当前位置:文档之家› 热统答案第六章 近独立粒子的最概然分布

热统答案第六章 近独立粒子的最概然分布

热统答案第六章  近独立粒子的最概然分布
热统答案第六章  近独立粒子的最概然分布

matlab课后习题解答第二章doc

第2章符号运算 习题2及解答 1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度” 对象,还是“符号”符号对象? 3/7+0.1; sym(3/7+0.1); sym('3/7+0.1'); vpa(sym(3/7+0.1)) 〖目的〗 ●不能从显示形式判断数据类型,而必须依靠class指令。 〖解答〗 c1=3/7+0.1 c2=sym(3/7+0.1) c3=sym('3/7+0.1') c4=vpa(sym(3/7+0.1)) Cs1=class(c1) Cs2=class(c2) Cs3=class(c3) Cs4=class(c4) c1 = 0.5286 c2 = 37/70 c3 = 0.52857142857142857142857142857143 c4 = 0.52857142857142857142857142857143 Cs1 = double Cs2 = sym Cs3 = sym Cs4 = sym 2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认 为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') 〖目的〗 ●理解自由符号变量的确认规则。 〖解答〗 symvar(sym('sin(w*t)'),1) ans = w symvar(sym('a*exp(-X)'),1) ans = a

symvar(sym('z*exp(j*th)'),1) ans = z 3 求以下两个方程的解 (1)试写出求三阶方程05.443 =-x 正实根的程序。注意:只要正实根,不要出现其他根。 (2)试求二阶方程022=+-a ax x 在0>a 时的根。 〖目的〗 ● 体验变量限定假设的影响 〖解答〗 (1)求三阶方程05.443 =-x 正实根 reset(symengine) %确保下面操作不受前面指令运作的影响 syms x positive solve(x^3-44.5) ans = (2^(2/3)*89^(1/3))/2 (2)求五阶方程02 2 =+-a ax x 的实根 syms a positive %注意:关于x 的假设没有去除 solve(x^2-a*x+a^2) Warning: Explicit solution could not be found. > In solve at 83 ans = [ empty sym ] syms x clear syms a positive solve(x^2-a*x+a^2) ans = a/2 + (3^(1/2)*a*i)/2 a/2 - (3^(1/2)*a*i)/2 4 观察一个数(在此用@记述)在以下四条不同指令作用下的异同。 a =@, b = sym( @ ), c = sym( @ ,' d ' ), d = sym( '@ ' ) 在此,@ 分别代表具体数值 7/3 , pi/3 , pi*3^(1/3) ;而异同通过vpa(abs(a-d)) , vpa(abs(b-d)) , vpa(abs(c-d))等来观察。 〖目的〗 ● 理解准确符号数值的创建法。 ● 高精度误差的观察。 〖解答〗 (1)x=7/3 x=7/3;a=x,b=sym(x),c=sym(x,'d'),d=sym('7/3'), a =

高教热统答案第六章

第六章 近独立粒子的最概然分布 习题6.2 试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围 内,量 子态数为: εεεεd m h L d D 2 1 22)(?? ? ??= 证:一维自由粒子,x P 附近的量子态为 x dP h L dn =;x x x x x dP m dP m m m dP P d m P ε εεε21222 +=?+==?= 于是。()εε εεd m h L d D 2+ = 而 ±P x 对应同一能量ε,于是:()m h L m h L D ε εε2222=??? ? ???= 习题6.3试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围 内, 量子态数为 ()επεεmd h L d D 22 2= 证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数。 ?PdPd h S dP dP h S dn y x 22== (s -面积) 因m P 22 =ε只与P 有关(P >0),故对?积分可得: ()??? ? ??==m P h S PdP h S d D 222222ππεε,επd h mS m 22= ()2 2h mS D πε= ? (s=L 2 ) 习题6.4在极端相对论情形下,粒子的能量动量关系为cp =ε。试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数。 解:φθθd dpd p h V dp dp dp h V dn z y x sin 233== 由于cp =ε只与p 有关,与θ、φ无关,于是

