当前位置:文档之家› 小半径曲线

小半径曲线

小半径曲线
小半径曲线

小半径曲线病害原因及整治

铁路曲线选型由于受到地形、特殊地物的影响,采用半径小于300米的曲线来绕避障碍,这类曲线在日常工作中称为小半径曲线。小半径曲线多出现与山区铁路、部分专用线等。

一、小半径曲线病害原因分析

1、离心力平衡难以实现

小半径曲线运用于正常线路,在行车速度不变的情况下,小半径曲线的离心力随着半径的减小而增大。见公式(1)

R mv F 2

= (1)

F ——离心力

m ——列车质量

V ——列车行驶速度

R ——曲线半径

我们知道,在曲线上行驶列车的离心力由重力的一个分力来进行平衡,因此当行车速度v 不变时,半径越小曲线外轨的抬高量要求越大,内外轨轨面形成的斜面越陡,离心力得以平衡。而我国采用公式(2)计算外轨超高。

R v H 2

8.11= (2) 其中v 为速度的加权平均值,它综合考虑了列车的质量、对数和每列车的行车速度得出的平均值。

∑∑=i i

i

i i m N v m N v (3) v ——速度的加权平均值

H ——外轨超高量

N i ——列车对数 由于列车正常行驶速度与v 存在差别,因此实际所需的外轨超高量与实际设置的超高量不一致,存在未被平衡的离心力。特别列车以v max 、v min 通过曲线时,列车所受的离心力更是难以平衡。

2、横向力较大

列车在轨道上运行,其方向由钢轨控制。列车能够转弯是由于曲线外轨对车轮的挤压作用。车轮与外轨的挤压、碰撞,曲线外轨作用于车轮一法向向(动)量,曲线半径越小,瞬时碰撞所产生的法向向量越大,外轨对车轮作用的力越大。根据作用力与反作用力相等原理,我们知道车轮作用于外轨的法向力也越大。

3、轮轨之间运动复杂

由于曲线半径较小,内外侧车轮与钢轨之间运动、摩擦方式既不是单一方式,也不是完全相同方式,难以描述。

4、线路实际线型与理论线型不一致。

对于曲线,曲线半径越大,实际线型与理论线型越趋于一致。小半径曲线由于曲线半径较小,弧弦差较大,线路的圆顺性较差,线路实际线型与理论线型不一致。

二、小半径曲线的常见病害

1、外轨磨耗量大

根据上述分析,对于以V max行驶的列车来说,由于存在着较大的欠超高,因而未被平衡的离心力必然依靠外轨对车轮的挤压来平衡,造成外轨在短时间内产生较大的磨耗。

2、内轨易出现裂纹等伤损

在小半径曲线上对于以较小速度行驶的列车来说,则存在着过超高,过超高造成内外轨轨面高差较大,列车的重力过多的由内轨承担,随着时间的推移,疲劳强度下降,内轨头部、轨颚容易出现裂纹。

3、钢轨头部剥落掉块

由于小半径曲线受力复杂,车轮与钢轨之间粘着系数增加,轮轨之间的碾压、挤压、打滑往往造成钢轨轨面剥落掉块,掉块深度超过3mm。

4、轨道几何形位不易保持,钢轨接头错牙

小半径曲线的几何形位由于弦弧差别较大,再加上复杂的受力,曲线的几何形位很难控制,曲线的远圆顺度无法保持。接头处由于冲击力加大,造成接头错牙的产生。

5、易形成翻浆冒泥

小半径曲线地段由于轨道几何形位不易保持,受力复杂,钢轨受力不均匀,道床的道砟一方面已切入路基,形成道砟槽、道砟锅、道砟囊;另一方面易磨耗成道砟粉灰,阻塞道床道砟缝隙,雨水不能及时排走。两者的共同作用,形成翻浆冒泥,特别是接头处,翻浆出现概率和程度更大。此外轨面剥落掉块也加大了车轮对钢轨的

冲击,加剧了翻浆冒泥的进一步形成,并造成恶性循环。

三、小半径曲线病害整治

小半径曲线的病害往往是各种因素共同作用的结果,整治小半径曲线病害要分析病害的原因、做到预防、整治相结合。

1、合理设置超高

计算超高时所用的v应科学调研,特别是随着地方经济的发展,列车种类的变化,行车速度的提高,v的数值应合理进行调整。这样曲线外轨的超高也应进行调整,做到合理设置超高。

2、勤养护、及时维修确保轨道的几何形位

由于半径较小、弦弧差存在,小半径曲线轨道的几何形位不易保持。只有平时加强养护维修,做到勤养护,使轨道始终处于良好状态,并将病害消除在萌芽状态,确保小半径曲线轨道的圆顺度。养护维修时可适当增加加固装置、适当增加道床厚度,砟肩适量堆高,接头螺栓紧固程度适中,减少最不利受力状况的出现。

3、加强捣固

加强捣固,保持道床的密实度和弹性,路基面受力均匀,减小过大的冲击力出现,防止道砟切入路基,对减少翻浆冒泥的出现起重要作用。

4、轨面涂油

轨面涂油或其它润滑设备,减少轮轨之间的粘着系数,列车易于转向。轨面应力峰值和钢轨磨耗量将随之减少,剥落掉块现象也将大为减少。

综上所述,小半径曲线的病害原因在于复杂的受力,特别是我国目前任然采用客货共线铁路,并且大规模提速,给小半径曲线的病害整治带来较大困难。只有加强平时的养护维修,做到勤养,时刻保持轨道处于良好状态,才能确保安全。

最小曲线半径

最小曲线半径 | [<<][>>] 最小曲线半径(minim um ra diu s of cu rve)铁路全线或某一路段内规定的圆曲线半径的最小值。最小曲线半径对运营条件影响较大,且影响程度随运量和行车速度的增大而增大。若半径过小,不仅会限制速度,加剧轮轨磨耗,增加维修工作量,增大运营支出,影响旅客舒适,甚至危及行车安全。从工程方面看,若选项用的曲线半径偏大不适应地形,甚至危及行车安全。从工程方面看,若选用的曲线半径偏大不适应地形,则会增加桥、隧和路基工程数量,增大工程费;过小的半径对工程也会产生不利影响,如增加线路长度,需要加强轨道,增加接触导线的支柱数量(对于电力牵引线路),导致粘着系数降低及在紧坡地段因曲线阻力和黏着系数降低导致坡度折减增大而 展长线路等。 影响最小曲线半径标准的因素可归纳为以下五个方面。①行车速度。曲线半径是限制列车在曲线上的运行速度的主要因素之一,因此,最小曲线半径应满足设计线的旅客列车最高行车速度(或路段设计速度)的要求,同时还应考虑客、货列车或高、低速度列车共线运行时的速度差的影响。②设计线的运输性质。客运专线主要保证旅客舒适度,重载运输线重视轮轨磨耗均匀,客货列车共线运行线路则需两者兼顾。③运行安全。为保证机车车辆在曲线上的运行安全,保

