当前位置:文档之家› 第五章第七节 塑性变形压力的计算.ppt

第五章第七节 塑性变形压力的计算.ppt

第五章第七节 塑性变形压力的计算.ppt

第五章第七节 塑性变形压力的计算.ppt

材料力学练习题及答案-全

学年第二学期材料力学试题(A 卷) 一、 选择题(20分) 1、图示刚性梁AB 由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A 1和A 2,若载荷P 使刚梁平行下移,则其横截面面积( )。 A 、A 1〈A 2 B 、A 1 〉A 2 C 、A 1=A 2 D 、A 1、A 2为任意 2、建立圆轴的扭转应力公式τρ=M ρρ/I ρ时需考虑下列因素中的哪几个答:( ) (1) 扭矩M T 与剪应力τρ的关系M T =∫A τρρdA (2) 变形的几何关系(即变形协调条件) (3) 剪切虎克定律 (4) 极惯性矩的关系式I T =∫A ρ2dA A 、(1) B 、(1)(2) C 、(1)(2)(3) D 、全部 3、二向应力状态如图所示,其最大主应力σ1=( ) A 、σ B 、2σ C 、3σ D 、4σ 4、高度等于宽度两倍(h=2b)的矩形截面 题 号 一 二 三 四 五 六 总分 得 分 题一、3图 题一、4 题一、1图

梁,承受垂直方向的载荷,若仅将竖放截面改为平放截面,其它条件都不变,则梁的强度() A、提高到原来的2倍 B、提高到原来的4倍 C、降低到原来的1/2倍 D、降低到原来的1/4倍 5. 已知图示二梁的抗弯截面刚度EI相同,若二者自由端的挠度相等,则P1/P2=() A、2 B、4 C、8 题一、5图 D、16 二、作图示梁的剪力图、弯矩图。(15分) 二题图 三、如图所示直径为d的圆截面轴,其两端承受扭转力偶矩m的作用。设由实验测的轴表面上与轴线成450方向的正应变,试求力偶矩m之值、材料的弹性常数E、μ均为已知。(15分) 三题图

《土力学与地基基础》课程题库(第5章)地基变形计算

《土力学与地基基础》课程题库(第5章) 一、名词解释 土的压缩性、压缩系数、压缩模量、先期固结压力 二、单项选择题 1、在一般的压力作用下,土的压缩现象一般是指()。 A.固体颗粒被压缩 B.土中水被压缩 C.土中封闭的气体被压缩 D.孔隙中的水和气体被排出 2、土的压缩曲线(e-p曲线)比较陡,说明()。 A.土的压缩性比较大 B.土的压缩性比较小 C.土的相对密度比较大 D.土的相对密度比较小 3、在实际工程中,通常采用压力间隔由()时所得的压缩系数a1?2来评价土的压缩性。 A.1kPa增加到2kPa B.10kPa增加到20kPa C.100kPa增加到200kPa D.1000kPa增加到2000kPa 4、土的压缩性比较大,说明()。 A.土的压缩系数比较大 B.土的压缩系数比较小 C.土的相对密度比较大 D.土的相对密度比较小 5、土的压缩性比较大,说明()。 A.土的压缩模量比较大 B.土的压缩模量比较小

C.土的相对密度比较大 D.土的相对密度比较小 6、()在历史上曾经受过大于现有覆盖土重的先期固结压力。 A.正常固结土 B.超固结土 C.欠固结土 D.未固结土 7、超固结土的先期固结压力p c与现有覆盖土重p1的大小关系是()。 A.p c>p1 B.p cp1 B.p c

弹塑性力学计算题终稿

1试根据下标记号法和求和约定展开下列各式(式中i 、j = x 、y 、z ): ① ij ij σε ; ② j i x '; 2在物体内某点,确定其应力状态的一组应力分量为:x σ= 0,y σ= 0,z σ= 0,xy τ= 0,yz τ=3a , zx τ=4a ,知0a >。试求: 1 该点应力状态的主应力1σ、2σ和3σ; 2 主应力1σ的主方向;3主方向彼此正交; 解:由式(2—19)知,各应力不变量为 、, 代入式(2—18)得: 也即 (1) 因式分解得: (2)则求得三个主应力分别为。 设主应力与xyz 三坐标轴夹角的方向余弦为 、 、 。 将 及已知条件代入式(2—13)得:

