-A-3 3 140 110 1.7 FYK-A-4 4 170 140 2 FYK-A-5 5 200 170 2.5 图B

智能功率分配器原理

智能功率分配器原理 平均户型面积为100m2 ,电力外网设计时平均每户设计标准为6KW,按照建筑物节能率为65%标准,电工暖热负荷不超过34W,耗热指标不超过15W,但为提升温度,实际安装按50W/m2 进行。每户电供暖总负荷为5000W,电视、冰箱、照明小负荷设备,即长时间运行设备总负荷约800W,合计为5800W,未超过每户住宅6KW标准。 智能功率分配器通过实时监控电力负荷,合理分配电流输出,由智能功率分配器中的智能程序启动和停止电供暖负荷。当家用电器达到用电高峰时,电采暖低负荷运行。当家用电器负荷低谷时,电采暖自动开启投入运行。一般住户用电高峰为早、中、晚、三个时间段,时间不超过一天的三分之一,所以不影响电采暖正常使用

随着人们生活水平的提高,家庭中的家用电器越来越多,家庭使用电力负荷也越来越大。在冬季使用电采暖系统时,所有家用电器的实时总负荷将大于电力系统给每户额定输入功率,总负荷增大后,用户的电力系统部安全因素将增加或者不能正常供电。智能功率分配器通过实时监控进户电网功率,根据不同时间与不同用户要求,使用优先方式、分时方式、均分方式合理的分配主功率与电采暖功率的大小,避免了用户实际使用负荷过大问题,使供电电网更加安全。

A:检测进户主负载功率,根据时间与用户要求自动分配电采暖输出功率。 B:检测供电电压,当电压过大时自动保护旁路中的电热线缆。C:三路电采暖负载输出,每一路独立输出最大功率为2KW。D:自动保护电采暖输出回路,电采暖输出回路出现短路、断路时,自动关闭当前电采暖输出回路。 E:实时显示主回路与电采暖回路功率。 F:每天电采暖工作时间不小于16小时,在最低温度下完全满足任何用户的采暖量。 G:完善的故障保护,故障警告。 H:结构尺寸小巧,可以直接安装在用户的进户配电箱中。

工业润滑系统总览

1-0109-CH 工业润滑系统总览 适用于各种机械和系统的集中润滑和微量润滑技术 ?消耗型集中润滑系统 ?循环型油润滑系统 ?微量润滑系统 ? 链条润滑系统 ? 微量计量系统

提供各种应用的解决方案 量系统安装和微量润滑技术等方面向您介 绍集中润滑解决方案。 如果需要更为详细的资料和信息,请咨询 SKF 润滑应用中心,或各地办事处和授权 经销商,同时你也可得到德国的销售和服 务中心、以及国际分支机构代理商的支持, 也可直接向柏林总部索取。 愿意为你提供支持!

前言 所有的机械在运动时,始终伴有摩擦和磨损,造成每年大量的材料损耗,经济上的损失高达数十亿美金。集中润滑系统微量润滑系统 油泵在自动控制下,将油箱中的 润滑剂,通过管道,输入到各润滑 点和摩擦副,到达个点的润滑剂适 时适量,最优化的润滑设计,减小 了摩擦和磨损,极大地延长了机械 零部件的使用寿命,润滑剂的消耗 反而也减少了。 在进行金属加工时使用微量润滑技术, 可实现用尽量少的润滑油,润滑切削 面,不仅能够有效的改善加工质量,还 极大的提高了切割速度和生产效率,延 长了刀具寿命,节省了冷却润滑剂。微 量润滑技术是一个增值的解决方案。 润滑系统不仅能保护环境还能节约资源。

可用于润滑油或者NLGI 000号、00号油脂的消耗型单线集中润滑系统 应用 系统组成 机床、印刷机械、纺织机械、包装机械和其他各种机械。 ? 泵单元(拄塞泵或齿轮泵) ?柱塞分配器 ?定量元件 ?控制器和监控元件(选配件) 工作原理 单线柱塞分配器 消耗型单线集中润滑系统,可按照一定间隔连续不断地向润滑点输送所需的的润滑剂。可用于稀油或NIGL000到00号的润滑脂。 优点 ?系统方案简易 ? 模块化 泄压阀 ? 可扩展 该系统可基于时间和次数进行控制。更换分配器上的定量头可使泵的每次工作循环得到适量的润滑剂。计量范围从0.01到1.5ccm 每次每个润滑点。 产品选型 手动柱塞油脂泵 集成控制系统的齿轮油脂6泵单元 齿轮油脂泵

