当前位置:文档之家› 四点共圆例题及答案

四点共圆例题及答案

四点共圆例题及答案
四点共圆例题及答案

证明四点共圆的基本方法

证明四点共圆有下述一些基本方法:

方法1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法3

把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4

把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5

证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

例1如图,E、F、G H分别是菱形ABCD各边的中点.求证:E、F、G H 四点共圆.

证明菱形ABCD勺对角线AC和

BD相交于点0,连接0E OF OG OH

??? AC和BD互相垂直,

???在Rt△ AOBRt△ BOCRt△

COD

Rt △ DOA中, E、F、G H,分别是AB BC CD DA的中点,

.\0E = - AB, OF = -BC, OG 二丄CD, OH = -DA

2 2 2 2

VAB = BC = CD =DA, OE = OF = OG = OH.

即E、F、G H四点共圆.

⑵若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.

例2 如图,在△ ABC 中,AD丄BC, DEL AB, DF丄AC.

求证:B E、F、C四点共圆. ;

证明T DEI AB DF L AC, / \ ???/

AEDbZ AFD=180 ,

即A、E、D F四点共圆,

/ AEF=/ ADF

又??? AD L BC, / AD阡/ CDF=90 ,

/ CD阡/ FCD=90 ,

/ ADF/ FCD

???/ AEF/ FCD

/ BEF^Z FCB=180 ,

即B、E、F、C四点共圆.

(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.

【例1】在圆内接四边形ABCD中 / A- / C=12°,且/ A:/ B=2 : 3.求 / A、/ B、/ C、/ D 的度数.

解???四边形ABCD内接于圆,

???/ A+Z C=180

A- Z C=12 ,

???Z A=96°, Z C=84°.

vZ A:Z B=2: 3,

‘ 2

ZB = 96Q X - = 144c

3

Z D=180 -144 °=36°.

禾U用圆内接四边形对角互补可以解决圆中有关角的计算问题.

本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.

关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:

命题“菱形都内接于圆”对吗?

命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内

角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.

判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等. 所以,也无

法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.

综上所述,“菱形都内接于圆”这个命题是错误的.

5圆的内接四边形

例1 已知:如图7-90, ABCD 是对角线互相垂直的圆内接四边形,通过对 角线的交

点E 与AB 垂直于点H 的直线交CD 于点M.求证:CM=MD

证明 / ME (与/ HEB 互 余,/ ABE 与/ HEB 互 余,所以/ MEC M ABE 又/

ABE W ECM 所以/ MEC M ECM 从而 CM=EM 同理 MD=EM 所以 CM=MD

点评 本例的逆命题也成立(即图中若 M 平分CD 则MHL AB .这两个命 题在某些问

题中有时有用.本例叫做婆罗摩笈多定理.

例2 已知:如图7-91 , ABCD 是O O 的内接四边形,ACLBD,

OE 丄AB 于点E.求证:OE 二;CD.

E TT1

分析一 如图7-91 (a ),由于E 是AB 的中点,从A 引O O 的

直径丸G, 0是AG 的中点,由三角形中位线定理可知O E J G B,因

此只予

2 需

证明GB=CD 但这在第七章E 1.4圆周角中的例3已经证明了.

证明读者自己完成.

*分析二 如图7-91 (b ),设AC, BD 垂直于点F .取CD 的

中点皿则MF 所以应该有OE = MF,并且由例啲点评知道还

D

图 7-

90

有OE/ MF从而四边形OEFM应该是平行四边形?证明了四边形OEFM是平行四边形,问题也就解决了?而证明四边形OEFM是平行四边形已经没有什么困难了.

*分析三如图79(b),通过ACBD的交点F作AB的垂线交CD于点M连结线段EF, MO由于OELAB, FML AB,所以OE/ FM 又由于EF丄CD (见例1 的点评),MOL CD

所以EF// MO所以四边形OEF丽平行四边形?从而OE=MJF 而由

例1知MF二R?所以0E二]CD

例4已抓如團7-93 , P为等边三角形ABC的外接劇的BC上任

意一点.求证:PA=PB+P.C

分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图

7-93 (a),在PA上取点M,使PM=PB剩下的问题是证明MA=PC这只要证明△

ABM^A CBP就可以了.

证明读者自己完成.

分析二如图7-93 (a),在PA上取点M使MA=PC剩下的问题是证明PM=PB这只要证明△ BPM是等边三角形就可以了.