证轮轨间的正常接触,车辆上所受的力应保持在安全范围内。最小曲线半径应保证车辆通过曲线的安全性、稳定性及客车平稳性的评价指标符合相关规定。还应保证列车在曲线上运行时不倾覆。抗倾覆安全系数与曲线半径、行车速度、曲线超高、风力大小、车辆类型、装载情况与重心高度、振动性能等因素有关,在其他条件一定的情况下,最小曲线半径决定于最小的抗倾覆安全系数。④地形条件。在保证运营安全的前提下,曲线半径应与沿线的地形条件相适应。山区地形复杂,坡陡弯急,采用较小半径的曲线既可避免破坏山体,影响环境,也可减少工程,节约投资。⑤经济因素。小半径曲线可更大程度地适应地形,从而减少工程及投资,但增大运营支出,在一定的地形条件和运输需求下,存在经济合理的最小曲线半径,故应全面权衡得失,经技术经济比选确定最小曲线半径标准。 计算条件与公式最小曲线半径的计算主要考虑旅客舒适度要求和轮轨磨耗均匀两种条件。 旅客舒适条件要求的最小曲线半径曲线设置最大超高,且旅客列车以最高行车速度通过曲线时所产生的欠超高不大于允许值时,最小曲线半径为 (m)(1) 式中,R m i n1为旅客列车最高行车速度要求的最小曲线半径(m);

视距计算使用手册

公路最大横净距(视距)计算程序 使 用 手 册 二O一四年九月

前言 行车视距是汽车在道路上行驶时向前能看得见的路线距离。 为了行车安全,驾驶员应能随时看到汽车前面相当远的一段路程,一旦发现公路上有障碍物或迎面开来的车辆,能及时采取措施,防止汽车与障碍物或汽车与汽车相碰。不论在道路的平面弯道上或在纵断面的变坡处,都应保证这种必需的最短安全视距。行车最短安全视距的长度主要取决于车速和汽车在路面上的制动性能。 行车视距包括停车视距、会车视距、错车视距和超车视距,另外还有弯道视距、纵坡视距及平面交叉口视距。停车视距是指驾驶员发现前方有障碍物,使汽车在障碍物前停住所需要的最短距离;会车视距是在同一车道上有对向的车辆行驶,为避免相碰而双双停下所需要的最短距离;超车视距是快车超越前面的慢车后再回到原来车道所需要的最短距离。会车视距为停车视距的两倍。中间无分隔带的道路应能保证会车视距,对有中间分隔带的较高级道路可仅保证停车视距。对向行驶的双车道道路,根据需要结合地形设置具有足够超车视距的路段。为此,在道路设计中,在平面弯道和交叉口处应注意清除内侧障碍,在纵断面的凸形变坡处,应注意采用足够大的竖曲线半径。 确定行车视距的定量数值,须研究:①汽车驾驭员的感觉时间和制动反应时间,它因人而异,且随很多自然和人为因素而变化;②汽车制动效率,它随轮胎花纹与气压和路面类型与湿滑程度而异。 视距计算程序则采用基于AutoCAD的VBA编写的应用程序,能够计算各种复杂线形的最大横净距,并能够绘制视距包络图。 本手册参照《公路路线设计规范》JTG D20-2006、《公路路线设计细则》校审稿、湖北省交通规划设计院研发视距计算程序教程等相关资料整理,如有不足之处,请见谅。 视距计算程序下载可至。