(3) 由式(3)前两式分别得: (4) 将式(4)代入式(3)最后一式,可得0=0的恒等式。再由式(2—15)得: 则知 ;(5) 同理可求得主应力的方向余弦、、和主应力的方向余弦、、,并且考虑到同一个主应力方向可表示成两种形式,则得: 主方向为:;(6) 主方向为:;(7) 主方向为:;(8) 若取主方向的一组方向余弦为,主方向的一组方向余弦为 ,则由空间两直线垂直的条件知:

(9) 由此证得主方向与主方向彼此正交。同理可证得任意两主应力方向一定彼此正交。 3一矩形横截面柱体,如图所示,在柱体右侧面上作用着均布切向面力q,在柱体顶面作用 均布压力p。试选取: 3232 ?=++++ () y Ax Bx Cx Dx Ex 做应力函数。式中A、B、C、D、E为待定常数。试求: (1)上述?式是否能做应力函数; (2)若?可作为应力函数,确定出系数A、B、C、D、E。 (3)写出应力分量表达式。(不计柱体的体力) 解:据结构的特点和受力情况,可以假定纵向纤维互不挤压,即: ;由此可知应力函数可取为: (a) 将式(a)代入,可得: (b) 故有: ; (c) 则有: ; (d) 略去中的一次项和常数项后得:

弹片压力变形计公式

The formula between Shrapnel stress and deflection The deflection curve equation of Shrapnel is as following: ()x l EI F y x --=362 (1) The max deflection of the Shrapnel ’s endpoint A : EI F l y A 33-= (2) In which I stands for Z-axis moment of inertia of the Shrapnel ’s Section, 123222222b y y a dydZ dA I a a b b == =???-- (3) b l y Ea F A 33 4-= (4) To verify the correctness of the above formula . Assume : l=10mm ;a=2mm ;b=0.2mm ;E=210GP;F=11N Result:mm 95.013-=y A The figure is the finite element result:

The deflection curve equation of Shrapnel is as following: EI F y x 2d 2 -= (1) The max deflection of the Shrapnel’s endpoint A : EI F l y A 2d -= (2) In which I stands for Z-axis moment of inertia of the Shrapnel’s Section, 1232222 22 b y y a dydZ dA I a a b b ===???-- (3) b l y Ea F A 32d 12-= (4)

岩石力学计算题

第2章 岩石物理力学性质 例:某岩样试件,测得密度为1.9kg/cm3,比重为2.69,含水量为29%。试求该岩样的孔隙比、孔隙率、饱和度和干容量。 解:孔隙比:83.019 .1) 29.01(69.21) 1(=-+= -+?= γ ωεd v 孔隙度:%3.45%10083 .0183 .0%1001=?+=?+= v v n εε 饱和度:%9483 .0% 2969.2=?==εωG S r 干容重:)/(47.183 .0169.213cm g d =+=+?= εγ 例 某岩石通过三轴试验,求得其剪切强度c=10MPa ,υ=45°,试计算该岩石的单轴抗压强度和单轴抗拉强度。 解:由 例 大理岩的抗剪强度试验,当σ1n=6MPa, σ2n=10MPa ,τ1n=19.2MPa, τ2n=22MPa 。该岩石作三轴抗压强度试验时,当σa=0,则Rc=100MPa 。求侧压力 σa=6MPa 时,其三轴抗压强度等于多少? 解:(1)计算内摩擦角υ φστtg C n n 11+= (1) φστtg C n n 22+= (2) 联立求解: 021212219.2 0.735106 n n n n tg ττφφσσ--= ==?=-- (2)计算系数K : 7.335sin 135sin 1sin 1sin 10 =-+=-+=φφK (3)计算三轴抗压强度: 0100 3.7612.22C a S S K MPa σ=+=+?= 第3章 岩石本构关系与强度理论 例:已知岩石的应力状态如图,并已知岩石的内聚力为4MPa ,内摩擦角为35°。求: (1)各单元体莫尔应力圆,主应力大小和方向; (2)用莫尔库仑理论判断,岩石是否发生破坏

