当前位置:文档之家› 纳米结构高分子材料综述

纳米结构高分子材料综述

纳米结构高分子材料综述
纳米结构高分子材料综述

纳米结构高分子材料的制备、表征、应用前景

花生

(湖南工程学院化学化工学院湖南湘潭 411104)

摘要:纳米结构高分子材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料。本文综述了纳米结构高分子材料的结构、性能和表征技术,并对其

应用进行了讨论。

关键字:纳米结构高分子材料插层复合溶胶-凝胶纳米改性

Preparation ,Characterization, Application of Nano-structural Polymer Materials

huasheng

(College of Chemistry and Chemical Engineering, Hunan

Institute of Engineering,Xiangtan Hunan 411104,China )

Abstract:Nano-structural polymer materials are a class of composite materials which are Compound from polymer and nano-materials. This article introduces

nano-structured polymer materials as follow: structure , properties , characterization techniques and its applications .

Key word:Nano-structural polymer materials intercalation solution-gel modification of polymer

纳米结构聚合物材料由于具有独特的性能而在机械、光、电、

磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方

面具有广阔的应用前景,近年来掀起了对纳米结构聚合物材料研究的

热潮。各国学者分别在化学分子设计、结构分析、组装方法和应用等

方面进行了广泛的研究。我国的科学工作者也对其开展了许多卓有成

效的工作。关于纳米结构超薄膜的综述文献已有很多,本文主要就

纳米结构高分子材料的结构、性能、制备、表征分析、以期对这一新兴领域的发展有所启示。

1 纳米粒子的结构与性质

颗粒直径在1~100nm 之间的粒子称为纳米粒子,它是由一定数量的原子或分子组成的,其性质既不同于宏观大尺寸颗粒,也不同于单个原子和分子等微观粒子,而是处于原子簇和宏观物体交界的过渡区域,是一种典型的介观系统。它具有一系列新颖的物理、化学特性,体现在以下4 个方面。

1.1表面效应

粒子的表面效应指的是纳米粒子表面原子与总的原子数之比随粒子粒径的减小而急剧增大后所引起的性质的变化。纳米粒子的粒径与表面原子数的关系见表

表 1纳米粒子的粒径与表面原子数的关系

粒径/nm 20 10 5 2 1

原子数/个 250000 30000 4000 250 30 表面原子所占的比例 10 20 40 80 99 从表1 可以看出,处于粒子表面的原子数随着粒子粒径的减小而迅速增加,粒子的表面积、表面能及表面结合能也都迅速增大。表面原子具有很大的化学活性,如刚制备的金属纳米粒子在空气中会燃烧,耐热耐腐蚀的氮化物纳米粒子也变得不稳定等。纳米粒子的表面效应使它可以作为高效催化剂、气敏元件、超导材料等。

1.2体积效应

体积效应是指纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件被破坏,磁性、热性能、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。正因为纳米粒子的这一特性,当它分散于高分子材料中时,致使高分子材料具有特殊的性能或改善高分子材料的性能。

1.3量子尺寸效应

当粒子的尺寸小到一定值时,粒子内部原子数目减少,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。此时处于分立能级的电子将给纳米粒子带来一系列特殊性质,如高的光学非线性、超导电性和光催化特性等。

1.4宏观量子隧道效应

隧道效应是指微观粒子具有贯穿势垒的能力。但近年来,人们发现一些宏观量,如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的能垒而产生变化,故称为宏观的量子隧道效应。这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,也限制了采用磁带、磁盘等进行信息存储的最短时间。

2 纳米结构高分子材料的制备

纳米结构高分子材料的涉及面较宽, 包括的范围较广, 可分为四大类: 纳米单元与高分子直接共混; 在高分子基体中原位生成纳米单元; 在纳米单元存在下单体分子原位聚合生成高分子及纳米单