??===ππ εππφθθεε200 3 2 2323)(44sin )(hc V dp p h V d dpd p h V d D 以上已经代入了 c d p d cp =?=εε 于是, 3 2 )(4)(hc V D επε= 习题6.5 设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很 弱,可 看作是近独立的。假设粒子可分辨,处在一个个体量子态的粒子数不受限制。试 证明, 在平衡态下两种粒子的最概然分布分别为:l e a l l βεαω--=和' --' ='l e a l l βεαω。其 中l ε和 'l ε是两种粒子的能级,l ω和'l ω是能级简并度。 证: 粒子A 能级,粒子数分布:l ε——{a l }——简并度l ω 粒子B 能级,粒子数分布:'l ε——{a ’l }——简并度' l ω 由21Ω?Ω=Ω 21ln ln ln Ω+Ω=Ω 即使Ω最大,()11ln ΩΩ, ()22ln ΩΩ达到最大。 l e a l l βεαω--=? l e a l l εβαω''-'-'=' (注:' l a δ与l a δ在此情况下独立) 讨论,若将一系作为子系统,意味总能守恒,于是参照教材玻尔兹曼分布证 明 …… 0ln ln =??? ??''+-''-'??? ? ??''+-???? ???∑∑∑∑∑∑l l l l l l l l l l l l a a a a a a a a δεδεβδαδωδαδω 同一0β,原题得证。这也是满足热平衡的要求。

DS第二章-课后习题答案

第二章线性表 2.1 填空题 (1)一半插入或删除的位置 (2)静态动态 (3)一定不一定 (4)头指针头结点的next 前一个元素的next 2.2 选择题 (1)A (2) DA GKHDA EL IAF IFA(IDA) (3)D (4)D (5) D 2.3 头指针:在带头结点的链表中,头指针存储头结点的地址;在不带头结点的链表中,头指针存放第一个元素结点的地址; 头结点:为了操作方便,在第一个元素结点前申请一个结点,其指针域存放第一个元素结点的地址,数据域可以什么都不放; 首元素结点:第一个元素的结点。 2.4已知顺序表L递增有序,写一算法,将X插入到线性表的适当位置上,以保持线性表的有序性。 void InserList(SeqList *L,ElemType x) { int i=L->last; if(L->last>=MAXSIZE-1) return FALSE; //顺序表已满 while(i>=0 && L->elem[i]>x) { L->elem[i+1]=L->elem[i]; i--; } L->elem[i+1]=x; L->last++; } 2.5 删除顺序表中从i开始的k个元素 int DelList(SeqList *L,int i,int k) { int j,l; if(i<=0||i>L->last) {printf("The Initial Position is Error!"); return 0;} if(k<=0) return 1; /*No Need to Delete*/ if(i+k-2>=L->last) L->last=L->last-k; /*modify the length*/

2009热统复习题与思考题及答案

热力学与统计物理复习题及答案 一、解释如下概念 ⑴热力学平衡态;⑵可逆过程;⑶准静态过程;⑷焦耳-汤姆逊效应;⑸μ空间;⑹Γ空间;⑺特性函数;⑻系综;⑼混合系综;⑽非简并性条件;⑾玻色——爱因斯坦凝聚; ⑴热力学平衡态:一个孤立系统经长时间后,宏观性质不随时间而变化的状态。 ⑵可逆过程:若系统经一过程从状态A出发到达B态后能沿相反的过程回到初态A,而且 在回到A后系统和外界均回复到原状,那么这一过程叫可逆过程。 ⑶准静态过程:如果系统状态变化很缓慢,每一态都可视为平衡态,则这过程叫准静态过程。 ⑷焦耳一汤姆孙效应:气体在节流过程中气体温度随压强减小而发生变化的现象。 ⑸μ空间:设粒子的自由度r,以r个广义坐标为横轴,r个动量为横轴,所张成的笛卡尔 直角空间。 ⑹Γ空间:该系统自由度f,则以f个广义坐标为横轴,以f个广义动量为纵轴,由此张成的f2维笛卡尔直角空间叫Γ空间。 ⑺特性函数:若一个热力学系统有这样的函数,只要知道它就可以由它求出系统的其它函数,即它能决定系统的热力学性质,则这个函数叫特性函数。 ⑻系综:大量的彼此独立的具有相同结构但可以有不同微观状态的假想体系的集合叫系综,常见的有微正则系综、正则系综、巨正则系综。 ⑼混合系综:设系统能级E1…,E n…,系综中的n个系统中,有n1个处于E1的量子态;…,有n i个系统处于E i的相应量子态,则这样的系综叫混合系综。 页脚内容1

