当前位置:文档之家› 课程设计—PLC四层楼电梯控制系统设计

课程设计—PLC四层楼电梯控制系统设计

课程设计—PLC四层楼电梯控制系统设计

PLC课程设计

题目:PLC四层楼电梯控制系统设计

姓名:陈余

专业:09挤测控技术与仪器

学号:200910504006

PLC四层楼电梯控制系统设计

摘要:随着微电子技术和计算机技术的迅速发展,PLC(即可编程控制器)在工业控制领域内得到十分广泛地应用。PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。本文介绍了利用可编程控制器编写的一个四层电梯的控制系统,检验电梯PLC控制系统的运行情况。实践证明,PLC可编程控制器和MCGS组态软件结合有利于PLC控制系统的设计、检测,具有良好的应用价值。

关键词PLC ;4层楼电梯控制

电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。当今世界,电梯的使用量已成为衡量现代化程度的标志之一。追溯电梯这种升降设备的历史,据说它起源于公元前236年的古希腊。当时有个叫阿基米德的人设计出--人力驱动的卷筒式卷扬机。1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。1900年还出现了第一台自动扶梯。1949年出现了群控电梯,首批4~6台群控电梯在纽约的联合国大厦被使用。1955年出现了小型计算机(真空管)控制电梯。1962年美国出现了速度达8米/秒的超高速电梯。1963年一些先进工业国只成了无触点半导体逻辑控制电梯。1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。1971年集成电路被应用于电梯。第二年又出现了数控电梯。1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。

目录

PLC四层楼电梯控制系统设计 0

目录 (1)

第一章电梯的工作原理 (2)

1.1 电梯的工作原理 (2)

第二章PLC可编程序控制器 (3)

2.1 PLC控制系统的组成 (3)

第三章PLC控制系统抗干扰措施 (8)

3.1 硬件抗干扰措施 (8)

3.2 软件抗干扰措施 (10)

第四章四层楼电梯设计过程 (11)

4.1 四层楼电梯控制系统的选择 (11)

4.2 流程图 (12)

4.3 梯形图及指令解读 (15)

第五章结论 (31)

5.1 结论 (31)

参考文献 (31)

第一章电梯的工作原理

1.1电梯的工作原理

当曳引机组的曳引轮旋转时,依靠嵌在曳引轮槽中的钢丝绳与曳引槽之间的摩擦力,驱动钢丝绳来升降轿厢,曳引钢丝绳一端挂着轿厢,另一端悬挂对重,产生拉力分别为S1和S2。当S1和S2的差值等于或小于绳槽之间摩擦力时,电梯正常运行,绳槽之间无打滑现象。具体图形见下图

曳引钢丝绳与曳引轮槽不打滑的条件是:

(1)当轿厢满载,并以额定速度下降制动

时: θ

521e s s ≤(式1)

式中:S1曳引钢丝绳轿厢一边的拉力(N );S2曳引钢丝绳对重一边的拉力(N );θ曳引绳在曳引轮上的包角,一般00150130~=θ;复绕时0330≥θ,计算时用弧度值

自然对数底数e =2.71828;'

f 钢丝绳与曳引轮槽间的当量摩擦系数,它的大小与轮槽的形型尺寸及钢丝绳和轮间的摩擦系数f 有关,常取1.006.0~f =

f f ⋅----=αγαγαγ2sin 2sin 22)sin (sin 4'(式2)

式中,sin γ,sin α,sin2γ,sin2α中的,γα,的

值用角度值代入;2γ,2α中的值用弧度值代入。00120902~=α;0

01601402~=γ。 式(1)中的)/1)((1g Q G s α++=, )/1(2g W s α-=

上式中:G-轿厢自重(N );Q-额定载重量

(N );W-对重装置重量(N );α-电梯加速度。

(2)当轿厢空载时,以额定速度上升制动

时,

θ

f S S ≤21(式3), )/1(1

g G s α-=, )/1(2g W s α+=

第二章PLC可编程序控制器

2.1 PLC控制系统的组成

PLC控制系统像一般的计算机控制系统一样,也是由硬件和软件两个部分组成的,硬件是指PLC本身及其外围设备,软件是指管理PLC的系统软件,PLC的应用程序,编程语言和程支持工具软件。

2.1.1 硬件的组成

PLC控制系统的硬件是由PLC,输入/输出(I/O)电路及外围设备等组成的。系统规模可

根据实际应用的需要而定,可大可小。下面对构成控制系统的主要部分简要介绍。

(1)主控模块

除了早期生产的整体式PLC(PLC的各个不见都在同一机壳内)外,目前市场多数的PLC 都已采用模块化的结构(PLC的各个部件独立封装,称之为模块)。在PLC中各个模块均通过系统总线相互连接起来构成一个系统。在这个系统中最核心的模块是主控模块(也称CPU),它包括:CPU,存储器,通信接口等部分。

①CPU:CPU是PLC的控制中枢,它由控制器和运算器组成。其中,控制器是用来统一指挥和控制PLC工作的部件。运算器则是进行逻辑,算术等运算部件。PLC在CPU的控制下使整个机器有条不紊的协调工作,以实现对现场各个设备的控制。CPU的具体作用如下:

执行接受,存储用户程序的操作指令。

用以扫描方式来自输入单元的数据和状态信息,并存入相应的数据存储区。

执行监控程序和用户程序。完成数据和信息

的处理,产生相应的内部控制信号,完成用户指令规定的各种操作。

响应外部设备(如编程器,打印机)的请求。

PLC中所采用的CPU随机型的不同而不同,通常有3种:通用微处理器(如8086,80286,80386等),单片机芯片,位片式处理器。一般来说,小型PLC大采用8位微处理器或单片机作为CPU,如Intel8086,Inter96系列单片机,具有集成度高,运算速度快,可靠性高等优点。如日本欧姆龙公司生产的OMRONC200H型PLC采用的是Motorola公司生产的MC68B09的CPU芯片。这是一种增强型8位微处理器。对大型PLC,大多采用高速位片式微处理器,它具有灵活性强,速度快,效率高的优点。

目前,一些厂家生产的PLC中,还采用了冗余技术,即采用双CPU或三CPU工作,进一步提高了系统可靠性。采用冗余技术可使PLC 的平均无故障工作时间达几十万小时以上。

②存储器:PLC系统中的存储器主要用于存放系统程序,用户程序和工作状态数据。

系统程序存储区:采用PROM或EPROM

芯片存储器。它是由生产厂家直接存放的,永久存储的程序和指令,称为监控程序。监控程序和PLC的硬件组成与专用部件的特性有关,用户不能随意访问和修改这部分存储器的程序。

