当前位置:文档之家› 沥青混合料蠕变特性试验研究_姚晨

沥青混合料蠕变特性试验研究_姚晨

沥青混合料蠕变特性试验研究_姚晨
沥青混合料蠕变特性试验研究_姚晨

纤维素在沥青混合料中的作用

纤维素在沥青混合料中的作用 摘要:介绍了纤维素的分类和其在沥青混合料中的主要作用,以及使用方法、质量指标和检测方法。最后介绍了木质素、合成聚合物、聚丙烯腈和聚酯等常用纤维素的质量指标与参考价格。在沥青混合料中添加纤维素后能大大提高沥青路面的路用性能,适宜在修筑优质沥青道路时采用。 关键词:沥青路面纤维素强度稳定性耐久性 随着我国公路交通的发展,交通运输量特别是重载车辆运输量的增加,在行车产生的疲劳荷载和冲击荷载作用下,沥青路面出现较为严重的破损现象。沥青路面混合料的性能及级配不同,路面的使用性能也有差别。近年来,在对提高沥青路面的耐久性深入研究后,发现在沥青混合料中添加纤维稳定剂,既可在生产、运输、摊铺和碾压过程中保证混合料的均匀性及稳定性,又是提高路面耐久性和稳定性的有效措施。由于国内外对纤维素的研究起步不久,各品牌的纤维素质量、价格相差颇大,设计、施工单位在选择时较难取舍;因此有必要对纤维素的性能、质量标准、检验方法以及其在沥青混合料中的作用作一介绍,为使用者提供决策依据。 1 纤维素的分类及在沥青混合料中的主要作用 1.1 纤维素的分类 目前,应用在沥青工程中的纤维,按其化学成分,主要有木质素纤维、有机化学合成纤维和无机矿物纤维;按其产品形状,可分为絮状(纯纤维素)和颗粒状(纤维素通过添加部分沥青预制而成)。 1.2 纤维素在沥青混合料中的主要作用 根据工程实践和权威部门测定数据证实,在沥青混合料中添加0.3%的路用工程纤维,马歇尔稳定度明显提高;混合料的流值有所降低,使路面处于不易蠕动状态,结构的稳定性大大提高;劈裂强度增长幅度显著;在高温高湿度条件下,残留稳定度仍保持较高数值,从而阻止了沥青和胶浆的涌出。因此,路用工程纤维已被广泛应用于新建及修建沥青玛蹄脂碎石路面(SMA路面)、纤维加强型沥青路面,以及透水沥青混合料。其主要作用可归纳为: 1)加筋作用,增强路面的抗低温开裂能力。在添加纤维素的混合料中,纤维与纤维间搭接成三维立体结构,犹如在灰泥中掺加草筋一样,起到加筋增强作用,有效地减少路面低温开裂。 2)分散作用,提高路面的抗车辙能力。纤维素具有良好的分散性,SMA路面混合料在拌和时加入适量的纤维素后,沥青和矿粉就能均匀地分散在集料之间,避免结为胶团而使路面出现油斑。 3)吸附作用,提高路面耐久性。纤维素对液体具有良好的吸附力,其吸油率可达自身质量的5倍以上。在混合料中能吸附沥青,使沥青的用量增加,集料表面的结构沥青膜增厚,从而提高路面的耐久性。 4)粘附作用,提高路面抗水损害能力。纤维素能增加沥青和集料的粘附性,提高沥青混合料的黏度,加强集料间的粘结能力,从而增大路面与轮胎之间摩擦力,增加沥青混合料的抗疲劳强度,提高抗水损害的能力。

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究 流变学作为力学的一个分支,主要研究材料在应力、应变、温度、辐射等条件下与时间因素有关的变形规律,所涉及的内容包括蠕变、应力松弛和弹性后效等。蠕变是影响岩体稳定性的一个重要因素。 软弱岩石在受到较低水平的应力作用时,就会产生明显的蠕变现象,如软岩巷道中的底鼓,即使是很坚硬的岩体,在高应力作用下同样会产生蠕变,从而影响到工程的功能和使用。因此,需要对岩石材料的蠕变行为进行深入研究,力求从本质上揭示其蠕变行为的特征。 本文通过实验研究和理论分析,得到了盐岩的基本力学参数,并研究了盐岩在不同应力条件下的力学特性和蠕变行为。以经典蠕变模型为基础,结合分数阶微积分理论,构建了一个新的蠕变模型,并利用盐岩、泥岩和煤岩的蠕变实验数据对其进行了验证。 (1)对盐岩材料进行了多组单轴和三轴压缩实验,并在每组实验中选取三个试样重复进行实验,以此来降低实验的随机性和试样个体的差异性。结果三个试样的测试结果比较接近,此批试样的个体差异性较小。 此外,常规压缩实验的结果还表明随着围压的增大,抗压强度和最大应变会随之增大。(2)在单轴蠕变实验中,选取了四个轴压水平来进行实验,分析了不同轴压对蠕变的影响。 当轴压水平越大时,加速蠕变阶段就会越早地出现,并且稳定蠕变应变率也会越大。与单轴蠕变相比,当材料受到一个较小的围压作用时,其蠕变行为也会发生巨大的变化,例如蠕变应变率大幅下降、蠕变时间大幅增长、加速蠕变阶段缺失等。