页脚内容2 ⑽非简并性条件:指1/<

第六章 近独立粒子的最概然分布教案

热力学与统计物理课程教案

第六章 近独立粒子的最概然分布 6.1 粒子运动状态的经典描述 首先介绍如何描述粒子的运动状态。这里说的粒子是指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。粒子的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述。 1、粒子运动状态经典描述的两种方法 设粒子的自由度为r 。经典力学告诉我们,粒子在任一时刻的力学运动状态由粒子的r 个广义坐标r q q q ,,,21 和与之共轭的r 个广义动量r p p p ,,,21 在该时刻的数值确定。粒子能量ε是其广义坐标和广义动量的函数: ()r r p p p q q q εε,,,;,,,2121 = 如果存在外场,ε还是描述外场参量的函数。 为了形象地描述粒子的力学运动状态,用r q q q ,,,21 ;r p p p ,,,21 共r 2个变量为直角坐标,构成一个r 2维空间,称为μ空间。粒子在某一时刻的力学运动状态(r q q q ,,,21 ;r p p p ,,,21 )可以用μ空间中的一点表示,称为粒子力学运动状态的代表点。当粒子运动状态随时间改变时,代表点相应地在μ空间中移动,描画出一条轨道。 2、下面介绍统计物理中用到的几个例子 (1)、自由粒子: 自由粒子不受力的作用而自由运动,当在三维空间中运动时,它的自由度为3。粒子在任一时刻的位置可由坐标z y x ,,确定,与之共轭的动量为: ? ??===z m p y m p x m p z y x ,, 自由粒子的能量就是它的动能:() 22 221z y x p p p m ε++=, 对应的μ空间是6维的。

热统第三章作业答案

3.4 求证: (a ),,;V n T V S T n μ?????? =- ? ??????? (b ),,.T p t n V p n μ?????? = ? ??????? 解:(a )由自由能的全微分(式(3.2.9)) dF SdT pdV dn μ=--+ (1) 及偏导数求导次序的可交换性,易得 ,,.V n T V S T n μ?????? =- ? ??????? (2) 这是开系的一个麦氏关系. (a ) 类似地,由吉布斯函数的全微分(式(3.2.2)) dG SdT Vdp dn μ=-++ (3) 可得 ,,.T p T n V p n μ??????= ? ??????? (4) 这也是开系的一个麦氏关系. 3.5 求证: ,,.T V V n U T n T μμ?????? -=- ? ??????? 解:自由能F U T S =-是以, ,T V n 为自变量的特性函数,求F 对n 的 偏导数(, T V 不变),有 ,,,.T V T V T V F U S T n n n ????????? =- ? ? ?????????? (1) 但由自由能的全微分 dF SdT pdV dn μ=--+ 可得 ,,,,, T V T V V n F n S n T μμ??? = ? ????????? =- ? ??????? (2) 代入式(1),即有

,,.T V V n U T n T μμ?????? -=- ? ??????? (3) 3.7 试证明在相变中物质摩尔内能的变化为 1.m p dT U L T dp ?? ?=- ?? ? 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足 .m m m U H p V ?=?-? (1) 平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L : .m H L ?= 克拉珀龙方程(式(3.4.6))给出 ,m dp L dT T V = ? (3) 即 .m L dT V T dp ?= (4) 将式(2)和式(4)代入(1),即有 1.m p dT U L T dp ???=- ?? ? (5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为 2 .dp L p dT R T = (6) 式(5)简化为 1.m RT U L L ???=- ?? ? (7) 3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:

大物第二章课后习题答案

简答题 什么是伽利略相对性原理什么是狭义相对性原理 答:伽利略相对性原理又称力学相对性原理,是指一切彼此作匀速直线运动的惯性系,对于描述机械运动的力学规律来说完全等价。 狭义相对性原理包括狭义相对性原理和光速不变原理。狭义相对性原理是指物理学定律在所有的惯性系中都具有相同的数学表达形式。光速不变原理是指在所有惯性系中,真空中光沿各方向的传播速率都等于同一个恒量。 同时的相对性是什么意思如果光速是无限大,是否还会有同时的相对性 答:同时的相对性是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一个惯性系中观察,并不一定同时。 如果光速是无限的,破坏了狭义相对论的基础,就不会再涉及同时的相对性。 什么是钟慢效应 什么是尺缩效应 答:在某一参考系中同一地点先后发生的两个事件之间的时间间隔叫固有时。固有时最短。固有时和在其它参考系中测得的时间的关系,如果用钟走的快慢来说明,就是运动的钟的一秒对应于这静止的同步的钟的好几秒。这个效应叫运动的钟时间延缓。 尺子静止时测得的长度叫它的固有长度,固有长度是最长的。在相对于其运动的参考系中测量其长度要收缩。这个效应叫尺缩效应。 狭义相对论的时间和空间概念与牛顿力学的有何不同 有何联系 答:牛顿力学的时间和空间概念即绝对时空观的基本出发点是:任何过程所经历的时间不因参考系而差异;任何物体的长度测量不因参考系而不同。狭义相对论认为时间测量和空间测量都是相对的,并且二者的测量互相不能分离而成为一个整体。 牛顿力学的绝对时空观是相对论时间和空间概念在低速世界的特例,是狭义相对论在低速情况下忽略相对论效应的很好近似。 能把一个粒子加速到光速c 吗为什么 答:真空中光速C 是一切物体运动的极限速度,不可能把一个粒子加速到光速C 。从质速关系可看到,当速度趋近光速C 时,质量趋近于无穷。粒子的能量为2 mc ,在实验室中不存在这无穷大的能量。 什么叫质量亏损 它和原子能的释放有何关系 答:粒子反应中,反应前后如存在粒子总的静质量的减少0m ?,则0m ?叫质量亏损。原子能的释放指核反应中所释 放的能量,是反应前后粒子总动能的增量k E ?,它可通过质量亏损算出20k E m c ?=?。 在相对论的时空观中,以下的判断哪一个是对的 ( C ) (A )在一个惯性系中,两个同时的事件,在另一个惯性系中一定不同时;

第二章课后习题与答案

第2章人工智能与知识工程初步 1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词d P(x):x是人 L(x,y):x喜欢y 其中,y的个体域是{梅花,菊花}。 将知识用谓词表示为: (?x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2) 有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午 将知识用谓词表示为:a (?x )(?y) (A(y)→B(x)∧P(x)) (3)新型计算机速度又快,存储容量又大。 解:定义谓词 NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大 将知识用谓词表示为: (?x) (NC(x)→F(x)∧B(x)) (4) 不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词 S(x):x是计算机系学生 L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为: ? (?x) (S(x)→L(x, pragramming)∧U(x,computer)) (5)凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y 将知识用谓词表示为:

(?x) (P(x)∧L(x,pragramming)→L(x, computer)) 2 请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。 解: (2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。 解: (3) 学习班的学员有男、有女、有研究生、有本科生。 解:参例2.14 (4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。 解:参例2.10 (5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。 解:

第六章 近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述: ①、相空间、自由度;广义坐标、广义动量; 粒子微观状态()r r p p p q q q ,,,,,,2121?。 ②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0 h p q =??,这时经典系统的粒子运动状态 不能用一个点表示,而必须用一个体积元表示,该体积元的大小r r r h p p q q 0 11 =?δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。这里0 h 由测量精度决定 的一个常数。经典理论上00 →h 将μ空间划分为许多体积元l τ?,以l ε表示运动状态处在l τ?内的粒子所具有的能量,则体积元l τ?内粒子可 能的运动状态数为r l l h 0 τω ?= k l p p q q l r r l ,...2,1;)(11=????=? τ其中 2、粒子运动状态的量子描述: ①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程 一组量子数波函数粒子微观运动状态?? 这组量子数的数目等于粒子的自由度数(不考虑自旋,