存储器区:工作数据是PLC运行过程中经常变化的,需要随机存取的一些数据。这些数据一般不需要长久保存,因此采用随机存储器RAM。数据存储区包括输入,输出数据映象区,定时器/计数器预置和当前数值的数据。

用户程序存储区:用于存放用户经编程器或计算机输入的应用程序。一般采用EPROM或EEPROM存储器,用户可檫写重新编程。用户程序存储器的容量一般就代表PLC的标称容量。通常,小型机小于8KB,中型机小于50KB,而大型机可以在50KB以上。

③通信接口:主控模块通常有一个或一个以上的通信接口(简称通信口),用以与计算机,编程器相连,实现编程,调试,运行,监视等功能。

(2)输入/输出模块

PLC的控制对象是工业生产过程,它与工

业生产过程的联系是通过I/O模块实现的。生产过程有许多控制变量,如温度,压力,液位,速度,电压,开关量,继电器状态等,因此,需要有相应的I/O模块作为CPU与工业生产现场的桥梁。且这些模块应具有较好的抗干扰能力。目前,生产厂家已开发出各种型号的模块供用户选择。对于输入/输出模块有:数字量输入/输出模块,开关量输入/输出模块,模拟量输入/输出模块,交流新号输入/输出模块,220V交流输入/输出模块。还有智能模块,它本身带CPU,存储器和监控系统,可独立完成各种运算。智能模块的种类很多,如高速计数模块,PID调节的模拟量控制模块,阀门控制模块,智能存储模块和智能I/O模块。

(3)电源模块

该模块将交流电源转换成供CPU存储器所需的直流电源,是整个PLC系统的能源供给中心。它的好坏直接影响到PLC的功能和可靠性。目前,大多数PLC采用高质量的开关式稳压电源,与普通电源相比,PLC的电源工作稳定性好,抗干扰能力也强。有些机器的电源除了供内

部电路使用外,还向外提供24VDC的稳压电源,用于外部传感器的需要,这样就避免了因外部电源不合格而引起的外部故障。

I/O电路

PLC的基本功能就是控制,它采集被控对象的各种信号。经过PLC处理后,通过执行装置实现控制。输入电路就是被控对象(需要进行控制的机器,设备和生产过程)进行检测,采集,转换和输入。另外,安装在控制台上的按钮,开关等也可以向PLC送控制指令。输出电路的功能就是接受PLC输出的控制信号,对被孔对象执行控制任务。

PLC外围设备

PLC的外围设备很多,但基本功能不外乎对信息和数据的处理。常用的有编程器,可编程终端,打印机,条码读入机等等。编程器PLC 的重要外围设备之一,它可以将用户编写的程序送到PLC的用户程序存储器。因此,它的主要任务是输入程序,调试程序和监控程序的执行过程。可编程终端是具有I/O功能的PLC人机界面产品。人可以通过触摸屏幕将信息输入PLC

中同样可编程终端也可以将PLC的输入数据和信息显示在屏幕上。

2.1.2 软件的组成

PLC控制系统的软件主要是系统软件,应用软件,编程语言及编程支持工具软件几个部分组成。

PLC系统软件与工作过程

PLC系统软件是PLC工作所必须的软件。在系统软件的支持西,PLC对用户程序进行逐条的解释,并加以执行,直到用户程序结束,然后返回到程序的起始又开始新的一轮扫描。PLC的这种工作方式就称之为循环扫描。

值得注意的是在继电器控制系统中,一个继电器的线圈被接通或断开,继电器的所用触点(常开触点和常闭触点)都会立即动作。但在PLC中,由于采用的是循环扫描的工作方式,所用只有扫描到”线圈”的触点时,才会动作,

没有扫描到时,触点就不会动。并且PLC扫描一次用户程序的时间即扫描周期与拥护程序的长短和扫描速度有关,一般为1ms至几十毫秒。现以OMRONP型机为例来说明PLC扫描的工作过程,如上图在没有扫描之前,PLC首先应保证自身的完好性。接通电源之后,为消除各元件状态的随机性,进行清零或复位处理,检查I/O 单元连接是否正确,再执行一段程序。使它涉及到各种指令和内存单元,如果执行的时间不超过规定的时间范围,则证明自身完好,否则系统关闭。上述操作完成后,将时间监视定时复位,才允许扫描用户程序。

公共操作公共操作是在每次扫描程序前又一次自检,若发现故障,除了报警显示灯亮之外,还判断故障性质。一般性故障,只报警不停机,等待处理;对于严重故障,则停止运行用户程序,此时PLC切断一切输出。

数据I/O数据输入/输出操作有的称为I/O状态刷新。它包括两种操作:一是采样输入信号(即刷新输入状态的内容);二是送出处理结果(即按输出状态表的内容刷新输出电路)。PLC数

据I/O示意图如下:

①输入映象存储器及刷新。由上图所示可知送入PLC端子上的输入信号,经过电隔离,电平转换,滤波处理后,进入缓冲器内CPU的采样。。在PLC的存储器有一个专门存放I/O数据区,其中对应输入端子的数据区,称之为输入映象存储器。当CPU采样时,输入信号由缓冲区进入映象区。接着就是数据输入或输出状态刷新。

只有在采样刷新的时刻,输入映象存储器中的内容才与输入信号(不考虑电路固有的惯性和滤波滞后影响)一致,其他时间范围输入信号变

化是不会影响映象存储器的内容的。由于PLC 扫描周期一般只有几十毫秒,所以两次采样时间很短,对一般开关量来说,可以认为没有因间断采样引起的误差。即认为输入信号一旦变化,就能立即进入输入映象的存储器内。

②输出映象存储器及输出状态刷新。同样道理,CPU不能直接驱动负载。按用户程序要求及当前输入状态,要保持到下次刷新为止。同样,对于变化较慢的控制过程来说,因为两次刷新的时间间隔和输出电路的惯性时间常数一般才几十毫秒,可以认为输出信号是及时的。

⑶执行用户程序这里又包括监视与执行两部分。

①监视定时器WDT。监视定时器就T1是通常所说的”看门狗”WDT(Watch-DogTimer),它是用来监视程序执行是否正常。正常时,执行完用户程序多用的时间不会超过T1,在程序复位WDT,即执行程序并开始计时:执行完用户程序后立即令WDT复位,表示程序执行正常。当程序执行过程中因某种干扰使扫描失控或进入死循环,则WDT会发出超时报警信号,使程

序重新开始执行。如果是偶然因素造成超时,重新程序不会再遇到”偶然干扰”,系统便转入正常运行;若由于不可恢复的确定性故障,则系统会自动地停止执行用户程序,切断外部负载,发出故障信号,等待处理。