(3)通过分析不同应力条件下的蠕变应变率可以发现,稳定蠕变应变率与轴压大小呈线性关系,加速蠕变应变率与轴压大小也呈现出正相关性。此外,蠕变等时曲线表明随着时间的延长,轴压大小对蠕变的影响会越来越明显。 相反,围压会明显地降低蠕变应变率并抑制蠕变行为的发展。(4)结合分数阶微积分理论构建了一个新的非线性蠕变模型,并利用广义塑性力学理论和张量分析理论对新模型在三轴应力状态下的蠕变方程进行了推导。 以盐岩实验数据为基础,对蠕变模型的参数进行了辨识,并验证了模型的准确性。此外,利用泥岩和煤岩的蠕变实验数据对模型的适用性进行了验证,结果表明新模型可以应用于模拟多种岩石材料的蠕变全过程,具有较为广泛的适用性。

蠕变机理

镁质耐火材料高温蠕变特性的研究现状 张国栋1)游杰刚1)刘海啸1)罗旭东1)袁政禾2) 1)辽宁科技大学鞍山114044 2)鞍钢集团耐火材料公司鞍山114001 摘要:本文介绍了镁质材料高温蠕变特性的研究现状,并对镁质耐火材料的高温蠕变特性的理论进行了阐述,同时指出了将镁质蓄热材料用在高炉热风炉上的可行性。 关键词:镁质材料蠕变特性研究现状 1、引言 高炉生产的大型化发展,要求热风炉向着高风温和长寿命的方向发展,为了实现这一目标,除了热风炉本体的大型化与更合理的结构以外,作为热风炉中的关键材料之一——蓄热材料的发展将直接影响到热风炉的使用温度和使用寿命。而高炉热风炉对耐火材料的要求是:蓄热体各层材料的选择必须要在相应的使用温度下有很好的抗压,蠕变性能,抗碱金属蒸气与烟尘侵蚀性能,抗温度急变而不破坏的性能;蓄热体砖要有足够高的换热表面积以及有利于热交换的几何形状;蓄热体材质要尽可能高的导热系数以及材料体积比热容。 目前,我国采用以Al2O3-SiO2系材料的系列低蠕变砖,在热风炉的顶部和隔墙及蓄热室的上部采用优质硅砖,中部应用不同牌号的低蠕变高铝砖,下部采用低蠕变粘土砖。镁质材料与高铝质和硅质材料相比具有良好的蓄热性能和热导率以及很强的抗渣侵蚀性能;这些特点有利于热风炉的高炉的大风量高风温的操作和降低高炉焦比,提高高炉利用系数,增加生铁产量。但是,镁质材料的热震性能差、抗压蠕变性能不好,因此限制了这类材料在热风炉上的使用。所以,提高和改善镁质材料的这两方面性能是将镁质材料应用到热风炉上的关键。因此研究镁质材料的高温蠕变性能对扩大我国镁资源综合利用和炼铁产业有着重大的意义。 2、蠕变理论 高温蠕变理论是在对多种金属所作的完整的蠕变试验的基础上建立起来的。材料的高温蠕变是指材料在恒定的高温和一定的荷重作用下,产生的变形和时间的关系[1]。由于施加的载荷不同,耐火材料的高温蠕变可以分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变、高温扭转蠕变等。其中压缩蠕变和抗折蠕变

沥青混合料中的聚合物纤维

沥青混合料中的聚合物纤维 深圳海川工程科技有限公司 广州市启鹏交通材料技术有限公司 何唯平 张继宁 一、概述 伴随经济建设高速发展,现代交通对于公路沥青路面建设质量提出了越来越高的要求,传统的沥青混合料技术有时已经无法满足工程建设的要求,越来越多的新型材料正在进入沥青路面技术领域。其中,纤维作为一种特殊添加材料,已经普遍用于沥青路面工程。通常使用的纤维材料主要是木质素纤维,这类纤维作为稳定剂配制SMA混合料,用于增加其沥青用量并保持沥青胶浆具有足够的粘结力。但是,木质素纤维较短,材质较脆,在沥青混合料中很难发挥增韧作用,作为替代产品,化学纤维引起有关技术人员的广泛注意。 目前已经投放市场的化学纤维主要有聚酯纤维(涤纶)、聚丙烯纤维、聚丙烯腈纶纤维等品种。本文重点介绍海川德兰尼特(DOLANIT)聚丙烯腈纶纤维(Acrylic Fibers)产品的技术特点、路用性能和若干国内工程实例,从而推动该产品的正确使用。 二、海川德兰尼特纤维的技术特性 通常认为,材料的纤维增强或增韧效果主要取决于以下要素: 纤维的长纤比,通常纤维长度与截面尺寸比例越大,纤维的增强效果越为明显。 强度与韧性,根据材料增强增韧的要求,纤维的强度与韧性必须显着高于被增强增韧材料。 密度,通常采用重量比例确定纤维增强增韧的用量,因此,在相同的用量下,密度小的纤维具有比较高的分散度。 此外,纤维在材料中分散的取向性和其它物理力学特性也将对于增强增韧效果产生重要影响。 根据上述分析,海川德兰尼特纤维显然具有这些方面的优势。现将海川德兰尼特纤维主要技术性能与普通木质素纤维进行比较,比较结果列于表1中。 表1海川德兰尼特专用纤维与普通木质素纤维性能比较 海川德兰尼特专用纤维 普通木质素纤维 纤维直径(μm) 13 45 切断长度(mm) 6 1.2