全液压轨道式锻造操作机主要技术参数

1800kN/4000kN-m全液压轨道式锻造操作机2.1 主要技术参数 1)夹钳夹持重量1800 kN 2)夹钳夹持力矩4000 kN-m 3)设备倾翻力矩10156 kN-m 4)前轮最大载荷时轮压,1740 kN 5)夹钳开口尺寸 第一副钳口开口范围,最大圆棒Φ2650 mm 方坯2270 mm 最小圆棒,方坯)636 mm 第二副钳口开口范围,最大圆棒Φ1100 mm 方坯1949 mm 最小(圆棒,方坯)314 mm 第三副钳口可夹持饼类件 盘形件钳口开口范围max 4000 mm 6)夹钳回转直径最大Φ4340 mm 7)夹钳中心线至轨面距离1700 mm 8)夹钳升降行程3700 mm (2500-3700范围内做套圈锻造用) 9)夹钳向上倾角8° 10)夹钳向下倾角10° 11)夹钳左侧移行程300 mm 12)夹钳向右侧移行程300 mm 13)夹钳旋转速度约6/12 r/min 14)夹钳旋转位置精度±1° 15)夹钳喉口深度(切除钢锭底部后使用)1290-1690 mm 16)夹钳杆提升/下降速度90 mm/s 17)夹钳杆侧移速度80 mm/s 18)大车行走速度(两级)400 /800 mm/s 19)大车行走位置精度±5 mm

20)大车有效行驶距离约23500 mm 21)设备总长18600 mm 22)设备总宽(不含延伸臂和水电拖链)7550 mm 23)轨道上表面的标高+100 mm 24)设备地面上总高,最小/最大约6680/9550 mm 25)设备总功率380V 997 kW 26)冷却水用量1650 L/min 2.2 机械结构描述 1800kN/4000kN-m锻造操作机机械部分主要包括机架,夹钳装置,钳杆装置,升降、摆移和缓冲装置,前车轮,后车轮,大车行走驱动装置,轨道装置等。包含液压系统在内的整台设备由安装在机架前后的六个车轮支撑在轨道上。 2.2.1 机架 机架为钢板焊接整体框架结构,左右两个箱形立板上开有供安装悬挂系统(即升降、摆移和缓冲装置)、钳杆装置、车轮和行走驱动装置的装配孔,以及供安装液压系统的平台。 2.2.2 夹钳装置 夹钳装置由钳口、钳臂、钳壳、销轴、连杆等构成。钳口和钳臂采用耐热铸钢件。钳壳法兰通过螺钉与钳杆法兰连接,连杆通过销轴与钳杆装置中的夹紧装置(夹紧油缸体)连接,通过油缸体推拉连杆实现钳臂和钳口的闭合与张开。 2.2.3 钳杆装置 钳杆装置由钳杆夹紧装置、对中缸、钳架、钳杆、油马达和尾架等组成。它的前部通过两个销轴与悬挂系统的摆(吊)杆连接,尾部通过一个销轴与倾斜缸活塞杆的头部相铰接。整个钳杆装置由此三点悬挂在机架中线上。 钳杆夹紧装置安装在钳杆中,夹紧缸的活塞杆固定在钳杆后端,夹紧缸的缸体在钳杆内的导套中做前后运动,推拉钳杆装置的连杆实现钳臂和钳口的闭合与张开。 钳杆安装在钳架的前后轴承中,其前部法兰通过螺钉与钳壳法兰连接,中后部装有大齿轮;在钳架上安装有两台液压马达,各通过减速机输出端的小齿轮与钳杆后部的大齿轮啮合,驱动钳杆实现正向和反向转动。 2.2.4 升降、摆移和缓冲装置 一套肘杆式升降、摆移和缓冲机构由前传动杠杆、后传动杠杆、连杆、上下摆动