元和高分子同时生成。

2.1 纳米单元与高分子直接共混

此法是将制备好的纳米单元与高分子直接共混, 可以是溶液形式、乳液形式, 也可以是熔融形式共混。

①溶液共混法,把基体树脂溶于溶剂中,加入纳米粒子后混合均匀,出去溶剂而得;②乳液共混法,将纳米粒子加入聚合物乳液中,并搅拌混合均匀实现共混;③熔融共混,首先将聚合物加热熔融,并将纳米粒子加入聚合物熔体内搅拌共混;④机械共混,将高分子物料和添加物料加入到研磨机中研磨共混。

2.1. 1 纳米单元的制备

可用于直接共混的纳米单元的制备方法、种类很多, 通常有两种形式的制备: 从小到大的构筑式,即由原子、分子等前体出发制备; 从大到小的粉碎式, 即由常规块材前体出发制备, 总体上又可分为物理方法、化学方法、物理化学方法三种。

2.1. 2 纳米单元的表面改性

纳米单元的表面改性方法根据表面改性剂和单元间有无化学反应可分为表面物理吸附方法和表面化学改性方法两类, 可以采用低分子化合物主要为各种偶联剂改性, 也可以在用微乳液法制备纳米粒子时, 采用聚磷酸盐或硫醇作为捕获剂, 通过终止微晶表面而使晶核停止生长, 同时避免粒子团聚, 也可以通过锚锢聚合在粒子表面形成聚合物改性。锚锢聚合改性法可分为吸附包裹聚合改性和表面接枝聚合改性两类。

2.2 在高分子基体中原位生成纳米单元

此法是利用聚合物特有的官能团对金属离子的络合吸附及基体对反应物运动的空间位阻, 或是基体提供了纳米级的空间限制, 从而原位反应生成纳米复合材料, 常用于制备金属、硫化物和氧化物等纳米单元复合高分子的功能复合材料。

2.3 在纳米单元存在下单体分子原位聚合生成高分子

此法主要是指在含有金属、硫化物或氢氧化物胶体粒子的溶液中单体分子原位聚合生成高分子,其关键是保持胶体粒子的稳定性, 使之不易发生团聚。

2.4 纳米单元和高分子同时生成

此法包括插层原位聚合制备聚合物基有机- 无机纳米复合材料, 蒸发沉积法制备纳米金属- 有机聚合物复合膜及溶胶- 凝胶法等。

3 纳米结构高分子材料的表征技术

纳米结构高分子材料的表征技术可分为两个方面: 结构表征和性能表征。结构表征主要是指对复合体系纳米相结构形态的表征, 包括粒子初级结构和次级结构以及纳米粒子之间或粒子与高分子基体之间的界面结构和作用; 而性能表征则是对复合体系性能的描述, 并不是仅限于纳米复合体系。只有在准确地表征纳米材料的各种精细结构的基础上才能实现对复合体系结构的有效控制, 从而可按性能要求设计、合成纳米复合材料。

纳米高分子需要分析表征的主要微观特征包括:①晶粒尺寸、分布和形貌;②晶界和相界面的本质和形貌;③晶体的完整性和晶间缺

陷的性质;④跨晶粒和跨晶界的成分剖面;⑤来自制作过程的杂质的识别等。如果是层状纳米结构,则要表征的重要特征还有:①界面的厚度和凝聚力;②跨界面的成分剖面。主要分析表征方法和手段有:透射电子显微镜、X射线衍射分析、小角度X射线散射、扫描电镜和原子力显微镜、激光拉曼光谱、X射线光电子能谱、傅里叶变换远红外光谱、穆斯堡尔谱、俄歇电子能谱、离子能量损失谱、红外光谱、紫外可吸收见光光谱、差热扫描分析、介电松弛谱、光声光谱等。

4 纳米结构高分子材料的应用及应用前景

由于纳米结构高分子材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应, 以及粒子的协同效应, 而且兼有高分子材料本身的优点, 使得它们在催化、力学、物理功能等方面呈现出常规材料不具备的特性, 有广阔的应用前景。概括起来主要有以下几个方面。