迟滞比较器

迟滞比较器单门限电压比较器虽然有电路简 单、灵敏度高等特点,但其抗干 扰能力差。例如,在单门限电压v中含XX_01中,当比较器的图I有噪声或干扰电压时,其输入和所示,输出电压波形如图XX_01VvV附近出现干扰,由于在==REFthI VvV,导致将时而为,时而为OLOOH比较器输出不稳定。如果用这个v去控制电机,将出现输出电压O频繁的起停现象,这种情况是不允许的。提高抗干扰能力的一种方案是采用迟滞比较器。.电路组成1迟滞比较器是一个具有迟滞回环所示为特性的比较器。图XX_02aXX_01 图反相输入迟滞比较器原理电路,它是在反相输入单门限电压比较 器的基础上引入了正反馈网络,如其传输特性如图XX_02b所示。Vv位置互换,就可组成将与REFI同相输入迟滞比较器。 (a) 2.门限电压的估算 由于比较器中的运放处于开环状态或正反馈状态,因此一般情况vv不下,输出电压与输入电压IO成线性关系,只有在输出电压发生跳变瞬间,集成运放两个输入(b) 端之间的电压才可近似认为等于图XX_02 零,即 (1)或

设运放是理想的并利用叠加原理,则有 (2) word 编辑版. vVVVV和下门限电压的不同值(根据输出电压),可求出上门限电压或TOLOT+–OH分别为 (3) (4) 门限宽度或回差电压为 (5) ,则由式(3)~(5)XX_02a所示,且可求得设电路参数如图 ,和。 3.传输特性 开始讨论。设从,和 vvv增加当由零向正方向增加到接近前,不变。当一直保持IOI

vVvVV下跳到下跳到,到略大于。再增加,,则同时使由POLOHOI v保持不变。O vv不变,将始终保持只有当,则若减小,只要oI V。其传输特性如图XX_02b跳到所示。时,才由OH v的变化而改变的。由以上分析可以看出,迟滞比较器的门限电压是随输出电压o它的灵敏度低一些,但抗干扰能力却大大提高了 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持) word 编辑版. word 编辑版.

creep蠕变基础知识

蠕变模型 将flac3d 的蠕变分析option 进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 2.1 简介 Flac3d 可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型 model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe 蠕变模型结合M-C 模型产生cpow 蠕变模型(model cpow ) 7. 然后WIPP 蠕变模型结合D-P 模型产生Pwipp 蠕变模型(model pwipp ); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell 蠕变公式,第二个模型使用经典的burger 蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C 扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P 扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2.2蠕变模型描述 2.2.1只介绍经典粘弹型模型即maxwell 蠕变公式 牛顿粘性的经典概念是应变率正比于应力,对于粘性流变应力应变关系以近似于弹性变形的方式发展。粘弹型材料既有粘性又有弹性,maxwell 材料就是如此,在一维空间它可以表示为一根弹簧(弹性常数κ)连接一个粘壶(粘性常数η),它的力-位移增量关系可以写成: η κ μF F + = ? ? (2.1) 式中? μ是速度,F 是力,设力的初始值为 F ,增量值为F '经过一个t ?时间步,式(2.1)可以写成

加纤维沥青混凝土沥青用量的确定

加纤维沥青混凝土沥青用量的确定 河北省青(岛)银(川)高速公路筹建管理处(石家庄市 050021) 【内容摘要】:加纤维沥青混凝土是近年来沥青路面研究的一个新方向,加入纤维后,使得沥青混凝土的高、低温和水稳定性得到明显提高和改善。同时,由于纤维的加入,原沥青混凝土的沥青用量会有所增加,本文从比表面积的角度进行分析,定量的计算出矿料和纤维的总表面积,从而计算出纤维面积对矿料总表面积的影响,为确定加纤维沥青混凝土的沥青用量提供依据。 关键词:沥青混凝土纤维比表面积沥青用量 1.0概述 现代交通对高等级公路沥青路面提出了更高的要求,经过国外几十年和国内十几年的高等级公路建设实践,沥青路面普遍存在突出的工程问题是路面的使用寿命不足和路面的早期损坏。目前,在改善和提高沥青混合料的路用性能方面主要有两个大的研究方向和技术应用:一方面是改善矿质混合料的级配来提高沥青混合料的高温抗变形能力,如沥青玛蹄脂碎石(SMA)结构、多碎石(SAC)结构、大粒径沥青混凝土(LSAM)等;另一方面是通过改善沥青性能品质来提高沥青混合料的粘聚力,增强抵抗变形能力,如SBS 改性沥青、SBR改性沥青、PE改性沥青等。近年来,在沥青混合料中加入纤维加筋材料以改善其整体的物理力学性能,也逐渐成为重要的研究应用方向。本文就近年来应用较为广泛的博尼维(BoniFibers)纤维对沥青用量的影响进行研究探讨。 2.0博尼维(BoniFibers)纤维的物理化学性能 博尼维是1970年由美国DuPont(杜邦)公司的化学工程师Boni Martinez研制开发的,这种纤维就以他的名字命名并由KAPEJO公司拥有该项专利。BoniFibers于1998年引进中国,首次在新疆高速公路、河北省石黄高速公路应用,辽宁、吉林、黑龙江、山东等省份的省道、国道项目也进行了应用。其主要物理化学性能指标如下: 直径:0.02mm±0.0025mm 长度:6.35mm±1.58mm 比重:1.36±0.04