②执行用户程序。用户程序是放在用户程序存储器中的,扫描时,按顺序从零步开始,逐步解释和执行,直到执行END指令才结束对用户程序的扫描。

应用软件

PLC控制系统的应用软件是指为完成PLC 实际控制任务而编制的各种软件。随着PLC应用领域范围的不断扩大,应用水平的提高,PLC 应用软件也大大丰富起来了。PLC应用软件与一般计算机信息处理软件相比,有很大不同,PLC应用软件有以下几个特点:

⑴应用软件设计必须与生产工艺紧密结合。生产工艺要求不同,控制的功能也就要求不同,即使是相同的生产过程,由于各种设备的工艺参数不一样,控制实现的方式也不一样。所以程序设计人员必须深入现场,严格尊守生产工艺的具

体要求来设计应用程序。

⑵应用软件与硬件紧密相关。软件设计人员不能抛开硬件配置和系统孤立地考虑软件设计。设计必须根据硬件系统,接口的实际情况进行相应的程序设计。

⑶PLC应用软件的设计需要计算机,自动控制技术甚至网络通信技术等多种知识。特别是PLC网络的出现,PLC控制系统不再是一个单独的装置。在控制系统中,可能包括有多台不同型号的PLC,计算机,外围设备等。因此在进行软件设计时,实现和处理某种控制功能都离不开计算机,自动控制和通信技术。因此,应用程序中不仅有PLC程序,还有计算机程序和通信网络程序等。

编程语言及编程支持工具软件

PLC有多种编程语言:梯形图语言,助记符语言,逻辑功能图语言,布尔代数语言和某些高级语言(Basic,C语言等)。但使用广泛的还是梯形图语言和助记符语言。现在世界上各个PLC生产厂家都研制了自己的PLC编程支持工具软件和监控组态软件。用户可以根据自己的需

基于PLC的四层电梯控制系统的设计

基于PLC的四层电梯控制系统的设计 基于PLC的四层电梯控制系统的设计 摘要:电梯作为一种重要的垂直交通工具,在现代社会中发挥着重要的作用。本文旨在设计一种基于PLC的四层电梯控制系统,通过对电梯的运行状态进行监测和控制,提高电梯的运行效率和安全性。本文首先介绍了电梯的一般工作原理和智能控制系统的发展现状,然后详细描述了电梯控制系统的硬件和软件设计方案,并进行了系统的仿真和实验验证。实验结果表明,该控制系统能够实现电梯的自动控制、状态监测和故障诊断等功能,且具有较高的可靠性和实用性。 关键词:PLC;电梯;控制系统;安全性;效率 一、引言 电梯作为现代化城市中不可或缺的交通工具,广泛应用于商业大厦、住宅楼、医院等场所,为人们提供便利和舒适。然而,随着城市化的快速发展,电梯的负荷和运行量也在不断增加,对电梯的控制系统提出了更高的要求。传统的电梯控制系统往往依赖于机械开关和电气传感器等组件,难以满足复杂多变的运行环境和安全需求。因此,开发一种可靠、高效、智能化的电梯控制系统具有重要的实际意义。 本文旨在设计一种基于PLC的四层电梯控制系统,通过对电梯的运行状态进行监测和控制,提高电梯的运行效率和安全性。PLC(Programmable Logic Controller)是一种可编程逻辑控制器,具有可靠性高、稳定性好、易于编程和维护等特点,是控制系统设计中常用的工具。本文将采用PLC作为电梯控制系统的核心控制器,通过编程实现对电梯的自动控制、状态监测和故障诊断等功能。

二、电梯控制系统设计原理 2.1 电梯的一般工作原理 电梯的工作原理一般包括:电动机驱动、轿厢运行控制和门机控制。电动机驱动是控制电梯上升和下降运行的关键部分,通过电动机转动悬挂在钢丝绳上的滑轮,实现轿厢的运动。轿厢运行控制包括轿厢调度和楼层信号控制两部分,用于实现电梯的平层停靠和运行方向的切换。门机控制是控制轿厢门开关的重要部分,通过感应器检测轿厢门的开关状态,保证乘客进出电梯的安全。 2.2 智能控制系统的发展现状 随着科技的发展,电梯控制系统逐渐向智能化方向发展。传统的电梯控制系统主要依赖于硬件开关和电气传感器等组件,需要大量的电气元件和连线,导致系统复杂、故障率高。而基于PLC的智能控制系统采用可编程控制器替代传统的硬件开关和电气传感器,减少了硬件元件的数量,提高了系统的稳定性和可靠性。 三、电梯控制系统的硬件设计方案 3.1 系统组成 基于PLC的四层电梯控制系统主要由PLC控制器、电动机驱动装置、轿厢调度器、门机控制器和传感器等组成。 3.2 控制信号传输 本系统采用现场总线技术,通过总线模块实现电梯控制信号的传输和通讯。总线模块采用CAN(Controller Area Network)总线传输协议,具有通信简单、可靠性好、传输速 度快等特点,能够满足实时控制需求。 四、电梯控制系统的软件设计方案 4.1 系统结构设计

四层电梯plc控制方案

四层电梯PLC控制方案 1. 简介 本文档旨在介绍一种基于可编程逻辑控制器(PLC)的四层电梯控制方案。PLC作为一种常用的工业自动化控制设备,可以有效地控制电梯的运行,提高安全性和运行效率。 2. 设计概述 本电梯控制方案基于四层多电梯系统设计。每个电梯由一台PLC控制,通过电梯电机和开关组成的电路来控制电梯的运行。该方案主要包括以下几个方面:•电梯运行状态监测与控制 •电梯运行指令与调度控制 •载客限制与安全保护控制 •故障诊断与报警处理 3. 电梯运行状态监测与控制 为了实时监测电梯的运行状态,本方案引入了各种传感器,如开关传感器和光电传感器。PLC通过这些传感器检测电梯的位置、运行方向和开关状态,并根据检测结果进行相应的控制。

具体来说,PLC通过读取位置传感器的信号来确定电梯当前所在的楼层,通过检测开关传感器的信号来确定电梯门的状态。当电梯到达目标楼层时,PLC会向电梯电机发送信号,使电梯停止运行。 4. 电梯运行指令与调度控制 本方案中,乘客可以通过按钮控制面板向PLC发送运行指令,PLC根据指令来控制电梯的运行。当乘客按下按钮时,PLC会判断电梯的当前状态,并对比目标楼层的位置,然后决定电梯的运行方向和目标楼层。 另外,为了提高电梯的运行效率,本方案还引入了调度算法。通过分析不同楼层的乘客需求,PLC能够根据优先级确定电梯的调度顺序。例如,当有多个按钮同时按下时,PLC会根据就近原则选择距离最近的电梯响应乘客请求。 5. 载客限制与安全保护控制 为了保证乘客的安全,本方案引入了载客限制控制。PLC通过传感器检测电梯内的人数,当电梯已满载或超载时,PLC会拒绝进一步的运行指令。此外,PLC还会监测电梯的速度和运行状态,当出现异常情况时,如速度过快或电梯卡住等,PLC会立即采取相应的措施,如切断电梯电源或报警。 6. 故障诊断与报警处理 为了及时发现和处理电梯故障,本方案引入了故障诊断与报警功能。PLC通过实时监控电梯的运行状态和各个传感器的工作情况来检测潜在的故障,并通过内置