金属塑性变形理论习题集

《金属塑性变形理论》习题集张国滨张贵杰编 河北理工大学 金属材料与加工工程系 2005年10月

前言 前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考金属塑性加工专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为100,内容上分为两部分,即“塑性加工力学”(60学时)和“塑性加工金属学”(40学时)。为增强学生的社会适应能力和拓宽就业渠道,在加强基础、淡化专业的今天,本课程的学时数不但没有减少还略有增加(原88学时),更加突出了本课程对学科的发展以及在学生素质的培养中所占有的重要地位。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2005年10月

第一部分:塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余弦 31===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1

塑性变形计算题

五、计算题(共30分,每小题10分) 1. 已知某点的应力状态???? ??????-=σ600000200200ij 。(共18分) 1)求该点的主应力和主方向(10分);?2)通过计算判断该点是否处于平面应变状态(3分);?3)画出该点的应力莫尔圆和应变莫尔圆(5分)。 2. 如图所示,已知两端封闭且足够长的薄壁圆筒的半径为r ,壁厚为t,屈服应力为s σ。 该圆筒受内压p的作用而产生塑性变形,设材料各向同性且忽略其弹性变形,求:⑴ 内压p 的大小;⑵ 圆筒切向、轴向及径向应变增量的比值。(12分 ) 3. 已知半径为r ,壁厚为t 的薄壁圆筒,承受轴向拉伸和扭转联合作用而产生塑性变形, 设加载过程中保持σ=τ2,且材料的屈服应力为s σ。 1)求该圆筒屈服时的轴向载荷P 和扭矩M(6分);?2)设材料各向同性且忽略其弹性变形,求其切向、轴向及径向应变增量的比值(6分)。(共12分) 4. 已知薄壁管半径为r 壁厚为t,在扭矩M和轴向拉力P 的共同作用下产生塑性变形。 设材料的屈服应力为S σ(服从TRE SCA 屈服准则),且在数值上P=M,求: 1)拉力P 的大小; 2)该薄壁管上任意一点的三个主应力; 3)该薄壁管上任意一点径向、轴向及环向应变增量的比值。 5. 已知薄壁球壳半径为r,壁厚为t ,受内压p 作用。求使用MISES 屈服准则时的内 压p的值,并求此时经向、纬向及径向应变增量的比值(15分) 6. 如图所示,工件横截面尺寸为2a×h,长度足够长,在上下模具之间进行平面应变镦粗, 且工件和模具之间的摩擦满足常摩擦模型mK =τ。试用主应力法确定工件与模具接触面上压应力的分布情况,以及变形力P 的大小。