沥青混合料的疲劳试验及其影响因素

沥青混合料的疲劳试验及其影响因素 摘要:疲劳特性的研究方法概括起来包括两种即现象学法和力学近似法。应用现象学法主要是进行疲劳试验,得出疲劳寿命与施加应力或应变的关系。力学近似法是将应力状态的改变作为开裂、几何尺寸及边界条件、材料特性及其统计变异性的结果来考虑,并对裂缝的扩展和材料中疲劳的重分布所起的作用进行分析,从而它有助于人们认识破坏的形成和发展的机理。 关键词:沥青混合料疲劳特性现象学法力学近似法 1 概述 路面使用期间,在气侯环境因素和车轮荷载的重复作用下,损伤逐渐累积,路面结构强度逐渐下降,当荷载作用次数超过一定次数之后,在荷载作用下路面内产生的应力就会超过性能下降后的结构抗力,使路面出现裂纹,产生疲劳断裂破坏。这是由于材料内部存在缺陷或非均匀性,引起应力集中而出现微裂隙,应力的反复作用使微裂隙逐渐扩展、汇合,从而不断减少有效的承受应力的面积,造成材料的刚度和强度逐步下降,最终在反复作用一定次数后导致破坏。材料抵抗疲劳破坏的能力,可用达到疲劳破坏时所能经受的重复应力大小(或称疲劳强度)和作用次数(称为疲劳寿命)来表示。疲劳破坏是当前沥青路面破坏的主要形式之一。沥青路面的耐久性是指沥青路面在使用过程中承受各种外界因素的作用,其性质能保持稳定或较小发生变化的特性。沥青混合料的抗疲劳性能是评价沥青路面耐久性的一个重要指标。 2沥青混合料的疲劳试验 疲劳破坏作为沥青路面的三大破坏形式之一,人们对其试验研究方法给予了很大的关注,归纳起来可以分为四类:一是实际路面在真实行车荷载作用下的疲劳破坏试验,如美国的AASHO试验路,历时三年才完成;二是足尺路面结构在模拟行车荷载作用下的疲劳试验,包括环道试验和加速加载试验,如南非的重

蠕变分析

4.4蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。

对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=2.718281828(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设Nc是某个特定单元类型的应变分量的个数。如果则有:

加纤维沥青混凝土性能及应用

加纤维沥青混凝土性能及应用 2011-08-12 中国公路网 【声明】:转载《中国公路》《中国交通信息化》《中国高速公路》《中国公路文化》《中国交通建设监理》《交通决策参考》稿件须经书面授权。索取授权书 QQ: 471885979 作者:张金奎廊坊市交通局 摘要:本文根据2003年廊坊市102国道大修工程,对掺加德兰尼特纤维沥青混凝土与普通沥青混凝土的大量对比试验,阐述了加纤维沥青混凝土的优良力学性能。 关键词:试验;沥青混凝土;纤维;德兰尼特 1 前言 伴随着我国经济建设的高速的发展,道路车流量越来越大,尤其在一些国省干线上超载车辆更是严重,由此对路面的使用性能也提出了更高的要求,传统的沥青混合料技术已往往不能满足工程建设的需要。近几年来,越来越多的新材料不断投入到沥青路面技术领域。纤维作为一种沥青混合料添加材料,已开始应用于沥青路面工程中。 德兰尼特道路专用纤维(后简称“德兰纤维”)化学名称为聚丙稀氰纶纤维,其由英国Acordis公司在德国Kelheim的工厂生产,属人工合成有机纤维。与其它种类纤维相比,其具有化学性质稳定、耐高温、不溶解、无毒等优点,在沥青路面中不仅能起到很好的吸油作用,更能够对路面起到明显加筋作用,提高路面柔韧性,减少高温车辙低温开裂等情况的发生,从而延长路面使用寿命。目前,一些欧洲国家已将其列为沥青路面指定添加剂。2003年在我市102国道大修工程中,进行了德兰尼特纤维沥青混凝土试验段的铺设,取得良好效果,并对此类沥青混凝土进行了大量的试验数据采集工作,对其路用性能进行了一定的分析总结,供同行借鉴。 2 德兰尼特纤维作用及技术性能 德兰纤维可用于沥青玛蹄脂碎石混合料(SMA)、密级配沥青混凝土(AC)、及沥青碎石(AM)等结构中。其在沥青混合料中的主要作用如下:(1)加筋作用,其三维分布状态,犹如传统建筑抹灰过程中,在灰浆中加入麻刀等草筋一样,可以有效防止温度变化的开裂和