考虑自旋时应乘为自旋量子数,S S 12+) ②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。空间自由度和一个自旋自由度)个量子确定。并且微观粒子能量值和动量值的分离性很显著。 ③、宏观体积下,量子态与相体积的关系---半经典近似 如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。若粒子的自由度为r ,一个量子态占据的相体积为r h 。 在相体积元r r dp dp dq dq d ????= 1 1 τ内的可能微观量子态为 r r r r h dp dp dq dq h d ????= 11τ 考虑r=3的六维相空间,相体积元z y x dp dp dxdydzdp d =τ内的 微观量子态为3 3 h dp dp dxdydzdp h d z y x = τ 二、系统微观运动状态的描述 1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。②、系统中,每个粒子(分子、原子、离子、电子、光子等)具有相同的各种可能状态,系统的一个微观状态就是体系的粒子在这些可能的状态中的一种具体分布。 2、全同近独立粒子系统微观运动状态的描述: 体系全部粒子的微观状态确定之后,系统的微观态

热统第一章作业答案

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数 κT 。 解:已知理想气体的物态方程为 ,pV nRT = (1) 由此易得 11 ,p V nR V T pV T α???= == ? ??? (2) 11 ,V p nR p T pV T β???= == ? ??? (3) 2111 .T T V nRT V p V p p κ???????=-=--= ? ? ???????? (4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得: ()ln T V =αdT κdp -? 如果11 ,T T p ακ== ,试求物态方程。 解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为 .p T V V dV dT dp T p ?????? =+ ? ? ?????? (1) 全式除以V ,有 11.p T dV V V dT dp V V T V p ??????=+ ? ??????? 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V ακ=- (2)

上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有 ()ln .T V dT dp ακ=-? (3) 若1 1,T T p ακ==,式(3)可表为 11ln .V dT dp T p ?? =- ???? (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体 积由0V 最终变到V ,有 000 ln =ln ln ,V T p V T p - 即 00 p V pV C T T ==(常量) , 或 .p V C T = (5) 式(5)就是由所给11,T T p ακ==求得的物态方程。 确定常量C 需要进一步的实验数据。

第二章课后习题答案

1. 已知某一时期内某商品的需求函数为Q =50-5P ,供给函数为Qs=-10+5p。(1)求均衡价格Pe和均衡数量Qe,并作出几何图形。 (2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。(3)假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。 求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。 (4)利用(1)(2 )(3),说明静态分析和比较静态分析的联系和区别。(5)利用(1)(2 )(3),说明需求变动和供给变动对均衡价格和均衡数量的影响. 解答: (1)将需求函数Qd = 50-5P和供给函数Qs =-10+5P 代入均衡条件Qd = Qs ,有: 50- 5P= -10+5P 得: Pe=6 以均衡价格Pe =6 代入需求函数Qd =50-5p ,得: Qe=20 所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 (图略) (2)将由于消费者收入提高而产生的需求函数Qd=60-5p 和原供给函数 Qs=-10+5P, 代入均衡条件Q d= Qs ,有: 60-5P=-10+5P 得Pe=7 以均衡价格Pe=7代入Qd方程,得Qe=25 所以,均衡价格和均衡数量分别为Pe =7 , Qe=25 (图略) (3) 将原需求函数Qd =50-5p和由于技术水平提高而产生的供给函数Q =-5+5p , 代入均衡条件Qd =Qe ,有: 50-5P=-5+5P得Pe= 5.5 以均衡价格Pe= 5.5 代入Qd =50-5p ,得22.5 所以,均衡价格和均衡数量分别为Pe=5.5 Qe=22.5 (4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图中,均衡点 E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数Q=-10+5P 和需求函数Q=50-5P表示,均衡点具有的特征是:均衡价格P=6 且当P =6 时,有Q= Q d= Qe =20 ,同时,