铁路小半径曲线钢轨伤损及探伤重点分析 李飞麟

铁路小半径曲线钢轨伤损及探伤重点分析李飞麟 发表时间:2017-10-30T09:20:20.427Z 来源:《基层建设》2017年第20期作者:李飞麟[导读] 摘要:在本文之中,主要是针对了铁路小半径曲线钢轨伤损及探伤进行了一次全面的分析研究,并且在进行分析研究的基础之上也是提出了下文之中的一些内容,希望能够给与在同行业进行工作的人员可以提供出一定价值对策参考。 呼和浩特铁路局乌海工务车探伤车间内蒙古乌海 016000 摘要:在本文之中,主要是针对了铁路小半径曲线钢轨伤损及探伤进行了一次全面的分析研究,并且在进行分析研究的基础之上也是提出了下文之中的一些内容,希望能够给与在同行业进行工作的人员可以提供出一定价值对策参考。 关键词:铁路;小半径曲线;钢轨伤损;探伤;分析 1导言 通过对小半径曲线钢轨伤损的原因进行认真分析,采取合理的探伤检查方法,及时发现达到重伤的伤损钢轨,防止因钢轨伤损发展加剧形成断轨,确保行车安全,已显得尤为重要。 2山区铁路小半径曲线钢轨伤损主要种类 2.1核伤 核伤又称为轨头横向裂纹,其产生的原因主要有材质本身缺陷和接触疲劳,是小半径曲线上钢轨伤损比例最大的一类伤损。随着核伤发展增大,钢轨承载能力急剧下降,在高速重载的使用条件下极易发生钢轨折断,因此核伤也是钢轨伤损中危害最大的一类伤损。 2.1.1材质缺陷形成的核伤 钢轨在制造过程中,由于冶金缺陷和工艺控制原因,钢锭内部存在非金属夹杂、白点、翻皮、偏析和缩孔残余等缺陷,经辊轧后成片状存在于轨头中,在列车荷载的重复作用下,这些缺陷逐步发展,形成核伤。这类核伤从断面看具有平坦光亮的表面,通常称为白核,当白核进一步发展到表面与空气接触后氧化,就称为黑核。 2.1.2接触疲劳形成的核伤 大运量重载区段,由于车轮与钢轨间接触应力过大,在列车荷载反复作用下,轨头顶面产生表面剥离或其他表面伤损,然后向轨头内部逐步发展蔓延,形成核伤。 2.2鱼鳞伤 鱼鳞伤是产生在钢轨顶面的一种伤损,只发生在复线单方向运行的铁路线路上。产生鱼鳞伤的重要原因之一是钢轨与车轮之间存在黏着性伤损,钢轨承受的荷载越大,黏着磨损的磨损量也越大,钢轨材质的屈服极限会变小,轮轨接触应力达到一定值后会使钢轨表面金属产生塑性变形,随着塑性变形情况不断加重,轨头表面金属组织产生迁移,就形成了表面裂纹。由于列车在线路上长期单方向运行,轨头表面金属组织的迁移方向固定,就会逐步形成从轨头内侧作用边缘向轨顶面发展的、具有一定倾斜角度的、沿钢轨纵向密集分布的类似鱼鳞的表面细小裂纹,现场一般称其为鱼鳞伤。它不同于一般的轨头金属碎裂和剥离,常以裂纹尖端未疲劳源,向下逐步发展形成核伤。 2.3磨耗 磨耗主要有侧面磨耗、垂直磨耗和波浪形磨耗三类,有些文献资料称其为“磨粒伤损”。在列车转向架通过小半径曲线时,转向架前轴外轮踏面与曲线外轨顶面相接触,车轮轮缘与轨头侧面相接触。在车轮运转时,由于曲线两股钢轨不等长,车轮会存在滚动中夹杂滑动的现象,造成轨顶面垂直磨耗,同时由于上股钢轨内侧车轮轮缘与轨头侧面相接触,轨头侧面被轮缘磨削,造成钢轨侧面磨耗。侧面磨耗严重时对钢轨承载力影响较大,一方面钢轨断面面积减小,强度下降,钢轨受力状态恶化,各种伤损发展加剧,另一方面侧面磨耗严重时,车轮轮缘对钢轨轨头下颌的挤压,以及水平冲击力和挠曲应力的复合作用,会使轨头下颌尖端处产生微细裂纹,成为疲劳源,在列车往复作用下,发展形成核伤。 3对策措施 3.1合理设置轨道参数,减缓曲线钢轨磨耗 根据线路所具有的平纵断面,定期全面校正曲线平纵断面位置。按照所采集的列车运行速度,结合电气化后曲线的磨耗情况的变化,合理设置超高(电气化区段一般所采用的曲线超高为实际计算值的80%~90%),做好缓和曲线的超高顺坡;定期组织测速,通过采集列车运行速度、对钢轨磨耗的测量等途径,对超高进行检算。 3.2强化养修质量,改善钢轨的工作环境 综合维修作业,要特别注重道床清筛、捣固、接头综合状态的处理等工作。日常保养中,在合理设置正矢的前提下,坚持每季度全面检查、每月重点检查曲线正矢制度,确保曲线圆顺;适时对扣件进行涂油复拧;有计划对钢轨进行掉边或倒换等。 3.3加强钢轨涂油,减缓车轮对钢轨的磨损 对有关观测资料进行总结、分析,合理制定机车涂油周期。已初步界定出的机车涂油的合理界限为:机车轮缘平均磨耗控制在0.3mm/万km、喷脂间距200m。要适时做好隧道内钢轨涂油,防止或减缓钢轨锈蚀。 3.4合理设置轨底坡,使轮轨接触更趋合理 小半径曲线地段在大维修后,应及时组织力量,在确保扭力的基础上,对胶垫采用掉边或坡型胶垫进行处理,如1/40或1/30,确保钢轨受力合理。 3.5加强钢轨检查、监视、处理,确保行车安全 按照《加强伤损钢轨的检查、监视、处理》的有关要求,加强对探伤的管理,根据钢轨伤损发展变化情况,及时调整探伤周期;并在现有的规定下,加大手工检查的力度,特别是对薄弱环节、供电(电务、车辆)等部门设备所附属的钢轨、关键部位以及探伤盲区的检查。 3.6引进大型打磨机组,对钢轨进行打磨 波浪轨的存在影响行车的平稳舒适;鱼鳞伤损将给探伤工作的正常开展增加难度;钢轨的肥边对动态轨检车检查会形成假的轨距偏差。在当前条件下,引进大型机械对早期的波浪钢轨、鱼鳞伤损钢轨、肥边钢轨进行打磨,将起到一定的效果。 3.7对伤损进行复查