第四章3岩石的蠕变

五、岩石的蠕变 1、 蠕变特征 ① 岩石蠕变的概念 在应力σ不变的情况下,岩石变形随时间t 而增长的现象。 即 dt d ε 随时间而变化。 ②岩石蠕变类型 有两种类型: 稳定型蠕变 非稳定型蠕变

a、稳定型蠕变 应力作用下, 随时间递减, dε 零,即0 = dt 域稳定。 一般在较小应力下或硬岩中。 b、非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不断增 长,直至破坏。 一般为软弱岩石或应力较大。

③蠕变曲线变化特征 三个阶段: Ⅰ阶段:初期蠕变。 d 曲,应变速率 dt 小。属弹性变形。 Ⅱ阶段:等速蠕变。 应变-时间曲线近似直线,应变随时间呈近于等速增长。出现塑性。

Ⅲ阶段:加速蠕变。 应变-时间曲线向上弯曲,其应变速率加快直至破坏。 应指出,并非所有的蠕变都能出现等速蠕变阶段,只有蠕变过程中结构的软化和硬化达到动平衡,蠕变速率才能保持不变。 在Ⅰ阶段,如果应力骤降到零,则ε-t曲线具有PQR形式,曲线从P 点骤变到Q点,PQ= ε为瞬时弹性变形,而后随时间慢慢退到应变为 e 零,这时无永久变形,材料仍保持弹性。 在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU= ε。 e

有直接关系。 变速度变化缓慢, 稳定。 率增大。 蠕变速率越大,反之愈小。

岩石长期强度:指 岩石由稳定蠕变转为非稳定蠕变时的应力分界值。即,岩石在长期荷载作用下经蠕变破坏的最小应力值(∞σ或∞τ) 岩石极限长期强度:指长期荷载作用下岩石的强度。 2、 蠕变经验公式 由于岩石蠕变包括瞬时弹性变形、初始蠕变、等速蠕变和加速蠕变,则在荷载长期作用下,岩石蠕变的变形ε可用经验公式表示为: ε=e ε+)(t ε+t M +)(t T ε e ε-瞬时变形;)(t ε-初始蠕变;t M -等速蠕变;)(t T ε-加速蠕变。

蠕变分析

蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。

上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设 Nc是某个特定单元类型的应变分量的个数。 如果则有:

第23例 材料蠕变分析实例

第23例材料蠕变分析实例—受拉平板本例简单地介绍了蠕变的概念及蠕变材料模型的创建方法,简单地介绍了结构蠕变分析的方法、步骤及要点。 23.1蠕变简介 蠕变是指金属材料在长时间的恒温、恒载作用下,持续发生缓慢塑性变形的行为,大多数金属材料在高温下都会表现出蠕变行为。 如果材料发生了蠕变,在恒载作用下结构会发生持续变形;如果结构承受恒位移,则应力会随时间而减小,即产生应力松弛。 图23-1 蠕变曲线 蠕变一般分为蠕变初始阶段(Primary)、蠕变稳定阶段(Secondary)和蠕变加速阶段(Tertiary)三个阶段,如图23-1所示。蠕变初始阶段时间很短,应变率随时间而减小;在蠕变稳定阶段,应变以常速率发展;在蠕变加速阶段,应变率急剧增大直至材料失效。研究蠕变行为,主要针对蠕变初始阶段和蠕变稳定阶段。 研究问题时一般以蠕变方程(又称本构关系)来表征蠕变行为,蠕变方程以蠕应变率的,形式表示dεcr/dt =AσBεC t P式中,εcr为蠕应变。A、B、C、D是由实验得到的材料特性参数。当D<0时,蠕应变率随时间减小,材料处于蠕变初始阶段;当D=0时,蠕应变率不随时间变化,材料处于蠕变稳定阶段。

在ANSYS中,有一个蠕应变率库供选择。 23.2问题描述 一矩形平板,左端固定,右端作用有恒定压力p=100MPa,矩形平板尺寸如图23-2所示,材料的弹性模量为2xl05MPa,泊松比为0.3,蠕变稳定阶段蠕变方程dεcr/dt =C1σC2。C2,式中,C1=3.125 x10-14,C2=5。试分析平板右端的位移随时间的变化情况。 提示:为避免出现较小值,力单位用N,长度单位用mm,时间单位为h。 图23-2受拉矩形平板 23.3分析步骤 23.3.1改变任务名 拾取菜单Utility Menu→File→Change Jobname,弹出如图23-3所示的对话框,在“[/FJLNAM]”文本框中输入EXAMPLE23,单击“OK”按钮。 图23-3改变任务名对话框 23.3.2选择单元类型 拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图23-4所示的对话框,单击“Add…”按钮,弹出如图23-5所示的对话框,

