当前位置:文档之家› 高二数学 曲线与方程的概念导学案导学案 文

高二数学 曲线与方程的概念导学案导学案 文

高二数学 曲线与方程的概念导学案导学案 文
高二数学 曲线与方程的概念导学案导学案 文

高二数学曲线与方程的概念导学案导学案文

一、预习导航

1、探究:下列表示平面直角坐标系下求一三象限角平分线的方程,你认为哪些是正确的?(1)(2)(3)

2、结论(1)你能说明不正确的理由是什么吗?(2)你能据此总结出曲线的方程和方程的曲线满足的两个条件吗?

二、牛刀小试判断下列曲线与方程的关系,若所给出的方程不是曲线的方程,是因为不满足两个条件中的哪一条?(1)曲线C:过点(2,0)且与y轴的距离等于2的点的轨迹方程为(2)曲线C:到两个坐标轴的距离相等的点的轨迹方程为。(3)曲线C:以y轴为对称轴的等腰三角形底边上的中线的方程:。

三、展示自我

1、判断正误:(1)已知一个三角形的三个顶点是A(2,3)、B(0,0)、C(4,0),它的BC边上的中线AM的方程是;(2)如图,MA和MB分别是动点M(x,y)与两定点A(-1,0)B(1,0)的连线,使为直角的动点M的轨迹方程是:;

2、如果方程的曲线通过点A(0,-2)和B(),求a,b的值。3、求直线l:x+4y+7=0与曲线C:的公共点的坐标。

四、巩固提高已知两圆,,想一想:及应该满足的条件?方程(1)时,该方程表示:

_______________________________________________(2)时,该方程表示:

_______________________________________________练习:求通过两圆,的交点和点(2,1)的源的方程?

五、小结你认为通过自己的学习,本节课有哪些知识没有掌握?

_________________________________________________________ ______________________

_________________________________________________________ ______________________

曲线和方程的概念说课

《曲线和方程的概念》说课稿 临朐二中谢文利 各位评委、老师,大家好! 我说课的内容是“曲线和方程的概念”。下面我从教材分析、教学方法、学法指导、教学程序设计、板书设计以及教后评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的领导、专家、同仁批评指正。 一、关于教材分析 1、教材的地位和作用 “曲线和方程”是高中数学人教B版选修2-1第二章第一节的重点内容之一,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何 https://www.doczj.com/doc/1214514188.html,/view/900761eae009581b6bd9eb45.html 的教学奠定了一个理论基础。 2、教学内容的选择和处理 本节教材主要讲解曲线的方程和方程的曲线 https://www.doczj.com/doc/1214514188.html,/view/9d02094fc850ad02de8041ad.html) 坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分两课时,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,加深学生对概念的认识然后在此基础上归纳定义。 3、教学目标的确定 根据新课程标准的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。 4、关于教学重点、难点和关键 由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上学好解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

20182019高中数学第2章圆锥曲线与方程疑难规律方法学案苏教版选修21

第2章 圆锥曲线与方程 1 利用椭圆的定义解题 椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质.有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明. 1.求最值 例1 线段AB =4,PA +PB =6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是________. 解析 由于PA +PB =6>4=AB ,故由椭圆定义知P 点的轨迹是以M 为原点,A ,B 为焦点的椭圆,且a =3,c =2,∴b =a 2 -c 2 = 5.于是PM 的长度的最小值是b = 5. 答案 5 2.求动点坐标 例2 椭圆x 29+y 2 25=1上到两个焦点F 1,F 2的距离之积最大的点的坐标是________. 解析 设椭圆上的动点为P ,由椭圆的定义可知 PF 1+PF 2=2a =10, 所以PF 1·PF 2≤? ????PF 1+PF 222=? ?? ? ?1022=25, 当且仅当PF 1=PF 2时取等号. 由? ?? ?? PF 1+PF 2=10,PF 1=PF 2,解得PF 1=PF 2=5=a , 此时点P 恰好是椭圆短轴的两端点, 即所求点的坐标为(±3,0). 答案 (±3,0) 点评 由椭圆的定义可得“PF 1+PF 2=10”,即两个正数PF 1,PF 2的和为定值,结合基本不等式可求PF 1,PF 2乘积的最大值,结合图形可得所求点P 的坐标. 3.求焦点三角形面积 例3 如图所示,已知椭圆的方程为x 24+y 2 3 =1,若点P 在第二象限,且∠PF 1F 2=120°,求

江苏省宿迁市高中数学第2章圆锥曲线与方程第9课时双曲线的几何性质1导学案(无答案)苏教版选修1-1

第9课时双曲线的几何性质(1) 【学习目标】1?了解双曲线的简单几何性质,如范围?对称性?顶点?渐近线和离心率等. 2 ?能用双曲线的简单几何性质解决一些简单问题. 【问题情境】 1?椭圆有哪些几何性质,是如何探讨的? 2?双曲线的两种标准方程是什么? 【合作探究】 双曲线的几何性质 【展示点拨】 2 2 X y 例1 ?求双曲线1的实轴长和虚轴长?焦点的坐标?离心率.渐近线方程.