基于plc的四层电梯控制系统设计课设

基于plc的四层电梯控制系统设计课设 电梯是现代城市中不可或缺的交通工具之一。电梯的安全性、效率以及舒适性对于居民的生活质量有着重要的影响。因此,电梯的控制系统必须设计得稳定可靠,能够满足不同场景的需求。本文将介绍一种基于PLC的四层电梯控制系统设计,旨在提高电梯的运行效率和安全性。 一、电梯控制系统的组成 电梯控制系统由电梯主机、电梯控制器、电梯按钮、电梯门机和电梯轿厢组成。电梯主机负责电梯的上下运行,电梯控制器负责控制电梯的运行和安全保护,电梯按钮负责控制电梯的上下运行和开关门,电梯门机负责开关电梯门,电梯轿厢则负责承载乘客。 二、PLC的基本原理 PLC(Programmable Logic Controller)是一种用于工业自动化控制的计算机控制系统。它可以接收来自传感器、执行器和其他外部设备的输入信号,进行逻辑处理,然后输出控制信号以控制设备的运行。PLC具有高速、可靠、稳定、灵活等特点,是工业控制中最常见的控制器之一。 三、四层电梯控制系统的设计 1.硬件设计 本设计采用三菱FX3U-32MT/DSSPLC作为控制器,控制器通过模 拟量输入模块FX2N-4AD和模拟量输出模块FX2N-4DA与电梯主机、电梯门机和电梯按钮进行通信。同时,为了保证电梯的安全性,本设计

还采用了光电开关、限位开关、紧急停止按钮等多种安全保护装置。 2.软件设计 本设计采用GX Developer软件进行编程设计。为了保证电梯的安全性和运行效率,本设计采用了以下几种控制策略: (1)电梯轿厢的定位控制:当电梯轿厢到达某一层时,通过限位开关检测位置信号,控制电梯轿厢停止在正确的位置上。 (2)电梯的上下控制:当乘客按下电梯按钮时,PLC接收到信号后,控制电梯轿厢上下运动。在电梯轿厢到达目标楼层时,PLC控制电梯门机打开门,乘客进出电梯。 (3)电梯的安全保护控制:当电梯出现异常情况时,如电梯超载或者电梯门未关闭,PLC会立即停止电梯的运行,并通过报警装置提醒乘客注意安全。 四、实验结果分析 在实验中,通过模拟电梯的上下运行和开关门的操作,验证了本设计的稳定可靠性和运行效率。同时,通过加入多种安全保护装置,保证了电梯的安全性。 五、结论 本文介绍了一种基于PLC的四层电梯控制系统设计。通过硬件和软件的设计,实现了电梯的稳定可靠、高效运行,同时保证了电梯的安全性。本设计可以为电梯控制系统的设计提供一定的参考和借鉴。

四层电梯模型PLC控制系统设计

四层电梯模型PLC控制系统设计 一、简介 电梯是现代化城市中人们最常用的交通工具之一。在现代化城市中,高楼大厦 林立,电梯运行安全、有效,对于人们的生产、生活起着极为重要的作用。随着科技发展和社会进步,智能电梯在实际应用中发挥着更加重要的作用。 本文主要介绍一款基于PLC控制器的四层电梯模型控制系统的设计思路及其实现步骤。 二、电梯模型结构 本电梯模型是由四层组成的,每层都有两扇门,总共有8扇门。电梯的驱动装 置由电动机、减速器、曲柄连杆机构和导轨组合而成。在运行时,电动机通过减速器带动曲柄连杆机构运动,使电梯台与轿厢上下移动。 三、PLC控制器简介 PLC是可编程逻辑控制器(Programmable Logic Controller)的缩写,是一种 常用的工业自动控制设备。PLC控制器通常被视为一种微型计算机,利用它可以控制配线板、电机驱动器、传感器以及执行器等设备。在实际应用中,PLC控制器经常用于实现工业生产线、机器人、灯光控制等自动化控制。 四、电梯模型PLC控制系统设计 1. 运行模式设计 电梯系统分为以下四种运行模式: 1)等待运行模式:当电梯未响应任何按键时,电梯处于等待运行模式。 2)开门运行模式:当电梯到站后,本层的门打开,之后允许乘客进入。 3)运行模式:当电梯到达目的楼层时,电梯停止运行。 4)关门运行模式:电梯在速度变慢时,门关闭,并准备继续下一次运行。 2. 系统架构设计 电梯模型PLC控制系统主要采用以下组件: 1)按键模块:包括所有电梯按钮(上、下、数字键等)。 2)状态显示模块:包括所有电梯运行的状态指示器。

3)PLC控制器:用于控制电梯系统的运行模式、运动方向、电梯状态等 参数。 3. 系统流程设计 电梯系统包含以下步骤: 1)接受相关按钮输入:当乘客按下电梯上、下按钮或目标楼层,按键模 块会向PLC控制器发送信号。 2)检测电梯状态:PLC控制器会定期检测电梯状态(包括楼层高度、运 动方向、运动状态等)。 3)控制电梯运行模式:PLC控制器根据其内部程序逻辑,控制电梯进入 等待运行模式、开门运行模式、运行模式和关门运行模式。 4)改变电梯状态:PLC控制器会及时将电梯状态改变的信号发送给状态 显示模块,以便及时更新电梯状态。 4. 本文主要介绍了一款基于PLC控制器的四层电梯模型控制系统的设计思路及其实现步骤。PLC控制器适用于工业自动化领域,在实际应用中具有良好的可靠性、稳定性和灵活性等优点。通过合理设计系统架构和流程,可以达到更好的控制效果。

基于PLC的四层电梯控制系统设计

基于PLC的四层电梯控制系统设计 1. 系统概述: 基于PLC的四层电梯控制系统,是一种实时、高效、安全的电梯控制系统。该系统主要由电梯控制器、PLC、控制终端、电动机等组成,并且采用了PLC控制技术,通过对电梯行驶方向、位置等参数的监测,实现电梯的精确定位和控制。 2. 系统设计: 2.1 系统组成 该电梯控制系统主要由以下组成部分: (1)PLC主控制器 PLC主控制器是整个系统的核心部分,它通过处理外部输入信号和用户操作,决定电梯的运行状态和控制命令,并且实现对电梯各个位置的定位控制。 (2)控制终端 控制终端通过PLC主控制器和电动机之间的连接,实现对电梯的控制和监测。同时,它也是用户与电梯系统进行交互的主要界面。 (3)电动机及驱动系统