聚酯纤维性能对沥青混合料性能的影响

聚酯纤维性能对沥青混合料性能的影响 刘丽君焦红娟史小兴 (北京中纺纤建科技有限公司北京100025) 摘要:本文通过聚酯纤维沥青混合料马歇尔试验、高温稳定性、低温抗裂性及水稳定性等试验,系统的研究了三种不同强度的纤维对沥青混凝土路用性能影响,并分析了纤维的作用机理,为聚酯纤维在沥青混合料中的应用提供参考。 1概述 公路交通的现代化和网络化已成为一个国家和地区谋求发展的基础和发达程度的标志。但是,随着路面行车密度和车载荷的增加,裂缝成了路面病害的主要类型之一,其大大降低了路面的服务水平和使用寿命。沥青路面用聚酯纤维作为一种改善沥青路面性能和延长路面寿命的新材料,由于其良好的吸油作用及对路面起到明显的加筋和桥接作用,极大地提高了路面的柔韧性,提高了沥青路面的高温抗车辙能力、低温抗裂性以及抗水害等性能,从而使路面的使用寿命大大延长。目前采用纤维沥青混凝土来提高路面的抗裂能力越来越受到重视。在应用过程中掺加聚酯纤维的沥青混合料不需改变原有的施工工艺,操作简单方便,具有很好的发展和应用前景。实践证明,使用纤维增强的混凝土路面不仅早期强度高,易于快速修复,更重要的是其使用寿命大幅度延长。 目前关于聚酯纤维对沥青混合料各项性能的改善研究颇多,然而纤维本身的强度对沥青混合料的性能影响却很少涉及。本文通过研究不同强度的聚酯纤维对沥青混合料的作用效果,系统的分析了纤维的作用机理。 2原材料 本试验所用沥青为太平洋AH-90,粗集料采用破碎花岗岩碎石,细集料采用天然砂,矿粉为磨细的石灰石。 本试验用纤维为凯泰(CTA)聚酯纤维,选用高强和中强两种聚酯纤维类型做对比试验,经检验测定各项技术指标均符合《沥青路面用聚合物纤维》(JT/T534-2004)所规定的要求。如表1。 表1 聚酯纤维性能指标检测结果 试验项目高强中强规范要求 直径,μm 23.4 20.67 10~25 长度,mm 6 6 6±1.5 抗拉强度,MPa 1053 569 ≥500 断裂伸长率,% 19.1 41.3 ≥15 耐热性,210℃,2h 体积无变化体积无变化体积无变化 3马歇尔试验及其结果 3.1沥青混合料配合比的确定 本试验采用AC-16I设计级配。 表2 AC-16I设计级配通过百分率表

迟滞比较器

迟滞比较器 单门限电压比较器虽然有电路简单、灵敏度高等特点,但其抗干扰能力差。例如,在单门限电压比较器的图XX_01中,当v I 中含有噪声或干扰电压时,其输入和输出电压波形如图XX_01所示,由于在v I =V th =V REF 附近出现干扰,v O 将时而为V OH ,时而为V OL ,导致比较器输出不稳定。如果用这个输出电压v O 去控制电机,将出现频繁的起停现象,这种情况是不允许的。提高抗干扰能力的一种方案是采用迟滞比较器。 1.电路组成 迟滞比较器是一个具有迟滞回环特性的比较器。图XX_02a 所示为反相输入迟滞比较器原理电路,它是在反相输入单门限电压比较器的基础上引入了正反馈网络,其传输特性如图XX_02b 所示。如将v I 与V REF 位置互换,就可组成同相输入迟滞比较器。 2.门限电压的估算 由于比较器中的运放处于开环状态或正反馈状态,因此一般情况下,输出电压v O 与输入电压v I 不成线性关系,只有在输出电压发生跳变瞬间,集成运放两个输入端之间的电压才可近似认为等于零,即 或 (1) 设运放是理想的并利用叠加原理,则有 (2) 图 XX_01 (a) (b) 图XX_02

根据输出电压v O的不同值(V OH或V OL),可求出上门限电压V T+和下门限电压V T–分别为 (3) (4) 门限宽度或回差电压为 (5) 设电路参数如图XX_02a所示,且,则由式(3)~(5)可求得 ,和。 3.传输特性 设从,和开始讨论。 当v I由零向正方向增加到接近前,v O一直保持不变。当v I增加 到略大于,则v O由V OH下跳到V OL,同时使v P下跳到。V I再增加, v 保持不变。 O 若减小v I,只要,则v o将始终保持不变,只有当 时,才由跳到V OH。其传输特性如图XX_02b所示。 由以上分析可以看出,迟滞比较器的门限电压是随输出电压v o的变化而改变的。它的灵敏度低一些,但抗干扰能力却大大提高了

蠕变分析

4.4 蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为:

沥青及沥青混合料疲劳性能影响因素

沥青及沥青混合料疲劳性能影响因素 作者:林敏 来源:《装备维修技术》2020年第07期 摘要:近年来,随着我国经济和科技的不断进步,人们对日常生活水平的质量要求越来越高。建筑作为人们日常生活和工作必不可少的一部分,人们对其质量要求也存在着定的关注。为了更好地保证沥青混合材料在使用中的抗疲劳性能,逼着对相关的沥青混合料进行了分析。分析研究发现,不同类型的沥青混合料疲劳寿命是与其应力之间有一定的联系。应力比增加,那么滤镜混合材料疲劳寿命就会随之减少。除此之外,还有一系列的研究发现,都有了一定的结果。 关键词:沥青混合料;疲劳性能;影響因素 在一些桥梁路面的基础施工过程中,沥青材料的使用是必不可少的。但是近年随着行车荷载力等方面的因素,很多沥青路面的强度与以前相比发生了明显的变化。不仅容易出现疲劳破坏,还导致路面的使用寿命及使用性能都得到了破坏。因此,对于我国相关企业和管理部门而言,研究影响沥青混合料疲劳性能的因素,并解决其疲劳寿命带来的影响是一项迫在眉睫的任务。笔者通过研究资料和实际情况,对多种沥青混合料的疲劳性能进行了相应的研究,通过研究认为ARAC—13在自愈合作用后疲劳寿命是最长的。此外,笔者还针对不同的行车荷载和温度作用下沥青路面的疲劳性能,并也对此进行了分析和整理。本次分析和整理主要的目的是为了提高今后沥青混合料在使用中的疲劳性和使用寿命,研究结果仅供参考。 一、原材料和混合料配合比 1、原材料技术性质 (1)沥青 根据实际情况,选取了一项路面工程进行研究。在研究中,选取70号沥青和SBS改性沥青进行加护性质的相关测定。研究结束后我们发现,70号沥青技术性质,无论是在针入度、延度、软化点还是闪点方面均符合相关的规定和标准值。而SBS改性沥青技术在这些方面也与70号沥青技术并无太大的区别。这也叫从一定程度上证明70号沥青在工程建筑使用阶段是符合相关规定和标准的。 (2)粗集料 所谓的粗集料指的是采用玄武岩的材料,这种材料的公称粒径分为两种,分别是5~10和10~15。经过研究分析粗集料的技术性质发现,5~10的针片状测试值与10~15的针片状测

岩石力学(沈明荣)考试重点

一章: 1.叙述岩体力学的定义.:岩体力学主要是研究岩石和岩体力学性能的一门学科,是探讨岩石和岩体在其周围物理环境(力场、温度场、地下水等)发生变化后,做出响应的一门力学分支。 2.何谓岩石?何谓岩体?岩石与岩体有何不同之处?(1)岩石:由矿物或岩屑在地质作用下按一定规律聚集而形成的自然物体。(2)岩体:一定工程范围内的自然地质体。(3)不同之处:岩体是由岩石块和各种各样的结构面的综合体。 3.何谓岩体结构?岩体结构的两大要素是什么? (1)岩体结构是指结构面的发育程度及其组合关系;或者是指结构体的规模、形态及其排列形式所表现的空间形态。(2)结构体和结构面。 4. 岩体结构的六大类型? 块状、镶嵌、层状、碎裂、层状碎裂、松散结构。 5.岩体有哪些特征?(1)不连续;受结构面控制,岩块可看作连续。(2)各向异性;结构面有一定的排列趋势,不同方向力学性质不同。(3)不均匀性;岩体中的结构面方向、分布、密度及被结构面切割成的岩块的大小、形状和镶嵌情况等在各部位不同,各部位的力学性质不同。(4)赋存地质因子特性(水、气、热、初应力)都会对岩体有一定作用。 二章:岩石物理力学性质有哪些? 岩石的质量指标,水理性质指标,描述岩石风化能力指标,完整岩石的单轴抗压强度,抗拉强度,剪切强度,三向压缩强度和各种受力状态相对应的变形特性。影响岩石强度特性的主要因素有哪些?对单轴抗压强度的影响因素有承压板、岩石试件尺寸及形状(形状、尺寸、高径比),加载速率、环境(含水率、温度)。对三相压缩强度的影响因素:侧向压力、试件尺寸与加载速率、加载路径、空隙压力。 什么是岩石的应力应变全过程曲线?所谓应力应变全过程曲线是指在刚性实验机上进行实验所获得的包括岩石达到峰值应力之后的应力应变曲线。 2.4简述岩石刚性实验机的工作原理?:压力机加压(贮存弹性应能)岩石试件达峰点强度(释放应变能)导致试件崩溃。AA′O2O1面积—峰点后,岩块产生微小位移所需的能。ACO2O1面积——峰点后,刚体机释放的能量(贮存的能量)。ABO2O1——峰点后,普通机释放的能量(贮存的能量)。当实验机的刚度大于岩石的刚度,才有可能记录下岩石峰值应力后的应力应变曲线。 莫尔强度理论,格尔菲斯强度理论和E.hoek和E.T.brown提出的经验理论的优缺点?:莫尔强度理论优点是使用方便,物理意义明确;缺点是1不能从岩石破坏机理上解释其破坏特征2忽略了中间主应力对岩石强度的影响;格尔菲斯强度理论优点是明确阐明了脆性材料破裂的原因、破裂所需能量及破裂扩展方向;缺点是仅考虑岩石开裂并非宏观上破坏的缘故。E.hoek和E.T.brown提出的经验理论与莫尔强度理论很相似其优点是能够用曲线来表示岩石的强度,但是缺点是表达式稍显复杂。 典型的岩石蠕变曲线有哪些特征?典型的岩石蠕变曲线分三个阶段第Ⅰ阶段:称为初始蠕变段或者叫瞬态蠕变阶段。在此阶段的应变一时间曲线向下弯曲;应变与时间大致呈对数关系,即ε∝㏒t。第Ⅱ阶段:称为等速蠕变段或稳定蠕变段。在此阶段内变形缓慢,应变与时间近于线性关系。第Ⅲ阶段:称为加速蠕变段非