浅谈高速公路隧道极限平曲线半径确定方法

文章编号:1009 6825(2010)29 0323 03 浅谈高速公路隧道极限平曲线半径确定方法 收稿日期:2010 06 27 作者简介:邓文龙(1980 ),男,工程师,安徽省交通规划设计研究院,安徽合肥 230088 毛洪强(1972 ),男,教授级高级工程师,安徽省交通规划设计研究院,安徽合肥 230088 邓文龙 毛洪强 摘 要:结合 公路隧道设计规范 ,从隧道结构特点和洞内行车瞬时环境入手,基于停车视距推导出了满足规范要求的最小平曲线半径,并进而推导出了经修正后的基于安全停车视距的平曲线极限半径,以期指导高速公路隧道设计和施工。关键词:隧道,停车视距,最小曲线半径中图分类号:U 452.2 文献标识码:A 1 问题的提出 公路隧道设计规范 中对公路停车视距作出了明确的规定,其中所采用的安全停车视距,与普通路基的停车视距是一致的。由于隧道内轮廓的限制,洞内的横净距(视点至洞壁或检修道等障碍物的距离)远小于普通路基的横净距值。考虑这些因素,结合隧道横断面组成,深入研究隧道内安全停车视距的确定方法是非常必要的,它是确定隧道平面线形最小安全半径的前提。 公路隧道设计规范 规定隧道不宜设有超高的平曲线,不应设需加宽的平曲线,限制隧道内最大超高不宜大于4%,并由此可以推导出隧道满足最大超高4%时的最小平曲线半径。这个半径是控制隧道平曲线半径的一个极限控制值。但是,隧道平曲线的最小半径究竟受安全停车视距控制,还是受4%最大超高控制,为弄清这个问题,分别基于以上两个出发点,确定隧道内最小平曲线半径并加以比较就显得相当必要了。 2 基于隧道内安全停车视距的最小平曲线半径2.1 隧道安全停车视距 足够的视距和清晰的视野是增强驾车者安全感和舒适感,绕避障碍物或制动停车的先决条件,是保证线形安全的关键因素。紧起倒角下部翻浆,致使该处混凝土质量差,易出现麻面、露筋等现象,振捣时要特别注意。 为减小混凝土的离析,在施工中应注意以下几项:1)选择混凝土配合比时,应选择混凝土试配强度高、和易性好、适于长距离泵送的理论配合比。2)混凝土浇筑时应根据现场实际情况及时调整混凝土的用水量,避免出现混凝土坍落度过大或过小。3)浇筑箱梁底板时,可将混凝土输送管绕过块段端头,直接将混凝土送至底板。4)腹板混凝土应分层浇筑,每层厚度为20cm ~40cm 。在浇筑时,混凝土输送管应平放于钢筋上,并不断移动输送管。 3.3 桥梁线型控制 1)为了精确确定待浇筑块段挂篮立模标高,必须计算出以下 几组数据(详细计算及控制方法):a.块段设计标高;b.施工段及以后浇筑的各块段对该点的挠度影响值,该计算值应在实测后进行修正;c.施工段顶板纵向预应力束张拉后对该点挠度影响值,该计算值应在实测后进行修正;d.挂篮的弹性变形对该施工段的影响值,此值可加载试压得出;e.混凝土收缩和徐变、恒载及活载、结构体系转换等产生的挠度计算值。 2)为了准确掌握每块段的各自计算值的修正值,在悬臂施工过程中要完成以下几方面工作:a.计算出箱梁块段各截面的预留拱度值。b.加强现场测量及量测。在箱梁顶板布设测点,并分别在混凝土浇筑前、预应力张拉前、预应力张拉后观测各截面处标 高变化。c.根据梁段实际发生的挠度,并对照理论计算值,对各挠度影响计算值进行修正。d.为了尽量减少温度变化对箱梁施工的影响,挠度观测安排在一天中温度相对变化小的时间进行。 4 悬臂浇筑混凝土施工技术要点 1)挂篮安装、试压、走行和拆卸必须遵循同 T 构 两端对称的原则。2)经常检查挂篮悬吊系统、锚固系统及走行系统的连接情况,挂篮每次就位后必须进行全面安全检查并办理签证后方能进入下道工序施工。3)保持 T 构 两端的平衡稳定, T 构 两端块段浇筑混凝土进度要同步,最大混凝土量差严格控制在设计要求以内。 T 构 上材料、机具等施工荷载的堆放尽量靠近初始块段。一侧不平衡重量不得大于设计要求。4)施工时应在挂篮处设置风雨篷,避免混凝土因日晒雨淋影响质量,冬季施工应注意保温。5)5级以上风时,不得移动挂篮,也不得进行悬臂块段混凝土的浇筑作业,并将挂篮固定于已浇的梁段上。参考文献: [1] 张继尧,王昌将.悬臂浇筑预应力混凝土连续梁桥[M ].北 京:人民交通出版社,2004.[2] 雷俊卿.桥梁悬臂施工与设计[M ].北京:人民交通出版社, 2000.[3] 韩红春.悬臂浇筑混凝土连续梁施工技术[J].四川建筑, 2008(1):95 96. Exploration on the technology of cantilever site cast construction in bridge engineering WANG Gen Abstract:T his paper intr oduces the application o f cantilever hanging basket in t he cantilever site cast const ruction of bridge eng ineering,clari fies its structur e form,and analyzes the cantilever co nstruct ion pr ocess and construction technique,with a view to prov ide guidance for similar bridge engineer ing construction. Key words:bridge engineer ing ,cantilever hanging basket,concr ete co nstruct ion 323 第36卷第29期2010年10月 山西建筑SHANXI ARCH ITECTURE Vol.36No.29Oct. 2010

平曲线要素计算

拉坡后,坡度差已知,变坡点高程已知,切线上各点和高程也就知道了。选定竖曲线半径R ,用竖距计算公式求出切线上各点的竖距,切线高程减竖距就是竖曲线高程。竖距公式如下: 一、路线转角、交点间距的计算 (一)在地形图上量出路线起终点及各路线交点的坐标: ()()()21Q 23810,27180JD 2399626977JD 2468426591D 、,、,、()3JD 24848025885,、()4JD 2535025204,、()ZD 2606225783, (二)计算公式及方法 设起点坐标为()00,QD X Y ,第i 个交点坐标为(),,1,2,3,4,i i i JD X Y i =则坐标增量11,i i i i DX X X DY Y Y --=-=- 交点间距D =象限角 arctan DY DX θ= 方位角A 是由象限角推算的: 转角1i i i A A α-=- 1.1JD QD 与之间: 坐标增量10=2396623810=1860DX X X =--> 1026977271802030DY Y Y =-=-=-<

交点间距275.33D m === 象限角 203 arctan arctan 47.502186 DY DX θ-=== 方位角036036047.502312.498A θ=-=-= 2.12JD JD 与之间: 坐标增量21X =2468423966=6880DX X =--> 21Y 26591269773860DY Y =-=-=-< 交点间距788.89D m === 象限角 386 arctan arctan 29.294688 DY DX θ-=== 方位角136036029.294330.706A θ=-=-= 转角110=330.706312.49818.208A A α-=-= 3. 23JD JD 与之间: 坐标增量32X =2484024684=1560DX X =--> 32Y 25885265917060DY Y =-=-=-< 交点间距723.03D m === 象限角 706 arctan arctan 77.54156 DY DX θ-=== 方位角236036077.54282.46A θ=-=-= 转角221=282.46330.70648.246A A α-=-=- 4. 34JD JD 与之间: 坐标增量43X =2535024840=5100DX X =--> 43Y 25204258856810DY Y =-=-=-< 交点间距850.8D m === 象限角 510 arctan arctan 53.171681 DY DX θ===- 方位角336036053.171306.829A θ=-=-= 转角332=306.829282.4624.369A A α-=-=