电动机及驱动系统是电梯的动力来源,它通过PLC主控制器 的控制,实现电梯的运行和停止。 (4)传感器 传感器主要用于感知电梯的运行状态和位置信息,提供全面准确的数据给PLC主控制器,从而实现对电梯状态的精确控制。 2.2 系统设计方案 该系统的工作流程如下: (1)当乘客按下外部调用电梯按钮之后,PLC控制器将读取 外部输入信号,并根据该信号处理动作逻辑。 (2)PLC控制器将根据上一步的逻辑,决定电梯是否需要停 靠来接乘客,并自主决定电梯行驶的方向。 (3)当电梯到达指定楼层后,PLC控制器将接收并处理内部 请求信号,并决定是否停止开门,如果需要停止开门,电梯门会打开等待乘客上下。 (4)当乘客确认自己所需电梯,PLC就会自动判断该乘客应 该搭乘哪部电梯,并通过相应的操作将乘客送到目的地。 (5)当电梯到达目的地时,PLC控制器将再次接收到请求信号,并将按照相应的逻辑,进行停靠、开关门等操作。

PLC实现四层电梯控制系统设计

一、总体设计方案 1 PLC控制系统和其他工业控制系统的比较 目前,电梯行业在我国迅速的发展,在一定程度上占有很大的市场。而在今天选择控制电梯运动的设备已经从传统的继电器—接触器转变成可编程序控制器(PLC)。 个人计算机有很强的数据处理功能和图形显示功能,有丰富的软件支持,但是它们是为办公室自动化和家庭设计的,对环境要求很高,抗干扰能力不强,一般不适合在工业现场使用。 单片机只是一片集成电路,不能直接将它与外部I/O信号相连。要将它用于工业控制,还要附加一些配套的集成电路和I/O接口电路,硬件设计、制作和程序设计的工作量相当大,要求设计者具有很强的计算机领域的理论知识和实践经验。 继电器控制系统故障率高,大大降低了电梯的可靠性和安全性,经常造成停梯,给乘用人员带来不便和惊忧。且电梯一旦发生冲顶或蹲底,不但会造成电梯机械部件损坏,还可能出现人身事故。 工业控制计算机(简称工控机)也是为工业控制设计的,目前比较流行的是PC总线工控机,它与个人计算机兼容。工控机采用总线式结构,各厂家产品的兼容性强。工控机一般是在通用微机的基础上发展起来的,有实时操作系统的支持,因此在要求快速、实时性强、功能复杂的领域占有优势。工控机的价格较高,将它有与开关量控制以取代继电器系统有些大材小用。工控机的外部I/O接线一般都用多芯扁平电缆和插头、插座,直接从印刷电路板上引出,不如可编程序控制器的接线端子那样方便可靠。 以上各种计算机用语控制的程序一般都是用汇编语言编写的,不像可编程续控制器的梯形图语言那样易于被工厂的电气人员掌握。 可编程序控制器是专为工厂现场应用环境设计的,结构上采取整体密封或插件组合型,对印刷电路板、电源、机架、插座的制造和安装,均采用了严密的措施。可编程序控制器由于具有前述的各种优点,在工业控制领域具有不可比拟的竞争力。 当然在电梯的控制领域也具有重要的地位,把可编程序控制器用于电梯运动的核心部分是很合理的选择,而且可编程序控制器现在在市场上也是一种成熟的产品。总之,经上述比较可得,我确定选用PLC控制电梯的运行。PLC是一种用于工业自动化控制的专用计算机,

PLC课程设计四层电梯自动控制

目录 第一章绪论 (3) 1.1 PLC在电梯控制中的应用 (3) 1.2 课程设计的内容 (3) 1.3 四层电梯控制要求 (5) 第二章电梯的综述 (5) 2.1 电梯的定义与简介 (5) 2.2 电梯的主要参数及性能指标 (5) 2.3 电梯的结构及组成部件 (7) 2.4 电梯的工作原理 (9) 第三章总体方案设计 (10) 3.1 整体设计方案 (10) 3.2 控制方式的选择 (10) 3.3 电梯PLC控制系统的基本结构 (11) 3.4 信号控制系统 (10) 第四章硬件设计 (11) 4.1 可编程控制器机型的选择 (11) 4.2 其他参数 (12) 4.3 输入输出点分配 (14) 4.4 PLC的外部接线图 (15) 4.5 四层电梯主电路图 (14) 第五章软件设计 (16)

5.1 电梯运行流程图 (16) 5.2电梯开关门流程图 (18) 5.3 梯形图 (18) 5.4 语句表 (23) 第六章总结 (29) 第七章参考文献 (29)

第一章绪论 1.1 PLC在电梯控制中的应用 目前,在电梯的控制方式上,主要有继电器控制、PLC控制和微型计算机控制三种。而PlC实际上是一种专用计算机,它采用巡回扫描的方式分时处理各项任务,而且依靠程序运行,这就保证只有正确的程序才能运行,否则电梯不会工作;又由于PLC中的内部辅助继电器及保持继电器等实际上是PLC系统内存工作单元,即无线圈又无触点,使用次数不受限制,属无触点运行,因此,它比继电器控制有着明显的优越性,运行寿命更长,工作更加可靠安全,自动化水平更高。PLC控制是三种控制方式中最具有可靠性、实用性和灵活性的控制方式,它更适合于用在电梯的技术改造和控制系统的更新换代,是电梯控制系统中理想的控制新技术。 1.2 课程设计的内容 课程设计的内容主要是用可编程控制器(PLC)改造在用电梯自动控制系统。由于大部分老式电梯的电控系统可靠性欠佳,用户寻求对电梯的电控系统进行改造,以节约资金。因此,对电梯控制技术进行研究,找出一条适合国产老式电梯的改造之路,并进而提高国产电梯的技术水平和质量,具有十分重要的意义。 针对老式电梯采用的继电器逻辑控制方式存在功能弱、故障多、可靠性差和工作寿命短等缺陷,提出采用功能强、故障率低、可靠性高的可编程控制器(PLC)来控制电梯。 主要内容如下: 首先对电梯系统及可编程控制器(PLC)作了简单的介绍。接着阐述了电梯的主要性能指标和参数、结构及组成部件,电梯的控制系统分为调速和信号控制两大部分。确定了系统的总体结构,由 PLC 来实现电梯信号控制,完成了电机和可编程控制器(PLC)的选择。然后是系统硬件开发,完成了 PLC 的选型、I/O 点数分配与 PLC 的连接。在分析了电梯系统的软件设计方法基础上,设计出了软件流程图,提出了模块化编程思想,介绍了系统的软件开发。最后对改造后的电梯系统进行模拟调试。