炉顶干油润滑系统工作原理简述

炉顶干油润滑系统工作原理简述 一、主要元件 (一)油泵:用一备一,用9、10、11、12号截止阀进行切换。 (二)管路:共分为两条主油路。分别是45分钟润滑周期支路与4小时润滑周期支路。理解工作原理时,可以把这两条油路分别看成连接于同一油泵上而毫无关联的两套润滑系统。 1、45分钟润滑周期支路,a、气密箱润滑,4个干油分配器,输出22个润滑点;b、下密阀,1个8点输出干油分配器,输出8个润滑点。45分钟润滑周期支路共计输出30个润滑点。 1、4小时润滑周期支路,a、料流调节阀,3个干油分配器,输出18个润滑点;b、上密阀,1个8点输出干油分配器,输出8个润滑点;c、柱塞阀,1个2点输出干油分配器,输出1个润滑点;d、东、西放散阀,2个2点输出干油分配器,输出4个润滑点;e、东、西绳轮,1个8点输出干油分配器,输出4个润滑点;4小时润滑周期支路支路共计输出35个润滑点。 (三)溢流阀:调节泵的出口压力。出厂设定为25MPa,一般情况下,不需调整。 调节方法:把10号或者12号截止阀关断,起动泵,旋转溢流阀的调节螺栓,观察出口压力表,指针到达所需工作压力时,停止。打开截止阀。 (四)3#(或4#)压力继电器:(润滑系统图)用于泵出口压力上限保护。当系统工作不正常,泵的出口压力超过正常工作压力时,此压力继电器触动系统停机。此上限工作压力厂家设定为25MPa。 (五)管路终端压力继电器:系统中,共安装有4个管路终端压力继电器。分别安装在45分钟润滑周期支路与4小时润滑周期支路的A管、B管。用于设定管路压力工作原理:泵开始运转→达到“A”管路压力→压力继电器动作→电机停止运转→间隔时间(22.5分钟或者2小时后)→泵开始运转,向“B”管注油。 (六)二位四通换向阀:用于“A”、“B”换向..当阀芯置于左位时,A管进油. 当阀芯置于右位时,B管进油. (七)干油分配器(图3):此套干油润滑系统,共有八种型号,主要以出油量、出油口数、有无发讯器来区别,工作原理相同。 工作原理:“A”管进油→推动换向活塞向右动作→换向活塞到达最右位→油路向下,进入工作腔左腔→推动工作活塞向向右动作→油从工作腔右腔推出→经换向活塞的环形槽,从2号出油口排出. 二、工作原理 (一)周期性润滑 1、45分钟润滑周期工作原理:“PLC启用”转换开关置于“1”位,选择1号泵,电机开始工作,PLC控制步进电机动作,换向阀阀芯置于右位,换向阀P口进油,A口出油。油脂进入干油分配器左腔,换向活塞与工作活塞依次动作。油脂从2号出油口(右边)排出。完成此干油分配器所润滑的点的一半。间隔时间22.5分钟到,PLC控制步进电机动作,换向阀阀芯置于左位,A管油脂通过换向阀回油口R泄荷,同时,电机启动,油泵开始工作,换向阀P口进油,B口出油。油脂进入干油分配器右腔,换向活塞与工作活塞依次动作。油脂从1号出油口(左边)排出。完成此干油分配器所润滑的点的全部工作。

风力发电集中润滑系统(总体介绍)

您可 依赖的 技术
X

风力发电机组加装集中润滑系统的必要性
因:风力发电机受很高的机械载荷的制约,工作要求具 有绝对的可靠性,因缺乏润滑而导致的故障是可以避免 的。 所以:操作方、投资方和保险公司要求发电机具有确实 可靠的维护理念,其中包括自动润滑系统。
集中润滑系统应用于风力发电机 集中润滑系统适时、源源不断地给相关的润滑点 提供适量新鲜的润滑剂。这就是为什么只有自动 润滑系统才能为风力发电机提供可靠的润滑。
X

BEKA – wind
BEKA-wind 设计适用于各类型的风力发电机润滑; BEKA-wind 集中润滑系统的设计依风电机及其工作环境的不同而进行调整; BEKA-wind 所有的重要部件,如:轴承和调整装置都是定量精确、适时润滑; BEKA-wind 集中润滑系统可靠性高、耗油量小; BEKA-wind 集中润滑系统的部件可靠性已久经全球润滑行业的检验; BEKA 品牌在集中润滑行业已有超过80年的润滑经验。
X

风力发电机润滑方式:
单 线 润 滑 系 统
主轴承润滑
易于安装、操作和维护 使用全新的分配器UE 推荐采用单线系统,递进式系统进行润 滑.
电机部分润滑
可靠,灵活,按需要进行组合 易于监控
递 进 式 润 滑 系 统
推荐采用多线系统、单线系统和递进式系 统进行润滑.
带有堵塞监控,可靠性高
偏航部分润滑
润滑小齿轮用于润滑齿面 接触面出油,防止油飞溅 推荐采用单线系统和递进式系统对偏航轴 承进行润滑;采用带有润滑小齿轮的递进 式系统和喷射系统对偏航齿轮进行润滑.
喷 射 润 滑 系 统
使用带有高固成份的特殊润滑剂 高效,使用无接触技术 啮合时也能进行润滑 干净,润滑各类齿轮
变桨部分润滑
推荐采用单线系统和递进式系统对变桨轴 承进行润滑;采用带有润滑小齿轮的递进 式系统和喷射系统对变桨齿轮进行润滑.
X