小半径曲线盾构始发和到达施工技术

小半径曲线盾构始发和到达施工技术 摘要:为解决盾构在小半径曲线内始发、到达的难点和风险,文章以广佛线地铁某盾构标段盾构在320 m小半径曲线内始发和到达的施工为研究背景,对盾构在小半径曲线内盾构始发和到达施工的风险进行了系统研究,并提出了相应的控制措施、取得了较好的效果,为今后类似工程的施工提供了借鉴。 关键词:小半径曲线;盾构机;铰接;曲线始发;曲线到达 随着城市高速的发展,带引了地下轨道交通建设的飞速发展,但在城市轨道交通线路的选择上,由于受规划及建(构)筑物的制约,使得城市轨道交通的线形设计越来越复杂。不可避免的出现存在小半径曲线的规划线路。小半径曲线盾构法施工技术与常规盾构法施工技术相比存在一定的特殊性,施工难度大、风险大。因此,研究小半径曲线盾构法施工技术,针对盾构在小半径曲线始发、到达以及掘进过程中的风险,提出科学、合理的应对措施,可有效的避免盾构在小半径曲线内施工容易超限、管片容易出现错台、漏水等质量事故。相信对以后类似的小半径曲线盾构法施工具有一定的借鉴作用,可以很好地解决设计线型对盾构施工的影响。 1盾构机的选型 盾构机在曲线内始发或是到达掘进时,首先盾构机必须能够满足曲线内掘进的参数要求,也就是说所选用盾构机的最小转弯半径必须满足小于盾构始发或到达曲线的曲率半径,通常盾构机的最小转弯半径的大小取决于盾构机的长度、是否启用铰接、铰接的开启量等因素,盾构机选取尺寸尽量短。对盾构机选型还要验算盾构机的最小转弯半径,计算方法如下: Rmin=÷sin 式中:LA为盾构机前体长度,mm;LB为刀盘的厚度,mm;􀱺为铰接可开启最大值。 例如广佛线[桂~雷区间]320 m的小转弯半径始发和到达,本工程盾构机采用了日本三菱的泥水平衡盾构机,盾构机总长度(刀盘面至盾尾)为8 420 mm,盾构机筒体的直径为6 260 mm,刀盘的开挖直径为6 280.5 mm,盾构机前体(刀盘面到铰接中心)的长度为 5 028 mm,后体(铰接中心到盾尾)的长度为3 392 mm。盾构机具备中折装置,中折角度最大1.5 ̊,盾构机刀盘面到铰接中心的长度为5 028 mm。根据上面公式,可计算本工程所采用盾构机,在打开铰接后,其能转弯的最小转弯半径为160.81 mm,能满足区间曲线掘进的要求。 2管片的设计 曲线段隧道每掘进一环,管片端面与该处轴线的法线方向在平面上将产生一定的角度θ,为了更好的使得盾构机沿着计划曲线掘进,在管片选型时尽可能选

平曲线视距横净距的计算

平曲线视距横净距 的计算 发表人:王乃坤江树华 单位:龙建路桥股份有限公司第二工程处 日期:二OO四年十二月十五三十日 平曲线视距横净距的计算 王乃坤江树华 (龙建路桥股份有限公司第二工程处) 提要:本文介绍用计算机计算平曲线及相邻直线段上任一点的横净距的方法。 关键词:平曲线横净距计算机计算 CalculatingabouttheCrossClearanceDistanceofHorizontalCurveStadia WANGNai-kunJIANGShu-huaQUZhi-cheng Abstract:Calculatingmethodofhorizontalcurveandcrossclearancedistancewithcomputerispresented. Keywords:HorizontalcurveCrossclearancedistanceComputer 1前言 如何准确计算平曲线及相邻直线段上任一点的横净距,是我们工程技术人员在实际工作中常遇到的问题。近期我们成功地利用计算机程序解决了带缓和曲线的平曲线横净距计算,省时省力,起到了事半功倍的效果。现介绍如下,仅供参考。 2横净距的计算方法 2.1计算原理 如图1所示,某交点转角为α,平曲线半径为R1,缓和曲线长为Ls1(我们将圆曲线作为Ls1=0的特例处理)。若行车道宽度为b,则计算横净距时的行车轨迹线(距未加宽时的行车道内侧边缘1.5m,图中虚曲线所示)与路中线的径向间距△R=b/2-1.5。M为平曲线和相邻直线段上的任一点,M所在断面的横净距可按下法计算:在M点的法线MN两侧的行车轨迹线上分别找一点A、B,使A、B两点间沿行车轨迹线的长度等于设计视距S,计算AB连线与MN的交点E到M点的距离值H;保持A、B两点间沿行车轨迹线的长度不变,使A、B两点沿行车轨迹线同步移动时,H 值也随之改变,最大的H值与△R之差即为M点的横净距。 2.2行车轨迹线参数的确定

小半径曲线

小半径曲线病害原因及整治 铁路曲线选型由于受到地形、特殊地物的影响,采用半径小于300米的曲线来绕避障碍,这类曲线在日常工作中称为小半径曲线。小半径曲线多出现与山区铁路、部分专用线等。 一、小半径曲线病害原因分析 1、离心力平衡难以实现 小半径曲线运用于正常线路,在行车速度不变的情况下,小半径曲线的离心力随着半径的减小而增大。见公式(1) R mv F 2 = (1) F ——离心力 m ——列车质量 V ——列车行驶速度 R ——曲线半径 我们知道,在曲线上行驶列车的离心力由重力的一个分力来进行平衡,因此当行车速度v 不变时,半径越小曲线外轨的抬高量要求越大,内外轨轨面形成的斜面越陡,离心力得以平衡。而我国采用公式(2)计算外轨超高。 R v H 2 8.11= (2) 其中v 为速度的加权平均值,它综合考虑了列车的质量、对数和每列车的行车速度得出的平均值。

∑∑=i i i i i m N v m N v (3) v ——速度的加权平均值 H ——外轨超高量 N i ——列车对数 由于列车正常行驶速度与v 存在差别,因此实际所需的外轨超高量与实际设置的超高量不一致,存在未被平衡的离心力。特别列车以v max 、v min 通过曲线时,列车所受的离心力更是难以平衡。 2、横向力较大 列车在轨道上运行,其方向由钢轨控制。列车能够转弯是由于曲线外轨对车轮的挤压作用。车轮与外轨的挤压、碰撞,曲线外轨作用于车轮一法向向(动)量,曲线半径越小,瞬时碰撞所产生的法向向量越大,外轨对车轮作用的力越大。根据作用力与反作用力相等原理,我们知道车轮作用于外轨的法向力也越大。 3、轮轨之间运动复杂 由于曲线半径较小,内外侧车轮与钢轨之间运动、摩擦方式既不是单一方式,也不是完全相同方式,难以描述。 4、线路实际线型与理论线型不一致。 对于曲线,曲线半径越大,实际线型与理论线型越趋于一致。小半径曲线由于曲线半径较小,弧弦差较大,线路的圆顺性较差,线路实际线型与理论线型不一致。 二、小半径曲线的常见病害 1、外轨磨耗量大