4.1化学阀。刘国军等发现用微相分离一化学处理法得到的纳米孔道具有“化学阀”或“传感器”的作用。例如,PtBA-b-PCEMA 体系组装形成的纳米孔聚合物膜对水的渗透率受pH值的影响显著。在不同的pH值条件下,纳米孔道中的PAA链会发生收缩、伸展或物理交联。另外,通过改变PAA链的结构,如甲基化或部分甲基化可以改变膜孔道内的功能基团,在仿生高分子材料领域具有很好的应用前景。

4.2催化剂。Cin等利用组装聚合得到了内外结构不对称的纳米多孔通道,孔内含有梭基或磺酸基等官能团,可以络合Sc, Pd等金

属离子,可用作一些有机化学反应的异相催化剂材料。如络合有Pd 金属离子的多孔催化剂材料,可以催化加氢反应和Heck偶联反应,与Pd-C催化剂相比具有较好的选择性;络合Sc离子后用十催化苯甲醛和(z )-1一苯基一1一三甲基硅氧丙烯进行的醛醇缩合反应,大大提高了产物顺反异构的比率〕。

4.3纳米反应器。聚合物胶束用作“纳米反应器”可得到单分散的金属粒子和半导体纳米粒子或纳米晶粒。Kane等利用嵌段共聚物聚丁二烯一聚环氧乙烷(PB-b-PEO)组装成的球形胶束作为纳米反应器,制备了金属纳米况,粒和PbS纳米簇。Underhill用这种方法制得了Fe203纳米晶性材料。

4.4光电磁材料。一些纳米结构聚合物具有特殊的光电磁性能,可作为光电磁材料应用。Power -Billard等〕对嵌段聚合物聚苯乙烯一聚茂铁二甲基硅烷(PS-b-PFDMS)和聚苯乙烯一聚茂铁甲基苯基硅烷(PS- b -PFMPS)胶束自组装体系进行了研究,由十茂金属的存在,体系具有一定的氧化还原性能,在半导体纳米结构和磁性陶瓷材料方面具有一定的应用价值。Thurn一Albrecht等制备的有序阵列杂化纳米高分子材料用作超高密度的磁性记录材料,信息存储量比目前的材料可提高300多倍。

4.5药物输运及环保材料。在水相中稳定存在的聚合物胶束,因对有机小分子有较强的吸附能力,可用十药物输运、环境净化及微量成分的富集等。朱蕙等运用荧光光谱研究了PS- co -PMA/PVPo非共价键胶束粒子对花的吸收释放行为,结果表明该胶束体系可以反复使

用。Liu等用二嵌段聚合物PCEMA-b-PAA制备的纳米球可用十捕获水中的有机污染物,或作为控制药物输运的载体。实验发现纳米球对芘有较高的吸收系数,当水相与纳米球的核具有相同的体积时,平均停留在纳米球核中的芘分子数是水相中的3.3*105倍。

4.6生物材料。与生物材料同属于软物质类别的合成高分子在智能性、自适应性和可修复性方面具有巨大的潜力。其关键在于对从分子到纳米、微米,再到宏观固体的层层有序结构的精确控制。聚异丁烯-甲基丙烯酸甲酯所形成的微相材料具有良好的强度和抗冲击性,可用于人体骨骼的移植。

4.7微电子器件。Ryan认为可控的相分离和表面聚集行为,导致嵌段共聚物能够组装形成层状、管状和螺旋状等特殊结构的形态。如果人们能够精确的控制位置、尺度和结构的均匀性,一种新的形成图案的工艺,可望在微电子领域取代传统的光刻技术,形成更小的电路或器件。

5 结束语

纳米改性聚合物材料的研究主要包括纳米粒子的表面改性和纳米粒子与聚合物材料的复合。纳米改性聚合物材料是一个新兴的多学科交叉的研究领域,制备出适合需要的高性能、高功能的复合材料是研究的关键。由于纳米结构高分子材料具有许多优异的性能, 展示出诱人及应用前景, 其发展趋势一方面是对纳米体系基本理论的研究, 探索新现象、新效应, 总结新规律, 这是纳米科技发展的基础; 另一方面是作为纳米材料工程的重要组成部分, 通过纳米合成, 纳米添