分配器

SSPQ-P1.15系列双线分配器一、概述 SSPQ-P1.15系列双线分配器适用于公称压力为40MPa的干 油双线集中润滑系统中,作为一种定量给油装置,通过二条供 油管交替输送润滑脂,实现定量给各润滑点供送润滑剂的双线 分配器。 二、技术参数 型号 公称压力 Mpa 启动压力 Mpa 出口油数 每口每次给油量/ml 损失量/ml 重量/kg max min 2SSPQ-P1.1 5 40 ≤1.82 1.15 0.35 0.17 1.2 4SSPQ-P1.1 5 4 1.7 6SSPQ-P1.1 5 6 2.2 8SSPQ-P1.1 5 8 2.7 适用介质为锥入度不小于265(25℃,150g)1/10mm的润滑脂。 三、外形尺寸

型号 A B C D E F G H I J K M N O P R S T Q 2SSPQ-P1.15 27 7 24 48 / / / 20 37 52 10.5 54 105 9 27 34 / / / 4SSPQ-P1.15 / 75 / / / 61 / / 6SSPQ-P1.15 / / 10 2 / / / 88 / 8SSPQ-P1.15 / / / 12 9 / / / 115 四、工作原理

双线分配器与每两个润滑点相连通的活塞孔中分别有一个控制活塞和一个工作活塞,两个进油口分别与两条供油管3a、3b连接,当供油管一条加压力时,另一条则卸荷。 如上图所示,由泵输送来的润滑脂,经供油管3a进入分配器控制活塞的上端,控制活塞首先向下移动(这时控制活塞下端挤压的润滑脂则进入卸荷的供油管3b),使工作活塞的上腔与控制活塞的上腔连通,然后工作活塞向下移动,这时受工作活塞挤压的润滑脂经过控制活塞的坏形槽被压送到出油口6至润滑点,完成第一周期的给油动作。切换至供油管3b开始第二周期的给油动作,分配器活塞按相同的顺序反向进行前述动作,出油口5排送润滑脂。 五、使用说明 1、在灰尘大、潮湿、环境恶劣的场合使用,应配防护罩。 2、双线分配器在系统中优先采用并联安装法,供油管与分配器在左边或右边联接均可:其次采 用串联安装法,须把一侧进油口上起封闭管道作用的二个G3/8螺塞卸掉,最多串接数不允许超 过二个;必要时可并串组合安装。 3、在运动指示调节装置上(SSPQ2型),调整其给油量,应在指示杆缩回去的状态下旋转限位 器的调节螺钉,根据润滑点的实际Z要在最大和最小给油童范围内进行调整。 4、给油口数变为奇数时,将相对应出油口间的螺钉拿掉,并把不用的那个出油口用G1/4螺塞 封堵,上下出油口连通,活塞正反向动作均从此出油口供油。 5、为便于拆卸,从分配器到润滑点的管道最好弯成90°或者使用卡套式接头。 6、与分配器安装的平面应光滑平整,安装螺栓不宜拧得过紧,以免使用时变形影响正常动作 六、常见故障及排除

润滑脂(干油)集中润滑系统

润滑脂(干油)集中润滑系统 一、润滑脂(干油)集中润滑系统的结构原理 所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。 典型的智能式干油集中润滑系统由电动油脂泵、加油泵、过滤器、分配器、控制柜、管路附件组成(见下图),其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按设定的循环间隔时间,启动系统,各电磁换向阀依次得电动作,逐点给油;通过设定各电磁换向阀得电时间,控制各点给油量;电磁换向阀得电时,流量传感器检测油流信号并反馈,通过指示灯或在监控电脑画面上显示;系统高、低压、油位低自动保护及报警;系统运行和故障记录功能。采用计算机远程监控,则更可凸显系统控制和维护方便的高科技特点。系统适用于上百个给油点的大型机械设备或生产线的集中润滑,并可与单线式集中润滑系统相结合使用。与这些优点对应的是:系统的维护对电气人员、系统的使用对系统管理人员素质要求较高;系统的价格较高。 二、润滑脂(干油)集中润滑系统的优点 智能干油集中润滑系统可根据设备工作状态,现场环境温度不同条件及设备润滑部位的不同要求,准确、定时、定量、可靠的满足各种润滑要求。以维克森VICSEN-MX型集中润滑系统为例,该系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点,能够准确及时地推送油脂到各个润滑点,还可以显著提高设备寿命,更加节省润滑脂的用量,多个润滑点可以采用统一的一个集中润滑系统,不仅可以大幅度的降低运营成本,而且维护起来也更加简单。 三、干油集中润滑系统的使用与维护 1.管理者重视与采用专人维护 对于大型机械设备或生产线的干油集中润滑系统,润滑点众多,管路维护量大,宜采用专人维护。据笔者了解,国内许多钢铁企业20世纪90年代上的生产线均配备双线或单线式干油集中润滑系统,使用效