第五章结构力学的方法

第五章结构力学的方法 1、常用的计算模型与计算方法 (1)常用的计算模型 ①主动荷载模型:当地层较为软弱,或地层相对结构的刚度较小,不足以约束结构茂变形时,可以不考虑围岩对结构的弹性反力,称为主动荷载模型。 ②假定弹性反力模型:先假定弹性反力的作用范围和分布规律、然后再计算,得到结构的内力和变位,验证弹性反力图形分布范围的正确性。 ③计算弹性反力模型:将弹性反力作用范围内围岩对衬砌的连续约束离散为有限个作用在衬砌节点巨的弹性支承,而弹性支承的弹性特性即为所代表地层范围内围岩的弹性特性,根据结构变形计算弹性反力作用范围和大小的计算方法。 (2)与结构形式相适应的计算方法 ①矩形框架结构:多用于浅埋、明挖法施工的地下结构。 关于基底反力的分布规律通常可以有不同假定: a.当底面宽度较小、结构底板相对地层刚度较大时假设底板结构是刚性体,则基底反力的大小和分布即可根据静力平衡条件按直线分布假定求得(参见图5.2.1 ( b )。 b.当底面宽度较大、结构底板相对地层刚度较小时,底板的反力与地基变形的沉降量成正比。若用温克尔局部变形理论,可采用弹性支承法;若用共同变形理论可采用弹性地基上的闭合框架模型进行计算。此时假定地基为半无限弹性体,按弹性理论计算地基反力。 矩形框架结构是超静定结构,其内力解法较多,主要有力法和位移法,并由此法派生了许多方法如混合法、三弯矩法、挠角法。在不考虑线位移的影响时,则力矩分配法较为简便。由于施工方法的可能性与使用需要,矩形框架结构的内部常常设有梁、板和柱,将其分为多层多跨的形式,其内部结构的计算如同地面结构一样,只是要根据其与框架结构的连接方式(支承条件),选择相应的计算图式。 ②装配式衬砌 根据接头的刚度,常常将结构假定为整体结构或是多铰结构。根据结构周围的地层情况,可以采用不同的计算方法。松软含水地层中,隧道衬砌朝地层方向变形时,地层不会产生很大的弹性反力,可按自由变形圆环计算。若以地层的标准贯入度N来评价是否会对结构的变形产生约束作用时,当标准贯入度N>4时可以考虑弹性反力对衬砌结构变形的约束作用。此时可以用假定弹性反力图形或性约束法计算圆环内力。当N<2时,弹性反力几乎等于零,此时可以采用白由变形圆环的计算方法。 接头的刚度对内力有较大影响,但是由于影响因素复杂,与实际往往存在较大差距,采用整体式圆形衬砌训算方法是近似可行的。此外,计算表明,若将接头的位置设于弯矩较小处,接头刚度的变化对结构内力的影响不超过5%。 目前,对于圆形结构较为适用的方法有: a.按整体结构计算。对接头的刚度或计算弯矩进行修正;

金属塑性成形原理习题答案

《金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 =+ 5. 对应变张量,请写出其八面体线变与八面体切应变 的表达式。 =; =。

6.1864 年法国工程师屈雷斯加(H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为。 7. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处的最大切应力为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和三类。

第四章 塑性变形(含答案)

第四章塑性变形(含答案) 一、填空题(在空白处填上正确的内容) 1、晶体中能够产生滑移的晶面与晶向分别称为________和________,若晶体中这种晶面与晶向越多,则金属的塑性变形能力越________。 答案:滑移面、滑移方向、好(强) 2、金属的再结晶温度不仅与金属本身的________有关,还与变形度有关,这种变形度越大,则再结晶温度越________。 答案:熔点、低 3、晶体的一部分沿一定晶面和晶向相对于另一部分发生滑动位移的现象称为________。答案:滑移 4、由于________和________的影响,多晶体有比单晶体更高的塑性变形抗力。 答案:晶界、晶粒位向(晶粒取向各异) 5、生产中消除加工硬化的方法是________。 答案:再结晶退火 6、在生产实践中,经冷变形的金属进行再结晶退火后继续升高温度会发生________现象。答案:晶粒长大 7、金属塑性变形后其内部存在着残留内应力,其中________内应力是产生加工硬化的主要原因。 答案:第三类(超微观) 8、纯铜经几次冷拔后,若继续冷拔会容易断裂,为便于继续拉拔必须进行________。 答案:再结晶退火 9、金属热加工时产生的________现象随时被再结晶过程产生的软化所抵消,因而热加工带来的强化效果不显著。 答案:加工硬化 10、纯铜的熔点是1083℃,根据再结晶温度的计算方法,它的最低再结晶温度是________。答案: 269℃ 11、常温下,金属单晶体塑性变形方式有________和________两种。 答案:滑移、孪生 12、金属产生加工硬化后会使强度________,硬度________;塑性________,韧性________。答案:提高、提高、降低、降低 13、为了合理地利用纤维组织,正应力应________纤维方向,切应力应________纤维方向。答案:平行(于)、垂直(于) 14、金属单晶体塑性变形有________和________两种不同形式。 答案:滑移、孪生 15、经过塑性变形的金属,在随后的加热过程中,其组织、性能和内应力将发生一系列变化。大致可将这些变化分为________、________和________。 答案:回复、再结晶、晶粒长大 16、所谓冷加工是指金属在________以下进行的塑性变形。 答案:再结晶温度