加发展新型的纳米材料, 并通过纳米添加对传统材料时行改性, 扩

大纳米材料的应用范围。今后几年的发展方向是使纳米粒子在聚合物

中分散均匀,相容性好;粒子尺寸及分布有良好的可控性、重现性;

经过改性后的聚合物复合材料在各方面性能上均有很大提高并赋予

更多的新功能。相信随着研究的不断深入,以上的问题都会迎刃而解。致谢:感谢湖南工程学院图书馆提供查找文献资料的场所,以便我能找

到优秀的文献,也感谢陈老师对我的悉心指导。

参考文献:

[1] 鲁德平,管蓉. 纳米技术在高分子材料中的应用[J].现代塑料加工与应

用,2001,13(5):55-57.

[2] 华道本,白如科. 纳米结构聚合物材料的制备和应用[J].功能高分子学

报,2002,15(4) :503-508.

[3] 佟永纯等. 界面聚合法制备PANI/Ti02纳米复合纤维材料[J].高等学校化学学

报,2008,2(29):415-418.

[4] 顾玲玲等. 碳纳米管/ 高分子复合材料的制备及应用研究进展[J].高分子材料

科学与工程,2009,25(11) :167-169.

[5] 高其标,申屠宝卿,翁志学. 纳米改性聚合物材料研究进展[J].化学生产与技

术,2001,8(6):22-26.

[6] 王凤平等. 磁性纳米高分子复合材料发展现状[J].化工文摘,2009,(5):52-54.

[7] 刘岚, 罗远芳, 贾德民. 橡胶纳米复合材料的制备与性能[J].特种橡胶制

品,2002,23(3):8-11.

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

纳米结构高分子材料综述

纳米结构高分子材料的制备、表征、应用前景 花生 (湖南工程学院化学化工学院湖南湘潭 411104) 摘要:纳米结构高分子材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料。本文综述了纳米结构高分子材料的结构、性能和表征技术,并对其 应用进行了讨论。 关键字:纳米结构高分子材料插层复合溶胶-凝胶纳米改性 Preparation ,Characterization, Application of Nano-structural Polymer Materials huasheng (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering,Xiangtan Hunan 411104,China ) Abstract:Nano-structural polymer materials are a class of composite materials which are Compound from polymer and nano-materials. This article introduces nano-structured polymer materials as follow: structure , properties , characterization techniques and its applications . Key word:Nano-structural polymer materials intercalation solution-gel modification of polymer 纳米结构聚合物材料由于具有独特的性能而在机械、光、电、 磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方 面具有广阔的应用前景,近年来掀起了对纳米结构聚合物材料研究的 热潮。各国学者分别在化学分子设计、结构分析、组装方法和应用等 方面进行了广泛的研究。我国的科学工作者也对其开展了许多卓有成 效的工作。关于纳米结构超薄膜的综述文献已有很多,本文主要就