例2.已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为-,求双曲线的方程. 3 变式:“焦点在y 轴上”变为“焦点在坐标轴上” 2 J 1有相同焦点且经过点(0,1)的双曲线的标准方程. 8 M,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,求该双曲线的离心率. 【学以致用】 1 ?说出下列双曲线的顶点,焦点,焦距,实轴长,虚轴长,离心率和渐近线方程: 2 2 2 2 /八 x y , y x . (1) 1 ; (2) 1 . 9 16 4 5 例3?求与椭圆 例4 ?过双曲线 X 2 a 2 2 ■y 2 1(a 0,b 0)的左焦点且垂直于 b 2 x 轴的直线与双曲线相交于

2.求适合下列条件的双曲线的标准方程: (1) 实轴的长是10,虚轴长是8,焦点在x 轴上; (2) 焦距是10,虚轴长是8,焦点在y 轴上. 5 ,且与椭圆 —1 - 1有公共焦点,求此双曲线的标准方程. 3 40 15 5.已知F 1 , F 2是双曲线的两个焦点, 以线段F 1F 2为边作正 MF 1F 2,若边MR 的中点在此 双曲线上,求此双曲线的离心率. 第9课时双曲线的几何性质(1) 【基础训练】 2 2 1?双曲线— y 1的焦点坐标为 49 25 2 2 2?双曲线— 1的两条渐近线的方程 16 9 3?等轴双曲线的中心在原点, 它的一个焦点为F(0,2(2)则双曲线的标准方程是 ______________ 4?双曲线的两条渐近线线互相垂直,那么它的离心率是 3?已知双曲线的两条渐近线的方程是 y 方程. 4 -x ,焦点为(5,0), (5,0),求此双曲线的标准 3 4.双曲线的离心率为

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(4.2)word学案

2.4.2 抛物线的几何性质 [学习目标] 1.掌握抛物线的几何性质.2.会用抛物线的标准方程和几何性质处理一些简单的实际问题. [知识链接] 类比椭圆、双曲线的几何性质,结合图象,说出抛物线y 2=2px (p >0)的范围、对称性、顶点、离心率.怎样用方程验证? 答:(1)范围:x ≥0,y ∈R ; (2)对称性:抛物线y 2=2px (p >0)关于x 轴对称; (3)顶点:抛物线的顶点是坐标原点; (4)离心率:抛物线上的点M 到焦点的距离和它到准线的距离的比叫抛物线的离心率.用e 表示,由定义可知e =1. [预习导引] 1.抛物线的几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) 图形 性质 范围 x ≥0,y ∈R x ≤0,y ∈R x ∈R ,y ≥0 x ∈R ,y ≤0 对称轴 x 轴 x 轴 y 轴 y 轴 顶点 (0,0) 离心率 e =1 直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,AF =x 1+p 2,BF =x 2+p 2,故AB =x 1+x 2+p . 3.直线与抛物线的位置关系 直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程k 2x 2+2(kb -p )x +b 2=0的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;当Δ=0时,直线与抛物线有一个公共点;当Δ<0时,直线与抛物线没有公共点.当k =0时,直线与抛物线的对

江苏省宿迁市高中数学第二章圆锥曲线与方程第14课时曲线与方程1导学案无答案苏教版选修

第14课时曲线与方程 【学习目标】 1?了解曲线方程的概念 2 ?能根据曲线方程的概念解决一些简单问题 【问题情境】 前面我们用f(x,y)=O或y=f(x)来表示一条曲线,例如直线的方程,圆的方程以及圆锥曲线 的方程,那么什么是曲线的方程? 1、曲线的方程,方程的曲线 在直角坐标系中,如果某曲线 C (看作点的集合或适合某种条件的点轨迹)上的点与一 个二元方程f (x, y)=0的实数解建立了如下关系: (1)曲线C上的点的坐标都是___________________ ? (2) ________________________________________________ 以方程f( x, y)=0的解(x,y)为坐标的点都在_______________________________________________ ,那么,方程f (x, y)=0叫做曲 线C的方程,曲线C叫做方程f(x, y)=0的曲线. 1.点与曲线 如果曲线C的方程是f(x,y)=0,那么点P(x o, y o)在曲线C上的充要条件是f (x o, y o)=0 ? 【合作探究】 问题1:观察下表中的方程与曲线,说明它们有怎样的关系?