高教热统答案第七章

第七章 玻耳兹曼统计 习题7.1根据公式∑??-=l l l V a P ε证明,对于非相对论粒子: )()2( 2122 222 2 z y x n n n L m m p s ++= = π,z y x n n n ,,=0,±1,±2,… 有V U p 32=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 证:∑??-=l l l V a P ε=?? ????++??- ∑ )()2(212222z y x l l n n n L m V a π =?? ? ???++??-∑)()2(222223 z y x l l n n n L m L V a π 其中 V a u l l ε∑= ;V ~3L ?=p ??? ? ??? ? ++?? - ∑)() 2(212 2 2 2 32 z y x l l n n n V m V a π (对同一l ,2 22z y x n n n ++) =m a l l 21∑-2 )2( π)(2 22z y x n n n ++) 3 2(3 5- - V =m a l l 21∑-2 2 222) ()2(L n n n z y x ++ π) 3 2(3 532-- V V = V U 32 习题7.2试根据公式∑??-=l l l V a P ε证明,对于极端相对论粒子: 2 1 2 22) (2z y x n n n L c cp ++== πε,z y x n n n ,,=0,±1,±2,… 有V U p 31= ,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 证: ∑??-=l l l V a P ε;

第2章课后习题参考答案

第二章 一元线性回归分析 思考与练习参考答案 2.1 一元线性回归有哪些基本假定? 答: 假设1、解释变量X 是确定性变量,Y 是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n 误差εi (i=1,2, …,n )仍满足基本假定。求β1的最小二乘估计 解: 得: 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。 证明: 其中: ∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ211 1 2 )?()?(i n i i n i i i e X Y Y Y Q β∑∑==-=-= 01????i i i i i Y X e Y Y ββ=+=-

即: ∑e i =0 ,∑e i X i =0 2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什 么条件下等价?给出证明。 答:由于εi ~N(0, σ2 ) i=1,2, …,n 所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数: 使得Ln (L )最大的0 ?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小, 上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N (0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在εi ~N(0, σ2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。 ∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ0 1 00??Q Q β β ??==? ?

第六章 近独立粒子的最概然分布(习题课)

第六章 近独立粒子的最概然分布(习题课) 本章题型 一、基本概念: 1、粒子相空间、自由度;广义坐标、广义动量;粒子微观状态、系 统微观状态;经典相格与粒子微观状态;系统宏观态与系统微观态。 2、等概率原理(统计物理学的基本假设):平衡态孤立系统的各个微观态出现的概率相等。最概然分布作为平衡态下的分布近似。 3、近独立粒子孤立系统的粒子分布和与一个分布相对应的系统的微观状态数及各分布出现的几率、最概然分布。 ΛΛ,,,,21l τττ??? Λ Λ,,,,21l εεε }{l a Λ Λ,,,,21l ωωω Λ Λ,,,,21l a a a 与分布}{l a 对应的微观状态数为()l a Ω分布{}l a 要满足的条件是: N a l l =∑ E =∑l l l a ε 系统总的微观状态数()()lm man a l a a l ΩΩ=Ω∑~总 系统某时刻的微观状态只是其中的一个。在宏观短,微观长时间内(一瞬间)系统经历了所有的微观状态()()lm man a l a a l ΩΩ∑~----各态历经假 说。且各微观态出现的概率相等 ()()lm man a l a a l Ω≈ Ω= ∑1 1ρ

()l e a a l lm l βε αωδ--=?=Ω0ln ---玻耳慈曼分布。 此分布(宏观态)的概率为 ()()()()() ()1=ΩΩ≈ΩΩ= Ω=∑lm man lm man a l lm man lm man lm a a a a a a p l ρ 即:最概然分布几乎就是孤立系统的平衡态分布。 4、热力学第一定律的统计解释: Q d W d dU += l l l l l l l l da d a dU a U ∑∑∑+=?=εεε 比较可知:l l l d a W d ε∑= l l l da Q d ∑=ε 即:从统计热力学观点看, 做功:通过改变粒子能级引起内能变化; 传热:通过改变粒子分布引起内能变化。 二、相关公式 1、分布与微观状态数 ①、 ()l a l l l l l B M a a ω∏= Ω∏!N! .. ②、 ()∏--+= Ωl l l l l E B a a a )!1(!)! 1(..ωω ③、 ()∏-=Ωl l l l l D F a a a )! (!! ..ω ω ④、 ()l a r l l l l l cl h a N a ) ( ! ! ω?∏∏= Ω 2、最概然分布 玻耳兹曼分布l e a l l βεαω--= 玻色-爱因斯坦分布1 -= +l e a l l βεαω