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

功能高分子材料发展概述

功能高分子材料发展概述 1.速干衣 速干的由来:所谓速干实际上是由英文QUICK-DRY或DRY-EASY等类似单词直译过来的,而速干是指该面料的衣物与毛质或棉质的衣物相比时,在外界条件相同的情况下,更容易将水分挥发出去,干得更快。速干衣顾名思义就是干的比较快的衣服,它并不是把汗水吸收,而是将汗水迅速地转移到衣服的表面,通过空气流通将汗水蒸发,从而达到速干的目的,一般的速干衣的干燥速度比棉织物要快50%。 速干衣物最初的设计理念主要是 基于两个方面的考虑:A、内部因素, 由于从事野外活动的人比较容易出 汗。如果运动量大的时候,全身则会 大汗淋漓。如果此时你穿的是普通的 衣物,那么它们会紧紧贴在你的皮肤 上,特别难受。但速干衣物呢,它们 能使挥发的汗水迅速得以挥发到体 外;B、外部因素,野外行走时,早 晨的露珠或是毛毛细雨都会将你的 衣物打湿,如果裤腿紧贴在腿上,那 会带来不舒服的感觉。如果是速干衣 物,那么它们的速干性能及防泼水性 能就会使你免除这些不必要的麻烦。 速干的面料:市场上的速干衣物 品牌林林总总,所使用的面料也 是数不胜数,更是令人眼花缭 乱。其实常见的户外速干衣物所 采用的面料无非是以下几种常见 面料,COOLMAX这是一种最为常 见,使用范围相对较为广泛的一 种面料,由杜邦公司研制。该面 料的突出特点是具有很强的吸汗 排汗功能,这得归功于COOLMAX 的中空结构,但选购时必须看清 楚COOLMAX在面料中所含的比 例;THEMOLITE这种聚脂纤维的保 暖性能不错,属于中空涤纶纤维 系列,但缺点是排汗性能相对要 差一些;MONI-DRY属于吸湿速干 面料,有COLUMBIA公司研制出品。其主要特点是超强的挥发性和吸水性,比一般的棉布要强2--3倍,从而有效地保持穿着者的舒适干爽;CIBAULTRAPHIL这