基于S7-200-PLC的四层电梯控制系统设计

基于S7-200-PLC的四层电梯控制系统设计 随着城市化进程的加速,电梯成为现代建筑必不可少的交通工具,不仅提高了楼房的 使用效率,而且也为行动不便的人群提供了便利。安全、可靠地控制电梯的行驶关键是电 梯控制系统的设计。本文基于S7-200-PLC,设计了一个四层电梯控制系统,充分考虑了安全和可靠性。 一、系统概述 本系统以现代四层住宅电梯为模型,采用S7-200-PLC作为控制核心,实现电梯的自动控制和安全保护。 本系统包括电梯控制主机、电梯门控制器、故障检测器、电梯调度算法、轿厢状态检 测器、限位器、紧急停止按钮、LED显示器等多个部分。电梯使用STEP 7-Micro/Win软件进行编程实现。 二、系统设计 1.电梯控制主机 电梯控制主机是整个电梯控制系统的核心部分,用于接收并处理来自其他部件的指令,并控制电梯轿厢在不同楼层之间运行。主机采用S7-200-PLC作为核心,进行编程实现。 电梯门控制器主要用于控制电梯门的运动,包括门的打开和关闭。电梯门控制器采用 电机驱动,通过PLC控制门禁的开关。 3.故障检测器 故障检测器是用于检测电梯系统的运行是否正常的重要设备。一旦检测到系统出现故障,故障检测器将发出警报,并向电梯控制主机发送警报信号。 4.电梯调度算法 电梯调度算法是本系统中的核心算法,它决定了电梯轿厢在不同楼层之间的运行。该 算法采用先来先服务调度算法,实现电梯的按楼层调度。 5.轿厢状态检测器 轿厢状态检测器是用于检测电梯轿厢状态的设备。它可以检测电梯轿厢是否有人进入 或者离开,以及电梯轿厢所在楼层。轿厢状态检测器将这些信息传递给电梯控制主机,以 便主机控制电梯轿厢的运动。 6.限位器

plc四层电梯毕业设计

PLC四层电梯毕业设计 摘要 本文将探讨关于PLC四层电梯的毕业设计,主要涵盖设计背景、系统框架、硬件设备选型、主要功能设计、程序流程图、开发工具选择等内容。 1. 设计背景 随着城市化进程的加快,电梯成为现代建筑不可或缺的交通工具之一。本文针对四层楼高的电梯进行设计,旨在实现安全、稳定、高效的电梯运行。 2. 系统框架 本系统采用PLC(可编程逻辑控制器)作为控制核心,通过对各种传感器信号的采集和处理,实现对电梯运行状态的控制和监测。系统由以下几个模块组成: 2.1 控制模块 控制模块主要负责PLC的运行控制,包括对PLC输入输出信号的处理和对电梯运行状态的控制。 2.2 传感器模块 传感器模块采集电梯的运行状态信息,包括电梯门开关状态、楼层信号等。 2.3 动力系统 动力系统由电梯机房、电动机、驱动装置等组成,用于驱动电梯上升和下降。 2.4 人机界面模块 人机界面模块用于显示电梯当前所在楼层以及电梯的运行状态,提供操作按钮以及报警等功能。

3. 硬件设备选型 在本设计中,我们选择以下硬件设备: 1.PLC:采用西门子PLC S7-1200系列,具有高性能和可靠性,适合工业控制 应用。 2.传感器:门开关传感器、楼层传感器等,选用常见的光电传感器或接触传感 器。 3.电动机:采用三相交流异步电动机,具有较高的功率密度和较低的噪音。 4. 主要功能设计 本电梯系统的主要功能设计如下: 4.1 电梯的上升和下降 根据楼层信号和控制指令,电梯可以实现上升和下降功能。其中,电梯需要根据当前楼层和目标楼层来确定运行方向。 4.2 电梯门的开关 根据门开关传感器信号和控制指令,电梯门可以实现开门和关门功能。在开门和关门的过程中,需要确保电梯的安全性。 4.3 楼层显示和报警功能 电梯系统需要根据传感器信号显示当前所在楼层,并提供报警功能,以确保乘客的安全。 5. 程序流程图 根据上述功能设计,我们可以绘制出以下程序流程图: 1. 初始化电梯系统 2. 监测楼层信号和控制指令 2.1 获取楼层传感器信号 2.2 获取控制指令信号 3. 根据楼层信号和控制指令确定电梯运行方向 4. 控制电梯上升或下降 4.1 控制电梯驱动装置

基于plc的四层电梯控制系统设计课设

基于plc的四层电梯控制系统设计课设 随着现代化的城市化进程,电梯成为了现代城市生活必不可少的交通工具之一。然而,电梯的安全问题也成为了人们关注的焦点。为了保障电梯的安全性,本文将介绍一种基于PLC的四层电梯控制系统设计方案。 一、电梯控制系统的设计思路 电梯控制系统是一种典型的实时控制系统,其控制逻辑非常复杂。为了保障电梯的安全性,我们需要设计一种高效、稳定的控制系统。因此,我们采用了PLC(可编程逻辑控制器)技术来实现电梯的控制。 PLC是一种具有高可靠性、高稳定性、高灵活性的控制系统,它可以对电梯进行精细的控制。在电梯控制系统中,我们将电梯的控制分为四个层次:硬件控制层、动作控制层、楼层控制层和系统控制层。每个层次都有自己的控制逻辑和控制策略,从而实现了电梯的安全、高效运行。 二、硬件控制层的设计 硬件控制层是电梯控制系统中最基础的控制层,其主要功能是对电梯的各个硬件进行控制。在硬件控制层中,我们采用了PLC模块和电机驱动模块来控制电梯的上升和下降。 在PLC模块中,我们采用了S7-200PLC,它具有高速、高精度、高稳定性等特点,可以对电梯的运行进行精细控制。在电机驱动模块中,我们采用了FUJI变频器,它可以实现对电梯的速度、加速度等 参数进行控制。