证明读者自己完成.

團7^93

分析三如图7-93 (b),延长CP到M使PM=PB剩下的问题是证明PA=MC 这只要证明△ PAB^A CMBt可以了.

证明读者自己完成.

读者可仿以上的方法拟出本例的其他证明.

*本例最简单的证明是利用托勒玫定理(例3).

证明由托勒玫定理得PA- BC=PB AC+PC AB,由于BC=AC=AB所以有

PA=PB+PC

例2如图7—116,0 O和。O都经过A、B两点,经过点A的直线CD与O O交于点C,与O O交于点D.经过点B的直线EF与O O交于点E,与O C2

交于点F.

求证:CE// DF.

分析:要证明CE// DF.考虑证明同位角(或内错角)相等或同旁内角互补.

由于CE DF分别在两个圆中,不易找到角的关系,若连结AB则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.

证明:连结AB.

??? ABEC是圆内接四边形,

???/ BAD" E.

??? ADFB是圆内接四边形,

???/ BADbZ F=180°,

???/ E+Z F=180°.

??? CE// CF.

说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为Z DFG Z BAD而Z BAD Z E,所以Z DFG Z E.

⑵应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,

导出角之间的关系.

(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图

形,是否还有其他情况?

问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7 —117的情况并给予证明.

例3如图7—118,已知在厶ABC中, AB=AC BD平分/ B,A ABD的外接圆和BC交于E.求证:AD=EC

分析:要证AD=EC不能直接建立它们的联系,考虑已知条件可知/ ABD=

/ DBE容易看出AD=DE.若连结DE则有AD=DE因此只要证

DE=EC由于DE和DEC的两边,所以只要证/ EDC h C.由已知条件可知/

C=Z ABC因此只要证/ EDC M ABC因为△ EDC是圆内接四边形ABED勺一个外角,所以可证/ EDC h ABC问题可解决.

囲7-

L1&

证明:连结DE T BD平分/ ABC

AD=DE ,AD=DE

T ABED是圆内接四边形,

???/ EDC h ABC

T AB=AC

???/ ABC M C,A Z EDC=Z C.

于是有DE=EC因此AD=EC

四、作业

1. 如图7—120,在圆内接四边形ABC冲,AC平分BD并且ACL BD / BAD=70 18',求四边形其余各角.

九年级圆基础知识点,(圆讲义)

一对一授课教案 学员姓名:____何锦莹____ 年级:_____9_____ 所授科目:___数学__________ 上课时间:____ 年月日_ ___时分至__ __时_ __分共 ___小时 一、圆的定义: 1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随 之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径. 2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O ⊙”,读作“圆O”. 3 同圆、同心圆、等圆: 圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆. 注意:同圆或等圆的半径相等. 1. 弦:连结圆上任意两点的线段叫做弦. 2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 3. 弦心距:从圆心到弦的距离叫做弦心距. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB,读作弧AB. 5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

8. 弓形:由弦及其所对的弧组成的图形叫做弓形. 1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1?的圆心 角,我们也称这样的弧为1?的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90?的圆周角所对的弦是直径. 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的弦心距相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. 一、圆的对称性 1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线. 2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心. 3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合. 二、垂径定理 1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; ⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 3. 推论2:圆的两条平行弦所夹的弧相等. 练习题;

圆的知识点总结史上最全的

A 图4 图5 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A 在圆外 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

六年级上册圆的基础知识和练习

六年级上册圆的基础知识和练习 一、圆的知识梳理 1、圆是由一条_________ 围成的平面图形。(以前所学的图形如长方形、梯形等 都是由几条____ 围成的平面图形)(曲线、直线、线段) 2、画圆时,针尖固定的一点是 __ ,通常用字母_表示; 连接圆心和圆上任意一点的线段是 ______ ,通常用字母___ 表示; 通过圆心并且两端都在圆上的线段是 ______ ,通常用字母___ 表示。 在同一个圆里,有___ 条半径和直径。 在同一个圆里,所有半径的长度都_____ ,所有直径的长度都 __ 。(必须有的前提是____________ ) 3、用圆规画圆时,针尖是圆的_______ ,两脚间的距离是圆的 ____ 。 4、在同一个圆里,半径是直径的______ ,直径是半径的_____ 。(d=, ____ r = ____ ) 5、圆是___ 图形,有 __ 条对称轴,对称轴就是直径所在的_____ 。 6圆心决定圆的 ____ ,半径决定圆的__ 。要比较两圆的大小,就是比较两个圆的____ 或 _____ 。 7、正方形里最大的圆。两者联系:边长二_____ ;圆的面积=78.5%正方形的面 积 画法:(1)以 _________ 为圆心,以___ 为直径画圆。 8、长方形里最大的圆。两者联系:宽二 画法:(1)画以 ________ 为圆心,以____ 为直径画圆。 9、同一个圆内的所有线段中,圆的_____ 是最长的。 10、车轮滚动一周前进的路程就是车轮的______ 。每分前进米数(速度)= x ___ 11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做______ 。用字母—表示。n是一个________________ 小数。我们在 计算时,一般保留两位小数,取它的近似值3.14。n—3.14(大于、小于或等