小半径曲线施工方法

轨道小半径曲线施工方法 1.前言 随着我国城市轨道交通的蓬勃发展,在城市的特殊环境下的轨道铺设不可避免的要用到小半径曲线。这种在300米以下的小半径曲线上的钢轨弯曲量很大,靠人工自然弯是很难的。所以在轨道铺设前要提前进行预弯。 2.过程控制、精度控制 钢轨预弯中以正矢控制弯曲量。限于弯轨机的长度,为了确保弯轨精度最好是以3米弦长控制正矢。 3.小半径曲线施工流程 4.操作要点

①内业资料准备 根据曲线要素计算正矢,算法如下 1)正矢计算公式圆曲线正矢R L F C 82 = 式中L-----弦长, C F -----圆曲线正矢(mm ) R------曲线半径(m ) 2)对于带有缓和曲线的的正矢一般用递增法计算递增率N F F C S = 式中C F -----圆曲线正矢(mm ) N---------缓和曲线分段数,其值为n L L N =(0L 为缓和曲线长,n L 为各测点间距离) 缓和曲线各点计划正矢 缓和曲线起点ZH 点正矢6 S 0F F = 缓和曲线第一点正矢S F F F +=01 缓和曲线第二点正矢S F F F +=12 缓和曲线第三点正矢S F F F +=23 ……………………………………. 缓和曲线终点正矢HY 0F F F C N -= 3)例: 以沈阳有轨电车2号线浑南四路K14+595为例,曲线长84.085米,曲线半径45米,一端缓和曲线长15米。弯轨以3米弦长控制正矢 则根据公式mm 25360 9 == C F (圆曲线正矢) mm 5.210 25 == S F (递增率) 缓和曲线起点正矢mm 4.06 5 .20==F (ZH 点正矢)

浅谈铁路小半径曲线病害成因及其整治

浅谈铁路小半径曲线病害成因及其整治 铁路运输的永恒主题是安全生产,安全生产的关键就是确保设备和人身安全。目前铁路实施第六次提速尤其是动车组开行以后,对设备的要求更高、标准更严,只有不断探索铁路划时代改革的新形势下的安全生产管理,修建,维修,建立起一整套与铁路相适应的安全生产管理办法,才能更好的适应提速新形势,线路轨道是铁路运输的基础,身为一名铁路职工,如何搞好工务线路设备的维修养护工作,为铁路运输安全畅通夯实基础是我们铁路职工的职责,也对保障铁路运输的安全具有极为重要的意义。下面就结合这几年在从事铁路工务工作,谈一下对铁路养护维修的一些体会。 铁路线路设备是铁路运输的基础设备,它常年裸露在大自然中,经受着风雨冻融和列车荷载的作用,轨道几何尺寸不断变化。路基及基床不断产生变形,刚轨、连接零件及轨枕不断磨耗,因而是线路设备的技术状态不断发生变化。线路维修养护贯彻“预防为主,防治结合,休养并重”的原则,经常保持线路设备完整和质量均衡,是列车能以规定速度安全、平稳和不间断的运行,并尽量延长设备的使用寿命。因此合理养护线路,确保线路质量是保证工务部门安全生产的前提,也是保证铁路运输安全的基础,对企业经济效益的增

长、人民生命财产的保障和国民生产总值的提高都有很重要的意义。 曲线轨道的构造与直线地段有不同特点:①曲线半径较小,轨距适当加宽;②外轨增设超高;③曲线两端与直线连接处设置缓和曲线。 轨距加宽机车车辆进入曲线时,因惯性作用,任然力图保持其原来行驶方向,仅当前轮碰到外轨,受到外轨引导,才延着曲线轨道行驶。这是车辆的的转向架与曲线在平面上保持一定的位置和角度。可能出现三种不同情况:第一种情况适当轨距足够宽时,只有前轴外轮的轮缘受到外轨的挤压力(称导向力)后轴则居于曲线半径方向,两侧轮缘与钢轨间都有一定的间隙,行车阻力最小;第二种情况是当轨距不够宽时,后轴(或其他一轴)的内轮轮缘也将受到内轨的挤压产生了第二导向力,行车阻力较前者增加;当轨距更小时,可能出现第三种情况,此时不但中间谋轴内轮受内轨挤压,而且后轴外轮也受到外轨挤压,车轮被楔住在两轨之间,不仅行车阻力大,甚至可能把轨道挤开。因此小半径上的曲线必须加宽,在确定轨距加宽时,需根据铁路机车车辆的轴数和轴距,计算轨距能允许车辆一何种情况通过曲线。确定轨距加宽的原则的原则是:①保证最常用的车辆转向架能以第一种情况自由通过曲线;②保证轴距较长的多轴机车能以第二种情况通过,而不致出现第三种情况。根据上述原则算出

公路平曲线超高计算

平曲线超高 一、超高及其作用 当汽车在弯道上行驶时,要受到离心力的作用,横向力是引起汽车不稳定行驶的主要因素。所以在平曲线设计时,常将弯道外侧边道抬高,构成与内侧车道同坡度的单向坡,这种设置称为平曲线超高。其作用是为了使汽车在圆曲线上行驶时能获得一个指向内侧的横向分力,用以克服离心力,减少横向力,从而保证汽车行驶的稳定性及乘客的舒适性。 二、超高横坡度的确定 超高横坡度的大小与公路等级、平曲线半径及公路所处的环境、自然条件、路面类型、车辆组成等因素有关。 超高横坡度可按下式计算: 即横向力系数的取值,主要考虑设置超高后抵消离心力的剩余横向力系数,其值的大小在0~ 之间,也与多种因素有关,如车速的大小、考虑快慢车的不同要求、乘客的舒适与路容之间的矛盾等。因此,对应于确定的行车速度,最大超高值的确定主要取决于曲线半径、路面粗糙率以及当地气候条件。 《规范》规定,高速公路、一级公路最大超高值为8%和10%,正常情况下采用8%;对设计速度高,或经验算运行速度高的路段宜采用10%。二、三、四级公路限定最大超高为8%是适宜的。但对于积雪冰冻地区,考虑我国以货车为主的特点,限定最大超高为6%比较安全。 《标准》规定,当平曲线半径小于不设超高的最小半径时,必须设置超高。超高值表见材料。 三、设置超高的一般规定和要求 1.各级公路当圆曲线半径小于不设超高的最小半径时,应在曲线上设置超高。一般地区的圆曲线最大超高值宜采用8%。