问题2…若曲线C的方程为k x2+2x+(1+k) y+3=0,(k € R),则曲线C过定点_____________ 问题3.方程x2+xy-x=0表示的曲线是 ________________ . 问题4?至俩个坐标轴距离相等的点所满足的方程是_____________________ .

例1?判断下列结论的对错,并说明理由: (1)过点A ( 3,0 )且垂直于x轴的直线的方程为x=3; (2)到x轴距离为2的点轨迹方程为y=2; (3)到两坐标轴距离乘积等于k的点的轨迹方程为xy=k. 例2. (1)判断点(2,2迈),(3,1)是否在圆x2y216上; (2)已知方程为x2y225的圆过点C ( *''7 , m ,求m的值. 例3.设圆C: (x 1)2y2 1,过原点0作圆的任意弦,求所作弦的中点的轨迹 方程. 变式:过P( 2,4 )作两条相互垂直的直线「J,若l i交x轴于A点,交y轴于B点, 求线段AB的中点M的轨迹方程. 例4?已知一座圆拱桥的跨度是36m圆拱高为6m,以圆拱所对的弦AB所在直线为x轴,AB的垂直 y 平分线为y轴,建立直角坐标系x O y (如图),求圆拱的方程.*

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

圆锥曲线知识点回顾

圆锥曲线知识点回顾1.椭圆的性质 2.双曲线的性质

3.抛物线中的常用结论 ①过抛物线y2=2px的焦点F的弦AB长的最小值为2p ②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2

③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是 直线AB恒过定点(2p,0) (4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时, 是椭圆,当e>1时,是双曲线,当e=1时,是抛物线. 4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来) (1).首先会判断直线与圆锥曲线是相交、相切、还是相离的 a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法). b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离 c.直线与双曲线、抛物线有自己的特殊性 (2).a.求弦所在的直线方程 b.根据其它条件求圆锥曲线方程 (3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所 在的直线方程 (4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或 者是圆锥曲线上否存在两点关于直线对称) 5.二次曲线在高考中的应用 二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。 (1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。 (2).重视二次曲线的标准方程和几何性质与导数的有机联系。 (3).重视二次曲线性质与数列的有机结合。 (4).重视解析几何与立体几何的有机结合。

高中数学 2.1.1曲线与方程(1)导学案 人教A版选修2-1

2.1.1 曲线与方程(1) 【学习目标】 1.理解曲线的方程、方程的曲线; 2.求曲线的方程. 【重点难点】 重点:曲线的方程、方程的曲线 难点:求曲线的方程. 【学习过程】 一、自主预习 (预习教材理P 34~ P 36,找出疑惑之处) 复习1:画出函数22y x = (12)x -≤≤的图象. 复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程. 二、合作探究 归纳展示 探究任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程. 问题:能否写成y x =,为什么? 三、讨论交流 点拨提升 曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之

间, 如果具有以下两个关系: 1.曲线C 上的点的坐标,都是 的解; 2.以方程(,)0F x y =的解为坐标的点,都是 的点, 那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线. 注意:1? 如果……,那么……; 2? “点”与“解”的两个关系,缺一不可; 3? 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法; 4? 曲线与方程的这种对应关系,是通过坐标平面建立的. 试试: 1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ . 2.曲线220x xy by +-=上有点(1,2)Q ,则b = . 四、学能展示 课堂闯关 ※ 典型例题 例1. 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±. 变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗? 例2.设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案

2.3 双曲线 2.3.1 双曲线的标准方程 [学习目标] 1.了解双曲线的标准方程.2.会求双曲线的标准方程.3.会用双曲线的标准方程处理简单的实际问题. [知识链接] 1.与椭圆类比,能否将双曲线定义中“动点M 到两定点F 1、F 2距离之差的绝对值为定值2a ”中,“绝对值”三个字去掉. 答:不能.否则所得轨迹仅是双曲线一支. 2.如何判断双曲线x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2 b 2=1(a >0,b >0)的焦点位置? 答:x 2系数是正的焦点在x 轴上,否则焦点在y 轴上. [预习导引] 1.双曲线的定义 把平面内到两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.双曲线的标准方程 焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2 b 2 =1(a >0,b >0) y 2a 2-x 2 b 2 =1(a >0,b >0) 焦点 F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) 焦距 F 1F 2=2c ,c 2=a 2+b 2 要点一 求双曲线的标准方程 例1 根据下列条件,求双曲线的标准方程. (1)经过点P (3,154),Q (-16 3,5); (2)c =6,经过点(-5,2),焦点在x 轴上.