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

圆的知识点总结

圆的知识的归纳总结与复习 【知识与方法归纳】 1. 圆的特征:圆是由一条曲线围成的封闭图形,圆上任意一点到圆心的距离都相等。 2. 圆规画圆的方法:(1)把圆规的两脚分开,定好两脚间的距离;(2)把有针尖的一只脚固定在一点上;(3)把装有铅笔尖的一只脚绕这个固定点旋转一周,就可以画出一个圆。 3. 圆各部分的名称:圆心用O表示;半径通常用字母r表示;直径通常用字母d表示。 4. 圆有无数条直径,无数条半径;同(或等)圆内的直径都相等,半径都相等。 5. 圆心和半径的作用:圆心确定圆的位置,半径决定圆的大小。 6. 圆的轴对称性:圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。 7. 同一圆内半径与直径的关系:在同一圆内,直径的长度是半径的2倍,可以表示为d=2r 或r= 。 8. 圆的周长:圆的周长是指围成圆的曲线的长。直径的长短决定圆周长的大小。 9. 圆周率:圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14. 10. 圆的周长的计算公式:如果用C表示圆的周长,那么C=πd或C=2πr。 11. 圆的周长计算公式的应用: (1)已知圆的半径,求圆的周长:C=2πr。 (2)已知圆的直径,求圆的周长:C=πd。 (3)已知圆的周长,求圆的半径:r=C π 2. (4)已知圆的周长,求圆的直径:d=C π。 12. 圆的面积的含义:圆形物体所占平面的大小或圆形物体表面的大小就是圆的面积。 13. 圆的面积计算公式:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式是:S= 。 14. 圆的面积计算公式的应用: (1)已知圆的半径,求圆的面积:S= 。 (2)已知圆的直径,求圆的面积:r= ,S= 或。 (3)已知圆的周长,求圆的面积:r=C 2 π,S= 或。 【经典例题】

初三数学圆的基础知识小练习

初三数学圆的基础知识小 练习 Prepared on 24 November 2020

圆的基本知识 一、知识点 5、圆与圆的位置关系:(内含、相交、外离) 例3:已知⊙O 1的半径为6厘米,⊙O 2 的半径为8厘米,圆心距为d, 则:R+r=,R-r=; (1)当d=14厘米时,因为dR+r,则⊙O1和⊙O2位置关系是: (2)当d=2厘米时,因为dR-r,则⊙O1和⊙O2位置关系是: (3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是: (4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是: (5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是: 6、切线性质: 例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO=度(2)如图,PA、PB是⊙O的切线,点A、B是切点, 则=,∠=∠; 7、圆中的有关计算 (1)弧长的计算公式: 例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少 解:因为扇形的弧长=() 180 所以l=() 180 =(答案保留π) (2)扇形的面积: 例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少

解:因为扇形的面积S= () 360 所以S= () 360 =(答案保留π) ②若扇形的弧长为12πcm ,半径为6㎝,则这个扇形的面积是多少 解:因为扇形的面积S= 所以S== (3)圆锥: 例7:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少 解:∵圆锥的侧面展开图是形,展开图的弧长等于 ∴圆锥的侧面积= 知识点 1、与圆有关的角——圆心角、圆周角 (1)图中的圆心角;圆周角; (2)如图,已知∠AOB=50度,则∠ACB=度; (3)在上图中,若AB 是圆O 的直径,则∠AOB=度; 2、圆的对称性: (1)圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为. (2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 如图,∵CD 是圆O 的直径,CD ⊥AB 于E ∴=,= 3、点和圆的位置关系有三种:点在圆,点在圆,点在圆; 例1:已知圆的半径r 等于5厘米,点到圆心的距离为d , (1)当d =2厘米时,有dr ,点在圆(2)当d =7厘米时,有dr ,点在圆 (3)当d =5厘米时,有dr ,点在圆 4、三角形的外接圆的圆心——三角形的外心——三角形的交点; 三角形的内切圆的圆心——三角形的内心——三角形的交点;