2.超高横坡度的大小按公路等级、圆曲线半径大小及公路所处的环境、自然条件、路面类型、车辆组成等因素合理确定。 3.各级公路圆曲线部分最小超高应于与该公路直线部分的正常路拱横坡度一致,以利于排水。 4.分向行驶的多车道公路位于纵坡较大的路段,其上、下坡的运行速度会有明显的差异,故可采用不同的超高值,以策安全。 5.二、三、四级公路混合交通量大且接城镇路段,或通过城镇作为街道使用的路段,当车速受到限制,按规定设置超高有困难时,可按表1-2-6规定设置超高。 6.位于曲线上的行车道、硬路肩,均应根据设计、圆曲线半径、自然条件等按表1-2-6规定设置超高值。 7.在有纵坡的弯道上设置超高时,应考虑合成纵坡 8.回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求超高渐变率不得小于0.3%,即1/330。 四、超高缓和段 (一)超高缓和段的过渡形式 从直线上的路拱双向坡断面,过渡到圆曲线上具有超高横坡度的单向坡断面,要有一个逐渐变化的区段,这一变化段称为超高缓和段。如图1-2-8所示,超高缓和段的形成过程,可根据不同的旋转基线可有二种情况(无中间带和有中间带公路)共六种形式。

地铁盾构小半径曲线施工难点

地铁盾构小半径曲线施工难点 雖然目前的隧道施工技术已经广泛采用了方便快捷的盾构施工法,但是小半径曲线的地铁盾构施工非常特殊和复杂,一个小半径曲线线路路段会直接影响到整条地铁线路的成本、安全性能和速度等控制性因素。本文研究好如何施工小半径曲线地铁隧道,会对之后遇到类似情况的工程提供很强的借鉴意义。 标签:小半径曲线;地铁盾构隧道;施工技术;实例探究 1小半径曲线盾构施工的难点分析 1.1 轴线控制难度比较大 在盾构曲线隧道的时候,盾构机是在设计轴线的周围位置不规则摆动的,因此在盾构机推进的过程当中无法和理论上的设计轴线位置保持一致。如果曲线隧道的转弯半径过小的话,也就是本文研究小半径曲线隧道,会使这种差异更加明显。因为盾构机本身并不弯曲,曲线半径越小、盾构机机身越长,就会导致实际盾构和设想的偏离程度越大。由于转弯弧度比较大,需要盾构机左右两侧的油缸以不同的功率运行,才可以让盾构机转弯,但是由于现在采用的盾构机油缸可调程度不大,所以很难进行隧道轴线控制。此外纠偏的难度也可想而知, 1.2 对土体扰动程度大 在纠偏时盾构机会对周围的土体产生振动和挤压,这就会对周围土体的扰动程度提升,容易引发比较严重的土体沉降。而且在转弯部分盾构机的实际开挖量是大于理论开挖量的,即便采用了最优质的盾构机器、采用最精湛的盾构施工手法,也很难控制挖掘造成的地层损失。 1.3 管片安装开裂和破损可能性大 在小半径曲线的地铁隧道中,每两片管片之间都存在着一定的夹角,在千斤顶的作用下会产生一个水平分力。管片可能会受到这种侧向的水平推力的影响导致发生相对位移,形成错台。形成错台之后相邻管片之间的作用力更加强大,要是真好作用在了某一管片的薄弱位置上,可能会导致管片开裂破损。此外,盾构机在转弯半径很小的路段掘进时,纠偏量过大可能会导致盾构机和管片卡壳,导致相对脆弱的管片破损等情况。 1.4 漏水现象严重 管片出现的问题直接影响的就是隧道的密封性问题,漏水和漏浆等事故很可能随之而来。止水胶条连接出现破损、土壤渗水等问题产生的水分就会顺着管片之间的缝隙进入地铁隧道,对地铁行车造成很大的安全隐患。

平曲线视距横净距的计算

平曲线视距横净距的计算 Prepared on 22 November 2020

平曲线视距横净距 的计算 发表人:王乃坤江树华 单位:龙建路桥股份有限公司第二工程处 日期:二OO四年十二月十五三十日 平曲线视距横净距的计算 王乃坤江树华 (龙建路桥股份有限公司第二工程处) 提要:本文介绍用计算机计算平曲线及相邻直线段上任一点的横净距的方法。 关键词:平曲线横净距计算机计算 CalculatingabouttheCrossClearanceDistanceofHorizontalCurveStadia WANGNai-kunJIANGShu-huaQUZhi-cheng Abstract:Calculatingmethodofhorizontalcurveandcrossclearancedistancewithcomputerispresented. Keywords:HorizontalcurveCrossclearancedistanceComputer 1前言 如何准确计算平曲线及相邻直线段上任一点的横净距,是我们工程技术人员在实际工作中常遇到的问题。近期我们成功地利用计算机程序解决了带缓和曲线的平曲线横净距计算,省时省力,起到了事半功倍的效果。现介绍如下,仅供参考。 2横净距的计算方法 计算原理 如图1所示,某交点转角为α,平曲线半径为R1,缓和曲线长为Ls1(我们将圆曲线作为 Ls1=0的特例处理)。若行车道宽度为b,则计算横净距时的行车轨迹线(距未加宽时的行车道内侧边缘,图中虚曲线所示)与路中线的径向间距△R=b/2-。M为平曲线和相邻直线段上的任一点,M所在断面的横净距可按下法计算:在M点的法线MN两侧的行车轨迹线上分别找一点