三、动作控制层的设计 动作控制层是电梯控制系统中的核心控制层,其主要功能是对电梯的运行进行控制。在动作控制层中,我们采用了电梯控制器来实现对电梯的运行控制。 在电梯控制器中,我们采用了PLC的梯形图编程方式,将电梯的运行状态分为上行、下行、开门、关门等状态,并按照不同的状态设置不同的控制逻辑和控制策略。例如,在开门状态下,我们将电梯门的开关控制和电梯内部的灯光控制进行了细致的设计和控制。 四、楼层控制层的设计 楼层控制层是电梯控制系统中的重要控制层,其主要功能是实现对电梯的楼层控制。在楼层控制层中,我们采用了光电传感器和编码器来实现对电梯的位置控制。 在电梯的运行过程中,光电传感器可以实时感知电梯所在的楼层,并将这些信息传输给PLC模块进行处理。而编码器可以实现对电梯的位置控制,从而实现电梯的精准停靠。 五、系统控制层的设计 系统控制层是电梯控制系统中的最高控制层,其主要功能是对整个电梯控制系统进行管理和控制。在系统控制层中,我们采用了人机界面和远程监控技术来实现对电梯的实时监控和管理。 人机界面可以实现对电梯的状态、运行情况、故障信息等进行实时监控和管理。而远程监控技术可以实现对电梯的远程监控和管理,从而实现对电梯的实时管理和维护。

四层电梯plc控制系统设计开题报告

一、选题的目的及研究意义 可编程控制器从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越;PLC作为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用,而利用计算机监控PLC的工作情况及状态或进行调度,便于系统的管理;利用计算机监控PLC的工作情况及状态或进行调度,主要是便于系统的管理,节约成本;采用MCGS 组态软件实现PC机和PLC之间的通讯,完成PLC实验系统的监督与控制,应用组态软件在计算机屏幕上全真模拟PLC的控制对象,它能以动画形式演示PLC控制对象的工作过程,设计界面友好的的人机交互窗口,能够实现系统工艺的显示、报表、系统控制及参数设置、形成实时及历史曲线和数据,设计过程灵活多变,可以制作出各种界面用以方便监控,工程人员不用去现场能够及时的从电脑屏幕上了解到系统目前状况,及时了解和处理故障,节约人力,节约时间,总结说来其具有成本低、免维护、形象直观等优点,所以基于MCGS的PLC监控实验系统的开发与设计具有重要的实用意义; 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 过去主要依靠工业控制计算机或者PLC,然而工控机系统的软件功能都靠软件人员编程实现,工作量大,软件通用性差,且易产生错误;PLC可编程序控制器在工业现场因其编程方便,抗干扰能力强,获得了广泛的应用;但受到内部硬件电路的限制,在运算速度、数据处理能力等方面和PC机相比,要逊色很多,因此在工业现场对复杂模型进行控制时,可以借助上位机PC来建立生产模型,通过构建监督式控制系统,完成监控,仅用PLC人们不能及时直观地观察到系统运行状况;随着工业控制要求的不断提高,计算机和PLC联合协作是必然的趋势,计算机具有较强的数据处理功能,配备着多种高级语言,若选择适当的操作系统,则可提供优良的软件平台,开发各种应用系统,特别是动态画面显示等;随着工业PC的推出,PC在工业现场运行的可靠性问题也得到了解决,专门用于工业控制的组态软件应运而生,组态软件实现PC机和PLC之间的通信,PLC完成现场的监控,上位机进行直观显示;其广泛应用于工业控制系统,例如煤矿化工监控系统的应用,在船舶机舱集中监控系统的应用,电梯远程监控系统的设计应用等;

四层电梯的plc控制课程设计

四层电梯的plc控制课程设计 电梯是现代化城市的必须交通工具之一,它的顺畅运行和安全性都离不开PLC(可编程逻辑控制器)的控制。因此,PLC的学习已成为当今自动化控制技术领域中必不可少的课程内容。本文将围绕“四层电梯的plc控制课程设计”展开阐述。 第一步,进行现场调研。对于课程设计,首先要明确四层电梯的构造和控制系统所需的PLC器件。通过实地参观、详细了解四层电梯的构造,能够系统全面的掌握PLC在电梯系统控制中的具体应用。 第二步,系统学习PLC基础知识。PLC是由控制器、输入、输出、存储器和通讯组成的自动化控制系统,通过不同的逻辑和控制算法,实现自动化控制。在课程设计中,首要内容即是要深刻学习了解PLC的构造、编程语言和基本指令等。 第三步,进行电梯PLC控制程序设计。根据学习的PLC基础知识,结合四层电梯的构造和PLC器件,对实现电梯的运行程序进行编写。该程序应涵盖电梯的启动、升降、停止、控制信号判断等方面的内容。 第四步,进行仿真模型的构建。为便于示范和调试,将编写好的电梯PLC控制程序运用至仿真平台上,构建出相应的逻辑仿真模型,并进行相应的仿真实验。调试通过后,可进行真实电梯的控制实验。 第五步,编写实验报告和数据分析。进行电梯PLC控制实验后,学生需撰写设计报告和数据分析,对实验结果进行整理和总结。对于实验结果的不良现象,还需对问题进行归纳和分析,以更好地升华出本次课程设计。

综上所述,四层电梯的PLC控制课程设计应该注重从实践出发,勇于探究,并将所学理论应用在实际控制工程中,加深学生对节点控制器应用的理解与掌握,为他们今后的工作能力奠定坚实的基础。

基于PLC控制的四层电梯课程设计

基于PLC控制的四层电梯课程设计 ___PLC课程设计 引言 本课程设计基于西门子PLC的电梯控制系统设计及调试 系(部)信息工程系。旨在通过实际操作,使学生掌握PLC的工作特点和工作方式,以及硬件电路设计和描述。本文将详细介绍课程设计的任务、要求和总体设计方案。 任务及要求 本课程设计的任务是设计一个电梯控制系统,要求实现电梯的上行和下行控制、门的开关控制、超载保护等功能。同时,还需要进行调试和测试,确保系统的稳定性和可靠性。 设计要求 在设计电梯控制系统时,需要考虑以下要求:

1.系统的稳定性和可靠性。 2.系统的安全性,包括超载保护和门的安全控制。 3.系统的实用性,能够满足电梯运行的基本需求。设计条件 在设计电梯控制系统时,需要考虑以下条件: 1.系统需要使用西门子PLC进行控制。 2.系统需要使用适当的传感器和执行器进行控制。 3.系统需要符合国家相关法规和标准。 总体设计方案 PLC的工作特点

PLC是一种可编程逻辑控制器,具有以下特点: 1.可编程性:PLC可以根据需要进行编程,实现不同的控制功能。 2.可靠性:PLC具有高度的稳定性和可靠性,可以长期稳定地运行。 3.灵活性:PLC可以根据需要进行修改和调整,适应不同的控制需求。 PLC的工作方式 PLC的工作方式包括扫描工作方式和程序执行过程。 PLC的扫描工作方式