纳米技术在高分子材料中的应用

2013年11月(下) [摘要]当材料尺寸无限减小,达到纳米级别时材料将显现出有独特的效应如:小尺寸效应、量子尺寸效应和表面效应等,这些效应与聚合 物密度小,耐腐蚀、易加工等优良特性有机结合,便形成了一类新型功能高分子材料。本文综述了纳米技术在塑料、橡胶、纤维三类高分子材料中的典型应用。 [关键词]纳米高分子材料;纳米塑料;纳米橡胶 纳米技术在高分子材料中的应用 丰艳兰 曾小飞 (华东交通大学理工学院,江西南昌330010) 纳米技术一词从提出到发展只有二十几年的时间,它的提出掀起了科技届的研究浪潮,有专家预言它必将引领新时代的科技变革,于是世界各国、地区都积极制定计划,加强投入,力争占领科技至高点。近年来,随着纳米技术的成熟与改善,国内外对于聚合物基纳米复合材料的研究已显现成效。高分子基纳米复合材料是各种纳米结构单元与有机高分子材料复合形成的一种新型材料,常见的纳米高分子基复合材料有:纳米复合塑料、纳米复合橡胶、纳米复合纤维。 1纳米复合塑料 纳米复合塑料是指塑料中分散了纳米级尺寸的超微细分散相,分散相为聚合物时,称为聚合物分子纳米复合塑料;分散相为无机填料时,称为无机填料纳米复合塑料,研究较多的是无机填料作为分散相。众所周知,塑料作为一种用途广泛的材料有着自身的缺点:如强度较差、不耐老化、透气性差等。发展纳米复合塑料可以很好地改善这些方面的性能。 1)无机纳米材料复合塑料能够很好地改善塑料的强度,起到增强增韧的效果。比如在尼龙塑料当中增加少量的纳米粘土生产的纳米复合塑料,既保持了产品的塑性,又提高了它的刚性和强度,更提高了它的抗弯能力,可以作为车体材料进行使用。 2)使用纳米添加剂改善的塑料制品可以大大提高抗老化能力,塑料的老化主要原因是光老化,将纳米TiO 2等粒子填充到塑料基体当中,纳米TiO 2可以很好地吸收紫外线,降低紫外线对塑料的破坏,提高塑料制品的抗老化能力。比如用添加0.1%~0.5%的纳米TiO 2制成的透明塑料包装材料包装食品,可以减少紫外线对食品营养成分的损失,保持食品的营养价值。 3)可以赋予塑料一些新的功能。比如在农膜的使用当中,有一种纳米转光膜,它就是利用纳米技术,在农膜塑料生产过程中添加纳米黏土,这种农膜被称为纳米转光膜,由于纳米黏土的存在,它能够很好地强化、放大有利于农作物生产的特征光,而过滤掉不利于农作物生长的光,从而大大促进农作物的光合作用,使农作物果实更大更有营养。 2纳米复合橡胶 纳米橡胶是指尺寸在1~100的纳米无机粒子分散在连续相橡胶基体中构成的复合材料。利用纳米粒子作为补强材料填充到橡胶中,可以很好地发挥纳米粉体的小尺寸效应、量子效应等表面效应,提高粉体与橡胶大分子间作用力的,弥补界面区化学作用力的缺乏,从而增强对橡胶的补强效果。赋予橡胶制品更高的性能,延长橡胶制品的使用寿命。现有研究表明,纳米黏土复合橡胶能够很好地提高材料的模量、硬度和强度,提高橡胶的气体阻隔性、耐油、阻燃性能。Si 3N 4陶瓷粉体分散在橡胶中,能很好地发挥Si 3N 4的高化学稳定性、优良的机械性能和介电性能。 3纳米复合纤维 纳米纤维有广义和狭义之分,狭义的纳米纤维指纤维直径为纳米量级的超细纤维,广义的纳米纤维还包括将纳米颗粒填充到普通纤维中对其进行改性的纤维。目前国内外开发的热点是后者;所采用纳米颗粒的性能不同,可开发各种不同的功能性纤维。 1)可用于开发抗菌纤维产品,将具有抗菌作用的成分:银离子、铜离子、锌离子等微粒离子及其化合物通过物理吸附离子交换等方法制成抗菌剂,填充至纤维材料中,金属离子在低浓度下可以破坏细菌的细胞膜或细胞原生质活性酶的活性,从而起到抗菌作用。这种抗菌纤维常用来制作手术服、护士服、手术巾等医疗用品,还可制造衣物、鞋袜等生活用品。 2)可用于开发紫外线防护纤维,将ZnO 、SiO 2等纳米粉体利用共混纺丝法或后整理法制得防紫外线纤维或织物。纳米材料可做紫外线屏蔽剂,主要是因为纳米粒子的尺寸比紫外线相当或更小,小尺寸效应导致其对紫外线的吸收更强。通过以上方法制得的紫外线防护纤维可广泛用于制造遮阳伞、遮阳冒、泳衣、防晒服等。 3)可用于开发远红外纤维。研究表明,将具有较高远红外发射率的陶瓷微粉加入到高分子聚合物中,经纺丝加工可制成远红外纳米纤维,其中的纳米粒子可以有效地吸收材料本身释放的远红外射线,从而达到促进血液循环,调节新陈代谢的保温保健功能。同样,由于纳米粒子可以很好地吸收电磁波,这种纤维材料还可以用于制作军用服装。 4)可用于开发超双疏织物。对织物进行纳米表面处理,使之形成纳米尺寸的凹凸结构,利用纳米结构的表面效应可以实现既疏水又疏油的超双疏性。 纳米技术作为一项高新技术在材料领域有着非常广阔的应用前景,而高分子材料作为发展最快、品种多样、应用广泛、价廉性优的一类材料,加强两者结合的有机结合,可实现开发高性能高分子材料的现实意义。 作者简介:丰艳兰,1982年生,女,江西丰城人,华东交通大学理工学院助教,本科学历,研究方向为新材料应用研究;曾小飞,1983年生,男,江西丰城人,华东交通大学理工学院助教,研究生学历,研究方向为材料科学的发展及应用。 [参考文献] [1]肖亚航.纳米塑料的性能及应用前景[J].黑龙江科技信息,2010. [2]施利毅.纳米材料在高性能橡胶开发中的应用进展[J].中国橡胶,2007.[3]白鸟世明.高功能纳米复合纤维[J].产业用纺织品,2009. 112