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

小半径曲线隧道盾构施工工艺

小半径曲线隧道盾构施工工艺 1 前言 1.1工艺工法概况 小半径曲线盾构隧道是指曲线半径在250~400米的曲线隧道,由于施工采用盾构法施工,盾构机的设计转弯能力直接影响到隧道的施工难易程度,目前使用较多的德国海瑞克Φ6280mm的土压平衡盾构机的最小水平转弯半径为200米、日本小松TM625PMD盾构机最小水平转弯半径为150米,可以满足小半径曲线的施工要求。但施工过程中需采用相应的辅助措施及加强施工各个方面的控制才能有力确保小半径曲线隧道施工质量。 1.2工艺原理 1.2.1盾构掘进过程中通过刀盘的超挖刀,推进油缸的压力、行程差、铰接油缸的行程差使盾构机根据隧道的设计曲线前行以完成曲线段的隧道施工 1.2.2通过增大每环管片的楔型量、减少环宽以增大管片转弯的能力来拟合隧道较小的设计曲线。 2 工艺工法特点 有效减小了建筑物密集区等特殊条件下隧道选线的难度,适用于较小半径曲线盾构隧道的施工,施工具有安全、经济、高效的特点。 3 适用范围 适用于小半径曲线盾构隧道。 4 主要引用标准 4.1《地铁设计规范》(GB50157) 4.2《地下铁道工程施工及验收规范》(GB50299) 4.3《混凝土结构设计规范》(GB50010) 4.4《混凝土结构工程施工质量验收规范》(GB50204) 4.5《地下防水工程质量验收规范》(GB50208) 4.6《建筑防腐蚀工程施工及验收规范》(GB50212) 5 施工方法

小半径曲线盾构隧道施工是在土压平衡的前提下,采用VMT导向系统控制掘进方向、通过刀盘的超挖刀扩挖掌子面、推进油缸压力差使盾构机沿曲线方向前行、盾构铰接油缸行程差使盾体与盾尾有效的拟合曲线,最后通过楔型量较大的管片拼装来拟合盾构机开挖的曲线形成小半径曲线隧道。 6 工艺流程及操作要点 6.1施工工艺流程 图1 施工工艺流程图 6.2操作要点 6.2.1施工准备 工程开工前了解隧道地质情况、地面建筑物情况,做好盾构机的选型工作,确保使用盾构机满足小半径曲线的施工能力。进入小半径曲线掘进前2个月前做好施工的各项准备工作,准备工作的重点为小半径曲线使用管片的生产。 6.2.2掘进控制 1进入小半径曲线启用超挖刀、仿形刀,使开挖空间满足盾构机转弯的能力。掘进过程中根据掘进参数选择合适的超挖量,一般超挖量20~50mm。装有超挖刀的刀盘如图2所示: 2在小半径曲线隧道中盾构机每推进一环,由于推进油缸与管片受力面不垂直,在油缸的推力作用下产生一个水平分力,使管片拖出盾尾后,受到侧向分力

地铁小半径曲线的养护维修与病害整治

小半径曲线的养护维修与病害整治 铁道线路不间断地受到机车、车辆的碾压和冲击,所以线路状态处在不断的变化当中。曲线地段特别是小半径曲线较直线地段所受到的冲击、碾压和推挤更为突出,不但线路状态变化较快、较大,而且轨件的磨损也比较严重,因此小半径曲线的养护维修与病害整治成为线路养护维修工作的一个重要环节,其养护任务的好坏直接关系着维修投入与行车安全。 1曲线轨道的受力分析 小半径曲线病害的产生与钢轨受力有着直接关系。当列车在曲线地段运行时,产生的力十分复杂。通过力的分析,可将列车作用于钢轨上的力分为3个方向,即竖直方向、水平横向以及水平纵向。 1.1作用于钢轨上竖直方向分力的构成 机车和车辆在轨道上运行时,作用于钢轨上车轮的静压力(即分配到该车轮上的车辆重量——轴重)随着铁路运输的发展将不断增加,而加强轨道结构,首先是增加钢轨的重量,这样才有可能满足轴重不断增加的要求。列车通过轨道不平顺地段以及不平顺车轮运行时会产生附加力。轨道不平顺分为长不平顺和短不平顺两种。长不平顺通常因捣固不良、枕木腐朽、三角坑以及轨道弹性不均匀而形成;短不平顺的形成与钢轨波浪形磨耗、车轮空转有关。在曲线地段还有因外轨超高以及车架对车轮横向压力而引起的附加垂直力。 1.2作用于钢轨上横向水平力的构成 横向水平力主要指车轮对钢轨的侧压力和曲线上的附加横向力。 以上力由轮缘对轨头的压力(传递车架压力)和车轮在钢轨上横向滑动时产生的摩擦力组成,因此车轮对钢轨的侧压力可以取上述两力之和或两力之差。曲线地段产生的横向水平力比较大。曲线半径愈小,横向水平力愈大。曲线上产生的离心力和因外轨超高使车辆倾斜而产生的机车车辆重力分力有关。这些横向力(导向力、侧向力及车架压力)的大小取决于离心力、行车速度、曲线半径和外轮超高。当在压应力和横向力的共同作用下超过了钢轨的屈服强度时,在钢轨作用边产生碾堆(即塑性变形),在踏面形成局部压陷特征,压陷处不易和车轮踏面接触(即短不平顺)而形成暗斑,最终形成疲劳裂纹。 当钢轨的磨耗速度小于疲劳裂纹的扩展速度时,最终将发展成剥离掉块。曲线半径越小,出现掉块的情况就越严重。 1.3纵向水平力 产生纵向水平力的主要原因是轨道爬行和温度作用,在曲线地段,钢轨上还作用着滑动引起的摩擦力。轨道爬行主要是在车轮滚动下钢轨的蛇形起伏而产生的,在列车制动地段尤其明显。 如钢轨和轨枕之间连接不够牢固,弹性道床抵抗轨枕纵向位移的阻力大于钢轨在支座上滑动的阻力,此时钢轨可能纵向移动,而轨枕则仍然留在原地。轨道爬行实质上取决于轨下基础刚度,刚度愈大,因钢轨扭曲及其断面转动而引起的爬行也愈大;钢轨扭曲增大也将使爬行增加。 2曲线病害产生的原因及危害 小半径曲线在以上各种力的作用下,导致钢轨、线路几何尺寸、轨枕、道床等设备产生变化,经过一段时间的列车运行,各种残余变形进一步扩大,线路各种病害逐步显现出来。 2.1主要病害 一是钢轨伤损病害:钢轨侧磨、波磨及接头伤损是小半径曲线常见的病害,尤其是侧磨,是小半径曲线最突出的伤损类型。二是轨道几何尺寸易超限:小半径曲线上高低、轨距、超高、正矢相对其它线路容易发生变化,保持的周期短,特别是轨距扩大病害相当普遍,并且随着钢轨侧磨的增加而逐渐加剧。三是连接零件易松动且破损率高:小半径曲线上连接零件承受的冲击力和横向作用力都比较大,在相同扭力矩的情况下,小半径曲线连接零件容易松

相关主题
文本预览
相关文档 最新文档