PLC的扫描工作方式是指PLC周期性地扫描程序,并执行相应的控制操作。具体来说,PLC会按照程序的先后顺序执行各个指令,直到程序结束。 PLC的程序执行过程 PLC的程序执行过程包括输入、输出、中间处理和输出等四个步骤。具体来说,PLC会先读取输入信号,然后进行中间处理,最后输出相应的控制信号。 硬件电路设计及描述 电梯运行控制要求 电梯运行控制要求包括上行和下行控制、门的开关控制、超载保护等功能。为了实现这些功能,需要使用适当的传感器和执行器进行控制。 电气控制系统主回路电气原理图

课程设计—PLC四层楼电梯控制系统设计

课程设计—PLC四层楼电梯控制系统设计

PLC课程设计 题目:PLC四层楼电梯控制系统设计 姓名:陈余 专业:09挤测控技术与仪器 学号:200910504006

PLC四层楼电梯控制系统设计 摘要:随着微电子技术和计算机技术的迅速发展,PLC(即可编程控制器)在工业控制领域内得到十分广泛地应用。PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。本文介绍了利用可编程控制器编写的一个四层电梯的控制系统,检验电梯PLC控制系统的运行情况。实践证明,PLC可编程控制器和MCGS组态软件结合有利于PLC控制系统的设计、检测,具有良好的应用价值。 关键词PLC ;4层楼电梯控制 电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。当今世界,电梯的使用量已成为衡量现代化程度的标志之一。追溯电梯这种升降设备的历史,据说它起源于公元前236年的古希腊。当时有个叫阿基米德的人设计出--人力驱动的卷筒式卷扬机。1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。1900年还出现了第一台自动扶梯。1949年出现了群控电梯,首批4~6台群控电梯在纽约的联合国大厦被使用。1955年出现了小型计算机(真空管)控制电梯。1962年美国出现了速度达8米/秒的超高速电梯。1963年一些先进工业国只成了无触点半导体逻辑控制电梯。1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。1971年集成电路被应用于电梯。第二年又出现了数控电梯。1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。

plc四层电梯课程设计

p l c四层电梯课程设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电气控制与PLC课程设计 题目:四层电梯控制系统 姓名: 学号: 指导教师: 专业: 班级: 所在学院:电气信息学院 2014年1月1日

目录 摘要 ............................................................................................................................... I Abstract .......................................................................................................................... I I 第一章绪论 (1) 课题背景及现实意义 0 本文主要工作 0 第二章设计任务 (1) 设计任务书 (1) 2、2控制要求: (1) 第三章设计方案的选择 (3) 设计方案选择 (3) 总体方案的确定 (3) 第四章电气主电路图 (4) 第五章硬件电路图及电梯运行流程图 (5) 控制电路和保护电路图 (5) 电梯运行流程图 (5) 第六章 PLC接线图,I/O分配、梯形图设计及指令表 (7) PLC接线图 (7) I/O分配表 (8) 梯形图 (9) 指令表 (14) 第七章所有低压电气电器型号选择清单 (17) 总结 (18) 参考文献 (20) 小组分工 (21)

摘要 本次课程设计是设计一个基于欧姆龙CPM1A系列PLC控制系统的四层电梯自动控制系统。在设计中采用欧姆龙CPM1A系列配套的电梯模板,通过相应的梯形图程序使电梯能自动对各楼层信号进行检测,根据系统提供的输入控制信号自动响应楼层呼唤信号和轿厢服务指令信号,实现电梯的自动上下运行,并用信号指示灯显示响应情况。同时,在电梯上行时,只能响应上行呼唤信号,下行时只能响应下行呼唤信号;自动完成轿厢层楼位置的显示和电梯运行方向的显示,当电梯到达某平层时能通过数码管来显示楼层层号;同时为了安全起见,在电梯运行的过程中,电梯自动禁止开关门操作,只有当电梯到达某平层时才能进行开关门操作。 关键词:四层电梯;欧姆龙;PLC控制

PLC课程设计—四层电梯的控制

《电器与PLC控制技术》 课程设计报告 题目:__ 四层电梯的PLC控制 学院:_ __ 信息工程学院 班级:__ 建筑设施智能技术2班 组员: ***************** ***************** ***************** 指导教师:_ ____ ***************** 完成日期:___ _2011年6月

一、课程设计的目的: 1、通过对工程实例的模拟,熟练地掌握PLC的编程和程序调试方法。 2、进一步熟悉PLC的I/O连接。 3、熟悉四层电梯的运行方式和编程方法。 二.实验设备 1.THPLC-DT型四层电梯实验教学模型一台 2.计算机一台 3.编程电缆一根 4. PLC主机一台,应选用40点机型(输入口大于20点、输出口大于14点) 三、课程设计的要求: 电梯由安装在各楼层厅门口的上升和下降呼叫按钮进行呼叫操纵。电梯轿厢内设有楼层内选按钮S1~S4,用以选择需停靠的楼层。L1为一层指示、L2为二层指示、L3为三层指示、L4为四层指示,SQ1~SQ4为到位行程开关。电梯上升途中只响应上升呼叫,下降途中只响应下降呼叫,任何反方向的呼叫均无效。例如,电梯停在一层,在三层轿厢外呼叫时,必须按三层上升呼叫按钮,电梯才响应呼叫(从一层运行到三层),按三层下降呼叫按钮无效;反之,若电梯停在四层,在三层轿厢外呼叫时,必须按三层下降呼叫按钮,电梯才响应呼叫(从四层运行到三层),按三层上升呼叫按钮无效。 四、课程设计的主要内容: 1、设计步骤 1)计算输入输出点,编写I/O对应表及内部元件使用表; 2)根据输入输出点,完成硬件接线; 3)编写PLC电梯基本控制程序; 4)下载程序,模拟演示电梯工作过程; 5)配合硬件模拟演示,调试修改程序,直至基本功能全部实现; 6)拓展功能,故障报警及电梯内呼救处理; 7)整个系统运行检测与完善; 2、电梯的运行过程分析 电梯的上、下行由一台电动机拖动,电动机正转为电梯上升,反转为下 降。一层有上升呼叫按钮和指示灯,二层有上升呼叫按钮和指示灯以及下降呼叫按钮和指示灯,三层有上升呼叫按钮和指示灯以及下降呼叫按钮和指示灯,四层有下降呼叫按钮和指示灯,每个楼层均由楼层限位开关检测控制;电梯开门和关门按钮,关门限位由行程开关检测。 1)开始时,电梯处于任意一层; 2)当有外呼电梯信号到来时,电梯响应该呼电梯信号,到达该楼层时,电梯停止运行,电梯门打开,延时2S后自动关门; 3)当有内呼电梯信号到来时,电梯响应该呼电梯信号,到达该楼层时,电梯停止运

相关主题
文本预览
相关文档 最新文档