蠕变

1 蠕变的概念 岩石的变形不仅表现出弹性和塑性,而且也具有流变性质,岩石的流变包括蠕变、松弛和弹性后效。 岩石的流变性是指岩石应力应变关系随时间而变化的性质。蠕变是当应力不变时,变形随时间增加而增长的现象。 2 岩石的蠕变曲线 通常用蠕变曲线(ε-t 曲线)表示岩石的蠕变特性。 。 图中三条蠕变曲线是在不同应力下得到的,其中C B A σσσ>>。蠕变实验表明,当岩石在较小的恒定力作用下,变形随时间增加到一定程度后就趋于稳定,不再随时间增加而变化,应变保持为一个常数,这种蠕变称为稳定蠕变;当岩石承受的恒定荷载较大,当岩石应力超过某一临界值时,变形随时间增加而增大,其变形速率逐渐增大,最终导致岩体整体失稳破坏,这种蠕变称为不稳定蠕变。 不稳定蠕变(典型蠕变)可分为三个阶段: 第一蠕变阶段:如曲线AB 所示,应变率随时间增加而减小,故又称为减速蠕变或初始蠕变阶段。 第二蠕变阶段:如曲线中的BC 段所示,应变速率保持不变,故又称为等速蠕变阶段。

第三蠕变阶段:如曲线中的CD段所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可以发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展;小于此临界应力时,蠕变按稳定蠕变发展。通常称此临界应力为岩石的长期强度。 3实例 3.1 层状岩坡蠕变破坏 综合工程地质条件、力的作用方式及边坡具体破坏形式,在考虑时间效应的基础上,杨晓华,陈沅江[1] 对层状岩质边坡的蠕变破坏类型及其所致因素进行了分析探讨,将层状岩质边坡的蠕变破坏分为如下五种主要类型。 3.1.1 水平层状边坡座落式剪切蠕变破坏 该类蠕变破坏发生在构造活动区水平或近水平岩层边坡中。当边坡最终形成后,由于其高度很大,上部破碎岩体的自重应力亦很大,边坡在该自重应力的作用下时常会发生沿边坡下部的水平或近水平软弱夹层蠕动滑移的座落式滑坡。故这种边坡的蠕变破坏一般首先表现为边坡上部岩体的较大水平剪切位移,当边坡开挖到一定深度时又将表现为垂直剪切位移,

第四章 3 岩石的蠕变

. . . .. .. 五、岩石的蠕变 1、 蠕变特征 ① 岩石蠕变的概念 在应力σ不变的情况下,岩石变形随时间t 而增长的现象。 即 dt d ε 随时间而变化。 ②岩石蠕变类型 有两种类型: 稳定型蠕变 非稳定型蠕变

. . . .. .. a 、 稳定型蠕变 应力作用下,随时间递减,零,即 0=dt d ε 域稳定。 一般在较小应力下或硬岩中。 b 、 非稳定型蠕变:岩石在恒定应力作用下,岩石变形随时间不断增长,直至破坏。 一般为软弱岩石或应力较大。

dt 小。属弹性变形。 Ⅱ阶段:等速蠕变。 应变-时间曲线近似直线,应变随时间呈近于等速增长。出现塑性。.. ..

. . . .. .. Ⅲ阶段:加速蠕变。 应变-时间曲线向上弯曲,其应变速率加快直至破坏。 应指出,并非所有的蠕变都能出现等速蠕变阶段,只有蠕变过程中结构的软化和硬化达到动平衡,蠕变速率才能保持不变。 在Ⅰ阶段,如果应力骤降到零,则ε-t 曲线具有PQR 形式,曲线从P 点骤变到Q 点,PQ =e ε为瞬时弹性变形,而后随时间慢慢退到应变为零,这时无永久变形,材料仍保持弹性。 在Ⅱ阶段,如果把应力骤降到零,则会出现永久变形,其中TU =e ε。

. . . .. .. 有直接关系。变速度变化缓慢,稳定。率增大。蠕变速率越大,反之愈小。

. . . .. .. 岩石长期强度:指 岩石由稳定蠕变转为非稳定蠕变时的应力分界值。即,岩石在长期荷载作用下经蠕变破坏的最小应力值(∞σ或∞τ) 岩石极限长期强度:指长期荷载作用下岩石的强度。 2、 蠕变经验公式 由于岩石蠕变包括瞬时弹性变形、初始蠕变、等速蠕变和加速蠕变,则在荷载长期作用下,岩石蠕变的变形ε可用经验公式表示为: ε=e ε+)(t ε+t M +)(t T ε e ε-瞬时变形;)(t ε-初始蠕变;t M -等速蠕变;)(t T ε-加速蠕变。

相关主题
文本预览
相关文档 最新文档