高分子纳米生物材料的发展现状及前景

高分子纳米生物材料的发展现状及前景 纳米材料研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。而纳米技术作为一项高新技术在高分子材料中有着非常广阔的应用前景,对开发具有特殊性能的高分子材料有着重要的实际意义 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1纳米科技与高分子材料的邂逅 高分子材料学的一个重要方面就是改变单一聚合物的凝聚态,或添加填料来使高分子材料使用性能大幅提升。而纳米微粒的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应能在声、光、电、磁、力学等物理特性方面呈现许多奇异的物理、化学性质。金属、无机非金属和聚合物的纳米粒、纳米丝、纳米薄膜、纳米块体以及由不同组元构成的纳米复合材料,可实现组元材料的优势互补或加强。通过微乳液聚合方法得到的纳米高分子材料具有巨大的比表面积,纳米粒子的特异性能使其在这一领域的发展过程中顺应高分子复合材料对高性能填料的需求,出现了一些普通微米级材料所不具有的新性质和新功能,纳米科技与高分子材料科学的交融互助对高分子材料科学突破传统理念发挥了重要作用。 高分子纳米复合材料的应用及前景 由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能(光、电、磁、敏感)等方面呈现出常规材料不具备的特性,故而有广阔的应用前景利用纳米粒子的催化特性,并用高聚物作为载体,既能发挥纳米粒子的高催化性和选择催化性,又能通过高聚物的稳定作用使之具有长效稳定性。 纳米粒子加入聚合物基体后,能够改善材料的力学性能。如纳米A-Al2O3/环氧树脂体系,粒径27nm,用量1%~5%(质量分数)时,玻璃化转变温度提高,模量达极大值,用量超过10%(质量分数)后,模量下降[79]。又如插层原位聚合制备的聚合物基有机)无机纳米级复合材料(聚酰胺/粘土纳米复合材料等)具有高强度、高模量、高热变形温度等优点,目前已有产品出现,用作自行车、汽车零部件等[55]。尤其引人注目的是高分子纳米复合材料在功能材料领域方面的应用,包括磁性、电学性质、光学性质、光电性质及敏感性质等方面。 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很高,用它制作磁记录材料可以提高记录密度,提高信噪比;一般要求与聚合物复合的纳米粒子,采用单磁畴针状微粒,且不能小于超顺磁性临界尺寸(10nm)。 利用纳米粒子的电学性质,可以制成导电涂料、导电胶等,例如用纳米银代替微米银制成导电胶,可以节省银的用量;还可以用纳米微粒制成绝缘糊、介电糊等。另外可用于静电屏蔽材料,日本松下公司应用纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化物粒子制成具有良好静电屏蔽的涂料,而且可以调节其颜色;在化纤制品中加入金属纳米粒子可以解决其静电问题,提高安全性。 利用复合体系的光学性能,可以制成如下材料:(1)优异的光吸收材料。例如在塑料制品表面上涂上一层含有吸收紫外线的纳米粒子的透明涂层,可以防止塑料

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

功能高分子材料

《功能高分子材料》复习 1、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 类型与作用机理:(1)离子交换树脂分为阳离子交换树脂和阴离子交换树脂两大类。能解离出阳离子、并能与外来阳离子进行交换的树脂被称作阳离子交换树脂;能解离出阴离子、并能与外来阴离子进行交换的树脂被称作阴离子交换树脂。 (2)按其物理结构的不同,可将离子交换树脂分为凝胶型、大孔型和载体型三类。 (3)氧化还原树脂。指带有能与周围活性物质进行电子交换、发生氧化还原反应的一类树脂。在交换过程中,树脂失去电子,由原来的还原形式转变为氧化形式,而周围的物质被还原。 (4)两性树脂。两性树脂中的两种功能基团是以共价键连接在树脂骨架上的,互相靠得较近,呈中和状态。但遇到溶液中的离子时,却能起交换作用。树脂使用后,只需大量的水淋洗即可再生,恢复到树脂原来的形式。 (5)热再生树脂。在同一树脂骨架中带有弱酸性和弱碱性离子交换基团。(6)螯合树脂。 用途:(1)水处理。水处理包括水质的软化、水的脱盐和高纯水的制备等。(2)冶金工业。离子交换是冶金工业的重要单元操作之一,离子交换树脂还可用于选矿。(3)原子能工业。利用离子交换树脂对核燃料进行分离、提纯、精制、回收等。离子交换树脂还是原子能工业废水去除放射性污染处理的主要方法。(4)海洋资源利用。利用离子交换树脂,可从许多海洋生物中提取碘、溴、镁等重要化工原料。(5)化学工业。离子交换树脂普遍用于多种无机、有机化合物的分离、提纯,浓缩和回收等。离子交换树脂用作化学反应催化剂,可大大提高催化效率。(6)食品工业。离子交换树脂在制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛的应用。(7)医药卫生。离子交换树脂在医药卫生事业中被大量应用。(8)环境保护。离子交换树脂在废水,废气的浓缩、处理、分离、回收及分析检测上都有重要应用。 2、按膜的功能简述高分子分离膜的分类及其分离机理。 (1)分离功能膜(包括气体分离膜、液体分离膜、离子交换膜、化学功能膜)