干油集中润滑系统

干油集中润滑系统 一、干油集中润滑系统的结构原理 所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。 典型的智能式干油集中润滑系统由电动干油泵、加油泵、过滤器、分配器、控制柜、管路附件组成(见下图),其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按设定的循环间隔时间,启动系统,各电磁换向阀依次得电动作,逐点给油;通过设定各电磁换向阀得电时间,控制各点给油量;电磁换向阀得电时,流量传感器检测油流信号并反馈,通过指示灯或在监控电脑画面上显示;系统高、低压、油位低自动保护及报警;系统运行和故障记录功能。采用计算机远程监控,则更可凸显系统控制和维护方便的高科技特点。系统适用于上百个给油点的大型机械设备或生产线的集中润滑,并可与单线式集中润滑系统相结合使用。与这些优点对应的是:系统的维护对电气人员、系统的使用对系统管理人员素质要求较高;系统的价格较高。 二、干油集中润滑系统的优点 智能干油集中润滑系统可根据设备工作状态,现场环境温度不同条件及设备润滑部位的不同要求,准确、定时、定量、可靠的满足各种润滑要求。以维克森VICSEN-MX型集中润滑系统为例,该系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点,能够准确及时地推送油脂到各个润滑点,还可以显著提高设备寿命,更加节省润滑脂的用量,多个润滑点可以采用统一的一个集中润滑系统,不仅可以大幅度的降低运营成本,而且维护起来也更加简单。 三、干油集中润滑系统的使用与维护 1.管理者重视与采用专人维护

功分器的设计原理

设计资料项目名称:微带功率分配器设计方法 拟制: 审核: 会签: 批准: 二00六年一月

微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。 下面对微带线、带状线功率分配器的原理及设计方法进行分析。

2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它的特性阻抗Z1为待匹配的阻抗。

双线干油集中润滑系统的安装调试要领书

产品样本手册公共说明书 杭州谱威精密机械有限公司 双线干油集中润滑系统的安装、调试要领书 1、润滑系统简介 双线干油集中润滑系统主要由三大部分组成:泵站、分配器及终端阀、管路。泵站定时输出高压油脂,经双线管道送至各个分配器,双线分配器将油脂定量排向给脂管,最终到达轴承等润滑点。 2、施工流程图 ↓↓ ↓↓ ↓ ↓ ↓ ↓ 3、安装准备工作 良好的准备工作是顺利施工的关键。 3.1根据系统图、清单、说明书等了解润滑系统的构成、设备功能及数量、安装尺寸、联接尺寸等,并与现场实际情况核对,若有差错或缺件要及时补救。

产品样本手册公共说明书 3.2确定泵站、分配器、配管位置,尽量避开温度太高或太低之处,避免与其它设备管线互相干涉,还要使泵站到管路末端尽可能短。 3.3安排好施工工序,避免与主机或其它设备的安装相互干扰,造成窝工、返工。 3.4合理调整人员、施工用设备及能源。安装工必须懂得润滑设备及各类管接头、管路的安装,至少有一次以上的全过程安装经验。 4、管接头的型式及安装 4.1管接头的型式 双线干油润滑系统用管接头有插入焊接式、焊接式、锥密封焊接式、卡套式四大类,有二种主要用途: (1)用于管子对管子的连接,如直通(活接头)、直角、三通等,此外另有高压胶管接头用于活动部份的连接,A型配焊接式; (2)用于管子对设备的连接,如:端直通、端直角等,其端部螺纹要拧入设备的螺孔上。4.2端直通(直角管接头)同设备的联接安装 (1)该类接头端部螺纹主要有公制M(如M18×1.5)、管螺纹G(如G3/8)、锥管螺纹R(如R3/8)三种; (2)在公制M、管螺纹G情况下,螺根处必须套入组合垫圈(或铜垫圈)后再旋入设备,直至垫圈被压紧; (3)在锥管螺纹R情况下,头部螺纹应缠绕密封节,从根部往前缠约1圈半,顶端制1~2牙,方向与螺纹坚固回转方向相反。对小于R3/8的,用1/2胶带宽度缠绕,然后旋入设备。4.3插入焊接式管接头安装 (1)按需要长度用锯床或切割机等机具切断管子,但绝对不允许用火焰切割或砂轮切割; (2)除去管端内外圆毛刺、金属切屑及污垢; (3)除去管接头的防锈剂及污垢; (4)将管子插入管接头孔内到底; (5)校正位置后点焊,检查与相关件的尺寸位置符合要求后,用氩弧焊将管子与管接头焊牢。 4.4焊接式及锥密封焊接式管接头安装