解 (1)方法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2 b 2=1(a >0,b >0), ∴点P (3,154)和Q (-16 3 ,5)在双曲线上, ∴??? 9a 2-22516b 2 =1,2569a 2 -25 b 2 =1, 解得? ???? a 2=-16, b 2=-9. (舍去) 若焦点在y 轴上,设双曲线的方程为 y 2a 2-x 2 b 2 =1(a >0,b >0), 将P 、Q 两点坐标代入可得??? 22516a 2-9 b 2 =1,25a 2 -256 9b 2 =1, 解之得? ???? a 2=9, b 2=16, ∴双曲线的标准方程为y 29-x 2 16 =1. 方法二 设双曲线方程为x 2m +y 2 n =1(mn <0). ∵P 、Q 两点在双曲线上, ∴??? 9m +225 16n =1,2569m +25 n =1, 解得? ???? m =-16,n =9. ∴所求双曲线的标准方程为y 29-x 2 16 =1. (2)方法一 依题意可设双曲线方程为x 2a 2-y 2 b 2=1(a >0,b >0). 依题设有????? a 2+ b 2=6,25a 2-4b 2 =1,解得????? a 2=5, b 2=1, ∴所求双曲线的标准方程为x 25-y 2 =1. 方法二 ∵焦点在x 轴上,c =6, ∴设所求双曲线方程为x 2λ-y 2 6-λ =1(其中0<λ<6).

北师版数学高二《 曲线与方程》同步学案 北师大

3.4.1 曲线与方程 学习目标:曲线的方程和方程的曲线是解析几何的最基本的概念,是坐标法的基础,理解曲线与方程之间的一一对应关系。 学习重点:曲线与方程的一一对应关系。 学习难点:常见的几何模型与代数模型的转换。 学习过程: 一、复习: 同角三角函数之间的关系我们在初中就已经学过,只不过当时应用不是很多,那么到底有哪些?它们成立的条件是什么?学习实践中,你还发现了哪些关系?今天这节课,我们就来讨论这些问题。 一、新旧知识连接: 复习直线、圆、圆锥曲线的标准方程与曲线的一一对应关系。 二、我能自学: 1.认识角的概念: 一般地,在直角直角坐标系中,如果某曲线C 上的点与一个二元方程 F (x , y )=0的实数解建立了如下的关系 (1)曲线上的点的坐标都是这个方程 的解 (2)以这个方程的解为坐标的点都是曲线上的点 那么曲线C 叫做方程F (x , y )=0的曲线;方程F (x , y )=0叫做曲线C 的方程 曲线的方程常称为满足某种条件的动点的轨迹方程 三、巩固训练 1.22 :(3,4),5(3)(4)25,M x y -+-=证明圆心为半径为的圆的方程 (1,0),(1,0),(1,2)O A B --并判断点是否在这个圆上. 2.求直角坐标系下一三象限的角分线方程,下列方法是否正确? 3. 求证:与两条坐标轴的距离的积等于1的点的轨迹方程是|xy |=1 例4. 甲:“曲线C 上的点的坐标都是方程 f (x ,y )=0 的解”,乙:“曲线C 是方程 f (x ,y )=0 的曲线”,则甲是乙的( )

(A) 充分非必要条件(B) 必要非充分条件(C) 充要条件(D) 非充分也非必要条件

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

曲线和方程知识要点

曲线和方程的概念 【知识要点】 定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线. 求曲线的方程 【知识要点】 1 求曲线的方程的步骤: ①建立适当的直角坐标系(如果已给出,本步骤省略). ②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标. ③根据曲线上点所适合的条件,写出等式. ④用坐标表示这个等式(方程),并化简. ⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求). (6)检验,该说明的要说明. 2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等. (1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求. (2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F . (3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程. (4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参

相关主题
文本预览
相关文档 最新文档