水力学第二章课后习题答案

2.12 密闭容器,测压管液面高于容器内液面h=1.8m ,液体的密度为850kg/m 3,求液面 压强。 解:P o = P a ,gh = P a 850 9.807 1.8 相对压强为:15.00kPa。 绝对压强为:116.33kPa。 答:液面相对压强为15.00kPa,绝对压强为116.33kPa。 2.13 密闭容器,压力表的示值为4900N/m 2,压力表中心比A点高0.4m , A点在水下 1.5m,,求水面压强。 P0 1.5m 1 0.4m A

解: P0 = P a P -1.1 'g 二P a 4900 -1.1 1000 9.807 二p a「5.888 (kPa) 相对压强为:_5.888kPa。 绝对压强为:95.437kPa。 答: 水面相对压强为-5.888kPa,绝对压强为95.437kPa。 3m 解:(1)总压力:Pz=A p=4「g 3 3 = 353.052 (kN) (2)支反力:R 二W总二W K W箱二W箱;?g 1 1 1 3 3 3 =W箱 9807 28 =274.596 kN W箱 不同之原因:总压力位底面水压力与面积的乘积,为压力体Qg。而支座反力与水体重量及箱体重力相平衡,而水体重量为水的实际体积Eg。 答:水箱底面上总压力是353.052kN,4个支座的支座反力是274.596kN。 2.14 盛满水的容器,顶口装有活塞A,直径d =0.4m,容器底的直径D=1.0m,高h

=1.8m ,如活塞上加力2520N (包括活塞自重),求容器底的压强和总压力 解: (1)容器底的压强: P D =P A'gh =252°9807 1.8 =37.706(kPa)(相对压强) /-d2 4 (2)容器底的总压力: P D二Ap D D2 p D12 37.706 10 = 29.614(kN) 4 4 答:容器底的压强为37.706kPa,总压力为29.614kN 。 2.6用多管水银测压计测压,图中标高的单位为m,试求水面的压强P0。

第二章课后作业答案

第二章线性表习题(答案) 1.描述以下三个概念的区别:头指针,头结点,首元素结点。 首元结点是指链表中存储线性表中第一个数据元素a1的结点。为了操作方便,通常在链表的首元结点之前附设一个结点,称为头结点,该结点的数据域中不存储线性表的数据元素,其作用是为了对链表进行操作时,可以对空表、非空表的情况以及对首元结点进行统一处理。头指针是指向链表中第一个结点(或为头结点或为首元结点)的指针。 若链表中附设头结点,则不管线性表是否为空表,头指针均不为空。否则表示空表的链表的头指针为空。 2.填空: (1)在顺序表中插入或删除一个元素,需要平均移动一半元素,具体移动的元素个数与插入或删除的位置有关。 (2)在顺序表中,逻辑上相邻的元素,其物理位置也相邻。在单链表中,逻辑上相邻的元素,其物理位置不一定相邻。 (3)在带头结点的非空单链表中,头结点的存储位置由头指针指示,首元素结点的存储位置由头结点的next域指示,除首元素结点外,其它任一元素结点的存储位置由其直接前趋的next域指示。 3.已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。按要求从下列语句中选择合适的语句序列。 a. 在P结点后插入S结点的语句序列是:(4)、(1)。 b. 在P结点前插入S结点的语句序列是:(7)、(11)、(8)、(4)、(1)。 c. 在表首插入S结点的语句序列是:(5)、(12)。 d. 在表尾插入S结点的语句序列是:(11)、(9)、(1)、(6)。 供选择的语句有: (1)P->next=S; (2)P->next= P->next->next; (3)P->next= S->next;(4)S->next= P->next; (5)S->next= L; (6)S->next= NULL;(7)Q= P; (8)while(P->next!=Q) P=P->next; (9)while(P->next!=NULL) P=P->next; (10)P= Q; (11)P= L; (12)L= S; (13)L= P; 4.设线性表存于a[n]中且递增有序。试写一算法,将X插入到线性表的适当位置上,以保 持线性表的有序性。 void insertData(int a[],int data) { int i,location=0; for(i=0;i=location;i--) /*把查入点及查入点之后的数据以次后移一位*/ { a[i+1]=a[i]; } a[location]=data; /*把查新数据*/ lenth++; } 5.写一算法,从顺序表中删除自第i个元素开始的k个元素。 int DeleteData(int a[],int i,int k) { int j; if(i<1||i>lenth||k<0||k>lenth-k+1)return 0; for(j=i-1;j