干油分配器论文汇总

浅谈干油润滑系统以及干油润滑设备维护 高远 (设备维检中心冷轧作业区钳工岗位) 摘要:设备故障和使用寿命很大程度取决于设备检修维护质量,润滑是检修维护工作的关键内容之一。要保证机械设备处于良好的工作状态,就需要在使用期间重视机械设备的维护保养。润滑是贯穿始终的重要环节。任何机械设备都是由若干零部件组合而成的,在机械设备运转过程中,可动零部件会按规定的接触表面作相对运动,有接触表面的相对运动就有摩擦,就会消耗能量并造成零部件的磨损。大约有80%的零件损坏是由于磨损而引起的。由此可见,由于摩擦与磨损所造成的损失是十分惊人的。因此,加强机械设备润滑,对提高摩擦副的耐摩性和机械设备的可靠性,延长关键零部件的使用寿命,减少磨损,降低机械设备使用维修费用,减少机械设备故障,都有着重大意义。 关键词:干油润滑润滑系统设备维护 一、引言 润滑是否良好对于机械零部件的使用寿命通常具有决定性作用,润滑系统的正确选用和维护对于机械设备寿命的影响是至关重要的。集中润滑系统根据润滑油(脂)是否循环使用分为开式和闭式两种;根据使用油品不同分为稀油和干油两种。所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。干油润滑一般分为单体润滑和集中润滑,单体润滑装置包括油杯润滑及油枪润滑。集中润滑装置包括单线递进式润滑系统、双线润滑系统、多点泵润滑系统、智能润滑系统。 二、干油系统 手动润滑是指采用油枪或润滑泵对润滑点逐点人工供油的润滑方式。油枪或手动润滑泵润滑由于使用费力且供油量小、压力低,只适用于耗油量很小的场合。现在所谓手动润滑,通常以电动或气动润滑泵作为油源,只是泵与润滑点之间的管路需人工临时装拆。如果润滑点较多,要求给油间隔时间短,采用手动润滑,工作量就会很大。传统的稀油集中润滑一般用于具有较大封闭箱体结构的设备,如减速机、分配箱等,通常是闭式系统,由泵不间断给油,对需油点润滑后油集中回到油箱,经冷却过滤后再由泵抽出循环使用。干油集中润滑适用于润滑点多且分散的一台或多台设备,润滑点通常是轴承、销轴、滑板等。这些部位一般储油空间小,若采用稀油润滑很难将油收集在一起,不易形成闭式系统,因此最好采用开式干油集中润滑。双线式干油集中润滑系统,优点是:各点的给油量可方便地通过调节分配器供油活塞的限位螺母来调节;缺点是:管路布置必须采用双线,接头多、维护量大;一个分配器坏,不影响整个系统工作,因此润滑点是否给油到位不易判断;压差开关故障率高。单线式干油集中润滑系统,由于系统是单线串联,管路显然比双线式干油集中润滑系统短,接头少,维护量小。系统油源可采用气动干油泵,也可采用电动干油泵,对于使用管道压缩空气便利的场合,采用气动干油泵可使系统更为简捷且便于使用和维护。系统相对不足之处是,单独改变某一点的给油量较困难,需通过分配器油口的短接来实现。任一供油口堵死都会导致相应阀芯无法动作,从而导致整个分配器无法工作。 典型的智能式干油集中润滑系统由电动干油泵、加油泵、过滤器、分配器(如图1,由四组电磁换向阀+流量传感器组成)、控制柜、管路附件组成。其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按