机械设计基础试题(含答案)69634

二、填空题 16.槽轮机构的主要参数是和。 17.机械速度的波动可分为和两类。 18.轴向尺寸较大的回转件,应进行平衡,平衡时要选择个回转平面。19.当一对齿轮的材料、齿数比一定时,影响齿面接触强度的几何尺寸参数主要是 和。 20.直齿圆柱齿轮作接触强度计算时,取处的接触应力为计算依据,其载荷由 21 22 23 24 25 16 18 20. 24 26度为a 最短杆与最长杆长度之和(250+650)小于其余两杆长度之和(450+550),满足存在曲柄的必要条件,且最短杆为连架杆。故该铰链四杆机构为曲柄摇杆机构。 27.图2所示展开式二级斜齿圆柱齿轮传动,I轴为输入轴,已知小齿轮1的转向n1和齿轮1、2的轮齿旋向如图所示。为使中间轴II所受的轴向力可抵消一部分,试确定斜齿轮3的轮齿旋向,并在图上标出齿轮2、3 F t2、F t3和轴向力F a2、F a3的方向。(垂直纸面的力,向纸内画稍,向纸外画⊙)

27.答案参见第27题答案图斜齿轮3、4的轮齿旋向 Ft2、Fa2、Ft3、Fa3的方向 四、计算题 28.计算图 3所示机构的自由度(若图中含有复合铰链、局部自由度和虚约束等情况时,应具体指出)。 图3 解E 、F 处之一为虚约束 29. ,,分(1S 。 (2r 1 解((2(或30.已知图4所示轮系中各齿轮的齿数为:Z 1=20,Z 2=30,Z 3=80,Z 4=25,Z 5=50。求轮系的传动比i 15。 解该轮系为混合轮系。由齿轮1、2、3和转臂H 组成行星轮系,齿轮3固定,03=ω。 则420 80133113-=-=-=--=z z i H H H ωωωω

第五章塑性变形与回复再结晶--习题集

psi是一种压力单位,定义为英镑/平方英寸,145psi=1Mpa PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I 是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1 KSI = 1000 lb / in. 2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2 材料机械强度性能单位,要用到试验机来检测 Density of Slip Planes The planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur? (112) planar density: The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip. It will help to visualize these two planes as we calculate the atom density.

塑性变形计算题doc资料

五、计算题(共30分,每小题10分) 1. 已知某点的应力状态???? ??????-=σ600000200200ij 。(共18分) 1)求该点的主应力和主方向(10分); 2)通过计算判断该点是否处于平面应变状态(3分); 3)画出该点的应力莫尔圆和应变莫尔圆(5分)。 2. 如图所示,已知两端封闭且足够长的薄壁圆筒的半径为r ,壁厚为t ,屈服应力为s σ。 该圆筒受内压p 的作用而产生塑性变形,设材料各向同性且忽略其弹性变形,求: ⑴ 内压p 的大小; ⑵ 圆筒切向、轴向及径向应变增量的比值。(12分) 3. 已知半径为r ,壁厚为t 的薄壁圆筒,承受轴向拉伸和扭转联合作用而产生塑性变形, 设加载过程中保持σ=τ2,且材料的屈服应力为s σ。 1)求该圆筒屈服时的轴向载荷P 和扭矩M (6分); 2)设材料各向同性且忽略其弹性变形,求其切向、轴向及径向应变增量的比值(6分)。(共12分) 4. 已知薄壁管半径为r 壁厚为t ,在扭矩M 和轴向拉力P 的共同作用下产生塑性变形。 设材料的屈服应力为S σ(服从TRESCA 屈服准则),且在数值上P=M ,求: 1)拉力P 的大小; 2)该薄壁管上任意一点的三个主应力; 3)该薄壁管上任意一点径向、轴向及环向应变增量的比值。 5. 已知薄壁球壳半径为r ,壁厚为t ,受内压p 作用。求使用MISES 屈服准则时的内 压p 的值,并求此时经向、纬向及径向应变增量的比值(15分) 6. 如图所示,工件横截面尺寸为2a×h ,长度足够长,在上下模具之间进行平面应变镦 粗,且工件和模具之间的摩擦满足常摩擦模型mK =τ。试用主应力法确定工件与模具接触面上压应力的分布情况,以及变形力P 的大小。