四点共圆的判定与性质

四点共圆的判定与性质 一、四点共圆的判定 (一)判定方法 1、若四个点到一个定点的距离相等,则这四个点共圆。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。 5、同斜边的直角三角形的顶点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。 7、若AB、CD 两线段延长后相交于P。且PA×PB=PC×PD,则A、B、C、D 四点共圆(割线定理)。 8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。 (二)证明 1、若四个点到一个定点的距离相等,则这四个点共圆。 若可以判断出OA=OB=OC=OD,则A、B、C、D 四点在以O 为圆心OA 为半径的圆上。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 若∠A+∠C=180 °或∠B+∠D=180 °,则点A、B、C、D 四点共圆。

3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 若∠B=∠CDE,则A、B、C、D 四点共圆证法同上。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这 两个点和这条线的两个端点共圆。 若∠A=∠D 或∠ABD=∠ACD,则A、B、C、D 四点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。

初三《圆》基础知识复习专题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定 长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离 都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r

外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六、圆心角定理 图1 图2 图4 图5 B D

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

人教版圆知识点总结(供参考)

1.圆的有关概念: (1)圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。 ①表示方法:⊙O ,读作“圆O ” ②确定一个圆的条件:???半径—定长圆心 —定点 (2)等圆:能够重合的两个圆叫做等圆(两个全等的圆) (3)圆心角:顶点在圆心的角叫做 圆心角 . (4)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做 圆周角 . (5)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为 优弧 ,小于半圆的弧称为 劣弧 . (6)等弧:同圆或等圆中,能够完全重合的两段弧。 (7)弦:连接圆上任意两点的线段叫做 弦 ,经过圆心的弦叫做直径. (8)等弧:同圆或等圆中,能够完全重合的两段弧。 ( 9 ) 圆是 轴 对称图形,任何一条 直径所在的直线都是它的 对称轴 ;圆又是 中心 对称图形, 圆心 是它的对称中心。 知识点2 垂径定理及其推论 垂直于弦的直径平分 弦 ,并且平分 弦所对的两条弧 ; 要点:①过圆心;②垂直弦;③平分弦;④平分弧(优弧、劣弧);⑤平分圆心角 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 知识点3 圆周角定理 圆周角定理: 同圆或等圆中,同弧或等弧所对的圆周角相等,并且等于所对圆心角的一半 推论1:直径(或半圆)所对的圆周角为90°,90°圆周角所对的弦是直径。 总结:同圆或等圆中,① 弧相等——弦相等,圆心角相等,所对圆周角相等; ② 圆心角相等——弧相等,弦相等,所对圆周角相等; ③ 弦相等——弧相等,圆心角相等,同弧或等弧所对的圆周角相等; (注意:弦所对的圆周角有两种) 知识点4 外接圆与内切圆相关概念 (1)确定圆的条件:不在同一直线上的三个点确定一个圆. (2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心. (3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 (4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (5)圆内接四边形对角互补,它的一个外角等于它相邻内角的对角 知识点5 点与圆的位置 点与圆的位置关系共有三种:

圆的相关知识

圆的复习 第一部分知识及方法 一、圆的基本概念 1、圆的基本元素 圆心:圆的中心。 半径:连接圆心和圆上任一点的线叫半径。 弦:连接圆上任意两点的线段叫弦。 直径:经过圆心的弦叫直径。 弧:圆上任意两点间的部分叫弧。弧分为半圆、优弧和劣弧。 圆心角:顶点在圆心的角叫圆心角。 注意:直径是圆最长的弦;同圆或等圆的直径是半径的两倍。 2、 (1)圆是旋转对称图形,圆心是对称中心。 在一个圆中,相等的圆心角所对的弧相等,所对的弦相等。 在一个圆中,相等的弧所对的圆心角相等,所对的弦相等。 在一个圆中,相等的弦所对的劣弧相等,所对的圆心角相等。 (2)圆是轴对称图形,任一条过圆心的直线都是它的对称轴。 (3)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 提示: 1)圆周可以看作360°的弧,圆心角的度数与它所对的弧的度数相等。 2)解决与弦有关的问题时,常常过圆心作弦的垂直线段作为辅助线。半径、弦的一半、弦心距构成一个直角三角形。利用勾股定理和三角函数可以解决与半径长、弦长、弦心距的长以及相关角度等有关计算的问题。 3)经过圆内一点,最长的弦是经过这点的直径,最短的弦是与过这点的直径垂直的弦。 4)圆内两条平行弦所夹的弧相等。 3、 (1)圆周角的定义:顶点在圆上,两边与圆相交的角叫圆周角。 (2)圆周角定理:半圆或直径所对的圆周角是直角,90°圆周角所对得弦是直径。在一个圆内,同弧或等弧所对的圆周角相等,都等于该弧所对圆心角的一半;相等的圆周角所对得弧也相等。圆的内接四边形的对角互补,并且任何一个外角等于它的内对角。 (3)相关链接:利用“半圆或直径所对圆周角是直角”可以在圆中得到直角三角形,我们可以解决很多与直角三角形有关的问题。圆周角定理、三角形内角和定理及推论、同角的余(补)角相等、平行线的性质定理等,都是与角度有关的定理,把它们进行综合运用,可以实现角度的灵活转换,从而解决很多与角相关的问题。 (4)注意: a.当给出90°圆周角时,弦AB是直径需要说明。 b.同弧所对的圆周角相等,但同弦所对的圆周角不一定相等,因为:一条弦对应着两个圆周角。

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

(完整版)人教版圆知识点总结

1.圆的有关概念: (1)圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。 ①表示方法:⊙O ,读作“圆O ” ②确定一个圆的条件:?? ?半径 —定长圆心—定点 (2)等圆:能够重合的两个圆叫做等圆(两个全等的圆) (3)圆心角:顶点在圆心的角叫做 圆心角 . (4)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做 圆周角 . (5)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为 优弧 ,小于半圆的弧称为 劣弧 . (6)等弧:同圆或等圆中,能够完全重合的两段弧。 (7)弦:连接圆上任意两点的线段叫做 弦 ,经过圆心的弦叫做直径. (8)等弧:同圆或等圆中,能够完全重合的两段弧。 ( 9 ) 圆是 轴 对称图形,任何一条 直径所在的直线都是它的 对称轴 ;圆又是 中心 对称图形, 圆心 是它的对称中心。 知识点2 垂径定理及其推论 垂直于弦的直径平分 弦 ,并且平分 弦所对的两条弧 ; 要点:①过圆心;②垂直弦;③平分弦;④平分弧(优弧、劣弧);⑤平分圆心角 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 知识点3 圆周角定理 圆周角定理: 同圆或等圆中,同弧或等弧所对的圆周角相等,并且等于所对圆心角的一半 推论1:直径(或半圆)所对的圆周角为90°,90°圆周角所对的弦是直径。 总结:同圆或等圆中,① 弧相等——弦相等,圆心角相等,所对圆周角相等; ② 圆心角相等——弧相等,弦相等,所对圆周角相等; ③ 弦相等——弧相等,圆心角相等,同弧或等弧所对的圆周角相等; (注意:弦所对的圆周角有两种) 知识点4 外接圆与内切圆相关概念 (1)确定圆的条件:不在同一直线上的三个点确定一个圆. (2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心. (3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 (4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (5)圆内接四边形对角互补,它的一个外角等于它相邻内角的对角 知识点5 点与圆的位置 点与圆的位置关系共有三种:

圆的基础知识

24.1《圆》教学设计 一、教学目标 知识技能: 1.了解圆和圆的相关概念,知道圆实轴对称图形,理解并掌握垂直于弦的直径有哪些性质. 2.了解弧、弦、圆心角、圆周角的定义,明确它们之间的联系. 数学思考: 1.在引入圆的定义过程中,明确与圆相关的定义,体会数学概念间的联系. 2.在探究弧、弦、圆心角、圆周角之间的联系的过程中,培养学生的观察、总结及概括能力. 问题解决: 1.在明确垂直于弦的直径的性质后,能根据这个性质解决一些简单的实际问题.2.能根据弧、弦、圆心角、圆周角的相关性质解决一些简单的实际问题. 情感态度:在引入圆的定义及运用相关性质解决实际问题的过程中,感悟数学源于生活又服务于生活.在探索过程中,形成实事求是的态度和勇于创新的精神. 二、重难点分析 教学重点:垂径定理及其推论;圆周角定理及其推论. 垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法.所以垂径定理及其推论、圆周角定理及其推论是本小节的重点. 对于垂径定理,可以结合圆的轴对称性和等腰三角形的轴对称性,引导学生去发现“思考”栏目图中相等的线段和弧,再利用叠合法推证出垂径定理.对于垂径定理的推论,可以按条件画出图形,让学生观察、思考,得出结论.要注意让学生区分它们的题设和结论,强调“弦不是直径”的条件. 圆周角定理的证明,分三种情况进行讨论.第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端点的直径为辅助线.这种由特殊到一般的思想方法,应当让学生掌握. 教学难点:垂径定理及其推论;圆周角定理的证明. 垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对于分类证明的必要性不易理解,所以这两部分内容是本节的难点.圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识. 三、学习者学习特征分析 圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识. 四、教学过程 (一)创设情境,引入新课 圆是一种和谐、美丽的图形,圆形物体在生活中随处可见.在小学我们已经认识了圆这种基本的几何图形,并能计算圆的周长和面积. 早在战国时期,《墨经》一书中就有关于“圆”的记载,原文为“圆,一中同长也”.这是给圆下的定义,意思是说圆上各点到圆心的距离都等于半径.

四点共圆例题及答案

证明四点共圆的基本方法 证明四点共圆有下述一些基本方法: 方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。) 方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理) 方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆. 证明菱形ABCD的对角线AC和 BD相交于点O,连接OE、OF、OG、OH. ∵AC和BD 互相垂直, ∴在Rt△AOB、Rt△BOC、Rt△COD、 Rt△DOA中,E、F、G、H,分别是AB、 BC、CD、DA的中点,

即E、F、G、H四点共圆. (2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆. 例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC. 求证:B、E、F、C四点共圆. 证明∵DE⊥AB,DF⊥AC, ∴∠AED+∠AFD=180°, 即A、E、D、F四点共圆, ∠AEF=∠ADF. 又∵AD⊥BC,∠ADF+∠CDF=90°, ∠CDF+∠FCD=90°, ∠ADF=∠FCD. ∴∠AEF=∠FCD, ∠BEF+∠FCB=180°, 即B、E、F、C四点共圆. (3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆. 【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数. 解∵四边形ABCD内接于圆,

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

圆基础知识练习

圆基础知识练习 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-

初四周末圆部分练习巩固 1.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为() A.2 B.3 C.4 D.5 2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于 ()A.42°B.29°C.21°D.20° 3.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90° 4.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为() A.3 B.5 C.6 D.8 5.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是() A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1) 6.在截面为半圆形的水槽内装有一些水,如图.水面宽AB为6分米,如果再注入一些水后,水面AB上升1分米,水面宽变为8分米,则该水槽截面直径为() A.5分米B.6分米C.8分米D.10分米 7.如图,⊙O的直径AB=10,C是AB上一点,矩形ACND交⊙O于M,N两点,若DN=8,则AD的值为()A.4 B.6 C.2 D.3 8.如图,在⊙O中,弦CD垂直于直径AB,垂足为H,CD=2,BD=,则AB的长为()A.2 B.3 C.4 D.5 9.如图,AB是半圆O的直径,AC为弦,OD⊥AC 于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.4 10.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为() A.2B.3 C. D.3 11.若圆的一条弦把圆分成度数比例为2:7的两条弧,则弦所对的圆心角等于.12.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是. 13.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为 cm. 14.如图所示,⊙O内有折线OABC,其中OA=2,AB=4,∠A=∠B=60°,则BC的长为.15.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的, AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是 cm. 16.如图,已知AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,则弦CB的长 为.

圆知识点总结及归纳

第一讲 圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x -a )2+(y -b )2=r 2 展开并整理得x 2+y 2-2ax -2by +a 2+b 2-r 2=0, 取D =-2a ,E =-2b ,F =a 2+b 2-r 2,得x 2+y 2+Dx +Ey +F =0. (2)将圆的一般方程x 2+y 2+Dx +Ey +F =0通过配方后得到的方程为: (x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心,1 2D 2+E 2-4F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2 ,- E 2 );③当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. (二)点与圆的位置关系

(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.

(2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

相关主题
文本预览
相关文档 最新文档