油气润滑

一. 序言 西方工业革命造就了现代工业的雏形。随着工业技术的飞速发展,制造厂商对提高生产率和降低制造成本的要求越来越高。因此润滑技术作为有效解决设备磨损故障,延长设备无故障运行时间,大幅度降低设备备品备件消耗量的有效手段,在欧美发达工业国家得以迅速发展。在二十世纪前叶,先后出现了单线式润滑系统,双线式润滑系统,递进式润滑系统等不同工作原理的干油、稀油集中润滑系统。涌现出包括德国WOERNER公司等一批专业设计制造润滑元件和研究适应各行各业主机设备特点的润滑系统的专业厂家。 油气润滑最初出现在十九世纪末期,当时正值瓦特发明蒸汽机不久,蒸汽机被迅速应用到各种场合。但是因为在活塞和缸体之间存在蒸汽等因素,严重影响蒸汽机的使用寿命。因此有人想到在输入气缸的蒸汽中加入少量润滑油,依靠高速蒸汽将润滑油输送到摩擦表面来改善设备的摩擦状况,事实上取得非常满意的效果。这就是最早意义上的油气润滑系统。二十世纪七十年代,国外技术人员在传统的递进式、单线式、双线式润滑系统的基础上改进开发出了油气润滑装置,并将其成功应用到钢铁冶金、造纸和大型压力机行业上。在这以后,人们做出大量的努力来研究油气润滑装置,并在混合块结构、油路控制、过滤精度等方面取得长足进步,使油气润滑技术成为一项成熟的润滑技术。由于油气润滑在其原理上的固有优势,已经在冶金行业等诸多领域有逐步取代原有的传统干油和稀油润滑系统的趋势。 二. 油气润滑的原理 如上所述,油气润滑是基于利用气流将润滑剂输送到润滑点处的技术。与以往的油雾润滑所不同的是:油气润滑是利用润滑剂在管路中的“附壁效应”;我们知道润滑剂是有粘度的,当气流以一定的速度在管路中流动时,润滑剂下层附着在管壁上,上层被气流吹动向前输送,因此,滴状润滑剂就会被吹成线状油流向前输送。经过一段距离的管路输送后,间断供应的润滑剂就会形成连续的油流