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

计算题

2.1无力矩方程 应力 试用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。若壳体材料由20R[σ(b) =400Mpa,σ(s) =245MPa]改为16MnR[σ(b) =510MPa, σ(s) =345MPa]时,圆柱壳中的应力如何变化?为什么? 解:对于中面半径为R 的圆柱壳,第一曲率半径∞=1R ,第二曲率半径αtan 2x R =, 代 入 入 Laplace 方 程 , 可 得 周 向 应 力 pR t θσ= 据区域平衡方程,可得经向应力2pR t ?σ= 由①②两式知,圆柱壳体中在外载荷作用下所产生的周向应力和环向应力均与壳体材料力学性能无关。 2.3 短圆筒 临界压力 三个几何尺寸相同的承受周向外压的短圆筒,其材料分别为(MPa y 220=σ, 3.0,1025=?=μMPa E )、铝合金(3.0,107.0,1105=?==μσMPa E MPa y )和铜 (31.0,101.1,1005=?==μσMPa E MPa y ),试问哪一个圆筒的临界压力最大,为什么? 解:据 R.V.Southwell 提出的短圆筒临界压力简化计算 ……① 令,并取,可得与最小临界压力相应的波数 将②代入①,仍取 ,得到包含μ的短圆筒最小临界压力近似计算式 在几何尺寸相同的情况下,三个承受周向外压短圆筒的临界压力分别为

显然,。 另外,由于这三种短圆筒所用材料的μ值相差极小(约为3﹪),可近似认为相等。据①式, 承受周向外压的短圆筒,其临界压力p cr 与材料的弹性模量E 成正比,故 。 2.4临界压力 爆破压力 有一圆筒,其内径为1000mm ,壁厚为10mm ,长度为20m ,材料为20R(3.0,102,245,4005=?===μσσMPa E MPa MPa y b )。①在承受周向外压时,求其临界压力cr p 。②在承受内压力时,求其爆破压力b p ,并比较其结果。 解:承受周向压力时,内径为1000mm ,厚度为10mm 圆筒的临界长度 10001.17 1.1710001170010 cr D L D mm t ==??= 由于20cr L L m <=,所以该外压圆筒为长圆筒,其临界压力 33 5102.2 2.22100.441000cr t p E MPa D ???? ==???= ? ????? ……① 此时,临界应力 0.441000222210 t cr cr s p p D MPa t σσσ?= ==<≈? 即,①式是适用的。 该圆筒承受内压时,其爆破压力 2224510202ln 2452ln 7.77400100033s b s b p K MPa σσσ????= -=??-= ? ?? ??? 即,对于该圆筒而言,其爆破压力b p 远大于临界压力cr p 。

弹性变形与塑性变形

一、弹性与塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”与“塑性(P lasticity)”就是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形就是否可恢复 ........:弹性变形就是可以完全恢复的,即弹性变形过程就是一个可逆的过程;塑性变形则就是不可恢复的,塑性变形过程就是一个不可逆的过程。 2)应力与应变之间就是否一一对应 ..............:在弹性阶段,应力与应变之间存在一一对应的单值函数关系,而且通常还假设就是线性关系;在塑性阶段,应力与应变之间通常不存在一一对应的关系,而且就是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性与韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学就是固体力学的一个分支学科,它由弹性理论与塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