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。 纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征 XRD,ED,FT-IR, Raman,DLS 2 、成份分析 AAS,ICP-AES,XPS,EDS 3 、形貌表征 TEM,SEM,AFM 4 、性质表征-光、电、磁、热、力等 … UV-Vis,PL,Photocurrent

1. TEM TEM为透射电子显微镜,分辨率为~,放大倍数为几万~百万倍,用于观察超微结构,即小于微米、光学显微镜下无法看清的结构。TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。 The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1]. 一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

高分子纳米材料及其应用

高分子纳米材料(论文)题目:高分子纳米材料及其应用 化工学院学院高分子材料与工程专业 学号0502110202 学生姓名 指导教师 二〇〇一四年十一月

高分子纳米材料及其应用 摘要:高分子纳米材料是一门新兴并且发展迅速的一门科学。其具有很多独特 的性质,应用前景非常广阔。本文主要介绍了高分子材料的性质,同时介绍了高分子纳米复合材料常见的制备方法及其在各个领域的应用。 关键词:性质;纳米复合材料;制备方法;应用 Abstract: Polymer nano-materials is an emerging and rapidly developing research direction. It has many unique properties and broad application. This paper describes the properties of polymer materials, and also introduced preparation method of the polymer nano-composite materials .The paper also introduces its application in various fields. Key words:Properties; Nano-composite materials; Preparation method; Application 1 引言 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独 特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学 反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所 以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”。[1, 2] 纳米作为一个材料的衡量尺度,其大小为1 nm (纳米) =10~9 m (米),即十亿分之一米, 大约是10个原子的尺度。最初定义的纳米材料仅仅是指1~100 nm 尺度范围的纳米颗粒及 由他们构成的纳米固体和薄膜。目前,在广义上定义的纳米材料是指三维空间尺度里至少有 一维是纳米尺寸或者由它们作为结构基本单元的材料;根据定义按照空间维度可以将纳米材 料分为三类:(1) 维度为零的纳米材料,是指纳米颗粒、原子团簇等三维空间尺度均在纳米 尺寸的材料;(2) 维度为一的纳米材料,是指纳米线、纳米管等三维空间尺度中有两维是纳 米尺度的材料;(3) 维度为二的纳米材料,是指纳米膜、超晶格等三维空间尺度中仅有一维 是纳米级的材料;[3] 2 纳米材料的性质[4, 5] 物质的尺寸一旦与原子尺寸在同一量级时,其表面电子结构和晶体结构就会发生变化, 导致纳米材料会具备一些表面效应、小尺寸效应等优异特性。 (1)量子尺寸效应。量子尺寸效应又称量子限域效应,当粒子尺寸下降到一定程度时,金属 费米能级附近的电子能级由准连续能级变为离散能级,以及能隙变宽现象均为量子尺寸 效应。材料或物质的物理性质在很多方面都是由材料的电子结构决定的,当材料尺寸小

相关主题
文本预览
相关文档 最新文档