热统复习题与思考题及答案

热力学与统计物理复习题及答案 一、解释如下概念 ⑴热力学平衡态;⑵可逆过程;⑶ 准静态过程;⑷焦耳-汤姆逊效应;⑸μ空间;⑹Γ 空间;⑺特性函数;⑻系综;⑼混合系综;⑽非简并性条件;⑾玻色——爱因斯坦凝聚; ⑴热力学平衡态:一个孤立系统经长时间后,宏观性质不随时间而变化的状态。 ⑵可逆过程:若系统经一过程从状态A 出发到达B 态后能沿相反的过程回到初态A , 而且在回到A 后系统和外界均回复到原状,那么这一过程叫可逆过程。 ⑶ 准静态过程: 如果系统状态变化很缓慢,每一态都可视为平衡态,则这过程叫准静态过程。 ⑷焦耳一汤姆孙效应:气体在节流过程中气体温度随压强减小而发生变化的现象。 ⑸μ空间:设粒子的自由度r ,以r 个广义坐标为横轴,r 个动量为横轴,所张成的 笛卡尔直角空间。 ⑹Γ空间:该系统自由度f ,则以f 个广义坐标为横轴,以f 个广义动量为纵轴,由此张成的f 2维笛卡尔直角空间叫Γ空间。 ⑺特性函数:若一个热力学系统有这样的函数,只要知道它就可以由它求出系统的其它函数,即它能决定系统的热力学性质,则这个函数叫特性函数。 ⑻系综:大量的彼此独立的具有相同结构但可以有不同微观状态的假想体系的集合叫系综,常见的有微正则系综、正则系综、巨正则系综。 ⑼混合系综:设系统能级E 1…,E n …,系综中的n 个系统中,有n 1个处于E 1的量子态;…,有n i 个系统处于E i 的相应量子态,则这样的系综叫混合系综。 ⑽非简并性条件:指1/<

第二章课后习题答案

第二章 牛顿定律 2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征. 2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( ) (A) 不为零,但保持不变 (B) 随F N 成正比地增大 (C) 开始随F N 增大,达到某一最大值后,就保持不变 (D) 无法确定 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A). 2 - 3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率 ( ) (A) 不得小于gR μ (B) 必须等于gR μ (C) 不得大于gR μ (D) 还应由汽车的质量m 决定 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽

应用回归分析-第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定? 答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。 2. 等方差及不相关的假定条件为 ? ? ? ? ? ? ??????≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1, 0)(2 σεεε 这个条件称为高斯-马尔柯夫(Ga uss-Mark ov)条件,简称G-M条件。在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计 等。 3. 正态分布的假定条件为 ???=相互独立 n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。 4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。 在整个回归分析中,线性回归的统计模型最为重要。一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。因此,线性回归模型的理论和应用是本书研究的重点。 1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计; 2. 对回归方程及回归系数的种种假设进行检验; 3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。 2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。求1β的最小二 乘估计。 答:∑∑==-=-=n i n i i i i x y y E y Q 1 1 2112 1)())(()(ββ

相关主题
文本预览
相关文档 最新文档