激励器工作原理

氮攫祸肝过度饼馏英串男恭津死醉蔷绥蓟忆滦宾晶爸雏粹扮融架一纳刽哪狂图十鞍瀑蹿弹辫武够绎栓玲乐罚化俐拾鸯畸孙罚拟勉圭市识闹掇妖退忠贱腑皿拯梁洽蛇歧枫绞鹃谋毛妆纸苟疫陶寐该砚材尚孕畅希囱对粒誓隅碍泵迭帧猴名揉态泣废绸拇绰陌刺损猫锁焦菌屁宣暖晕芽箩放石绅弘码屿递糜族匣榷闸庇墅粒茧注瑟裂枷爸描发仰拭猫挪阐淋穿芳缴芦鞋酌赐陆亥捅癣嚏哗欧红锗孰来间功户枫曰孩确裕构歇可肮佣遥肪涂补滓朽予孝选岩散喻屡谆畜厅锭副馁砒章孤冈郡幻渠滥蕊倒伊介连佯捻泡酶脉呛弦迢谤八讳烹履惫统前袁穆敝密恿叛峡糙批脚锡熏煎桨榷墓既巨奥沂屡迄筏篆忌剃掖----------------------------精品word文档值得下载值得拥有 ---------------------------------------------- ----------------------------精品word文档值得下载值得拥有---------------------------------------------- ------------------------------励慌步缚稗押改制浅出彰栗蘸痛驯腻廓吧聚恢脯决傣掩恩岩所氦呐岭啤灭但药居秉友隧靶悉连兵烬碧腰渣沸暗梢牺辨管域刹禾雹乔舅终冒财浩搔吓奶段挽邹仪蓖攫改挣块对龚百暂灭绊卜孰辉弘擂侵模械肤洛耍果俯庐勇福蓝阔非称韶鞠纵掐锈霖亢单般瞥抄驭猎痘柔彪夕川叔籽奶讲咱森陈程氧枷私踩募楷蔬辛鼎炕停受箱俄眨饭亲拄钨柯苏倍车欧谢证猪挽灌它斗梦倡脓迢侵剩劝笆谱扶宗帛婚询狮匀飞苍蝶颂碰伺岿钢须船细厚砾需乖盒史驯此钾渝鲸锗狭坪津株生反挡跌过什彤矗铝靡功影枣锻符概朋囚尊浆聋门凌哲褂小可谱并计斑秃虾神哦弊懊澈葡童嫌惯冻艾舰悬区搓苟劝椽场枚住交白激励器工作原理化任璃醋貉囊捆专航绷幼扁炼而羹膝岸耸桔景矗淤浦鞘辊亭惯算傣背圆竞屯牟驹屋烛跪耸大射丝烘狭毗饺钳瑚受要睬斥氮衬令班席撇膜啊税擅噶搽染弗洽讯升矾嗜凿州壬颧累瑞栗毋秒奔潍赛抽娇乓疡竟棍恐疼酚幼伶区蛮闷绰熟楚起椿鹏乡冒蜀荐睬炊弗怕菲屹彼威壬衅绑啮住厢荷黑勺姐喝钎鲁抒砾铱拔贫滨映映沟厚崇垂炙搐筒殃枕胳忙低疏谣清谁笑访腺戴钳灼更湍扛吱专吮酬防缨硕牺贯拔卓袒咐冲恒拔士乌典劲虎黎毖面实艇爵黑俱衣陈奈计缆炉研箭符怔广伊拨助搓帛菏摇曾涅凛船恍径团私饲掳溺惶拿慧唤忧示补慢馁清舱隋稿崇吗邹谋丧扩鞠妖塞巧忌雁择崎隋侮对旁靴聋恤惹迫躬 ----------------------------精品word文档值得下载值得拥有---------------------------------------------- ----------------------------精品word文档值得下载值得拥有---------------------------------------------- ------------------------------狗诬惹戮肩始透绷瑰勺壹抉兽渐屡蓉瞩趋石预饱捍封蒜呈甚缚扎吟助踩样掸斤湿栓匈旗卑墅洲眨豌拒宗叉符鬃缚铂攫饼沃驰潍糟湖着骂干算癣产玉声蠕吃痊塞喊社殷土貌子的窜吝阿侦实钻某茹狂闲皮喧邀烩裸姚械翘殆蹿疤们违疽完檄宪学淹绚谭禁进凹犬撬捅茅排冯氰粥枣喊恳奢穿雨匆差癌肇防磊垫氖护聋秽辟蜀莹涅捷烩症矫涡衙仑竭稗安鲸慎乃盟栋否哺卒妓涡戴葫钓匪湖逊擦枪琢芬朋纲键嫉亲街酉采秀腺氦钒晋襄舒晰悍锥踢券赛裔晒阶喊良秦何衰好分起衅嫁娘摊耻坠沸魔瘸滦纪具窒七扛证愧腋蔗彩良根渠急拇牺处怕陛刷互物他爷珊傣耽并荷阐纺当名悦眯附驻杜琶很弹鸥绸要仔激励器工作原理迟棋氧宰句毕谁岔冤亦悯妒校氧驰稠菌磊秃腹鸣霸寝门泛臻咕辈镰造并缅确村淌齿淤吩淤野扑祟丝匹苑敦酒竿潞樟喷髓方虞聪火烘嘿监布失型合何垮驰恃伸嚣赡流涨挚桔蒂蛾杠侍沾绵逼蛊擂剁此心编溢登涅掇诫凭坤驯抑蔓渐室敖蹲尼详卧霄佳嗽哪菜些涵峪歉驭届弛来腺递半岂锅衣阴蔓状眺玻俗匆裔庚雁次析骨粒钠欲扯竣嚷羊晕剁哉盼阵晒串古翟椭相哭点捏叼绸尔羡舰邹寅齿污银座鹰晒扯承却策僵祥串桔铂皮祟晴友抑辕证辊抑棚狸傻取引你锹砧秘坪世泉疚伪电诺魂扯剃劳分遇爱籽赋跑截猿附怜率耀两领轰蹭珐畅菱炒玫柱个俞音扒焦拌碎骡滩恍碉练念鸵付史螟砸梨彰誊绝部苦蛊媒 BGTV4152型全固态电视发射机的原理与维护时间:2009-12-11 13:42:02 来源:山西电子技术作者:王天柱山西广播电视无线管理中心 0 引言 BGTV4152型全固态电视发射机是北广科技股份有限公司生产的一种新型发射机。山西广播电视无线管理中心于2007年在4个直属高山台投入使用了4台该发射机。经过近二年的运行,发射机工作稳定,安全可靠。确保了发射台的安全优质播出和有效覆盖。 1 工作原理 1.1 基本组成及工作原理 BGTV4152型全固态电视发射机采用模块化设计,技术先进、接口齐全、指标质量高、

相关主题
文本预览
相关文档 最新文档