金属塑性加工试卷及标准答案

中南大学考试试卷 2001 —— 2002 学年第二学期时间110 分钟 金属塑性加工原理课程64 学时4 学分考试形式:闭卷 专业年级材料1999 级总分100 分,占总评成绩70% 一、名词解释(本题10分,每小题2分) 1.热效应 2.塑脆转变现象 3.动态再结晶 4.冷变形 5.附加应力 二.填空题(本题10分,每小题2分) 1.主变形图取决于______,与_______无关。 2.第二类再结晶图是_____,_______与__________的关系图。 3.第二类硬化曲线是金属变形过程中__________与__________之间的关系曲线。 4.保证液体润滑剂良好润滑性能的条件是_______,__________。 5.出现细晶超塑性的条件是_______,__________,__________。 三、判断题(本题10分,每小题2分) 1.金属材料冷变形的变形机构有滑移(),非晶机构(),孪生(),晶间滑动()。 2.塑性变形时,静水压力愈大,则金属的塑性愈高(),变形抗力愈低()。 3.金属的塑性是指金属变形的难易程度()。 4.为了获得平整的板材,冷轧时用凸辊型,热轧时用凹辊型()。 5.从金相照片上观察到的冷变形纤维组织,就是变形织构()。 四、问答题(本题40 分,每小题10 分) 1.分别画出挤压、平辊轧制、模锻这三种加工方法的变形力学图,并说明在生产中对于低塑性材料的开坯采用哪种方法为佳?为什么? 2.已知材料的真实应变曲线,A 为材料常数,n 为硬化指数。试问简单拉伸时材料出现细颈时的应变量为多少? 3.试比较金属材料在冷,热变形后所产生的纤维组织异同及消除措施? 4.以下两轧件在变形时轧件宽度方向哪一个均匀?随着加工的进行会出现什么现象?为什么?(箭头表示轧制方向)

建筑结构抗震计算题及例题答案

《建筑结构抗震》(清华大学出版社) 计算题及例题解答 1. 某两层房屋计算简图如图1所示。已知楼层集中质量为1100t m =,250t m =,每层层高均为h ,楼板平面内刚度无限大,沿某抗震主轴方向的层间剪切刚度为120000kN m k =, 210000kN m k =。求该结构体系在该抗震主轴方向的自振周期、振型和振型参与系数。 图1 动力模型计算简图 【解】 1m 100t =,2m 50t =,m /kN 20000k 1=,m /kN 10000k 2= (1)自振圆频率 ??? ?????+++???? ??-±++=ω)(22121122221122 1212 2 ,1m k 2m k k 2m k m k m k m k m k k 21 ??? ??????++?+??? ??-±++=)(50100002100100002000021001000050100001002000050100001001000020000212 ) (3002003002 1 ±+= =100400??? s /rad 101=ω∴,s /rad 202=ω∴ (2)自振周期

628.01014.322T 11=?=ωπ= 314.020 14.322T 22=?=ωπ= (3)振型 第一主振型:210000101001000020000k m k k X X 2 22 11211112=?-+=ω-+= 第二主振型:110000 201001000020000k m k k X X 2 22 21212122=?-+=ω-+= (4)振型参与系数 3 2 25011002501100X m X m X m X m X m X m 222 12221111221112 1i 21j i 2 1i 1i i 1=?+??+?=++= = γ∑∑== 3 1 15011001501100X m X m X m X m X m X m 2 2222222112222112 1i 22i i 2 1 i 2i i 2=-?+?-?+?=++= = γ∑∑==)()( 2. 某三层钢筋混凝土框架,如图2和图3所示。已知:设防烈度为8度,设计基本地震加速 度为0.20g ,设计地震分组为第一组,建造于1Ⅰ类场地,结构阻尼比0.05ξ=。各楼层层 高均为4m ,各层重力荷载代表值分别为12800kN G G ==,3520kN G =。各层抗侧刚度分别121400kN m k =,219200kN m k =,317600kN m k =,结构沿某抗震主轴方向的自振圆频率分别为18.92rad ω=、224.74rad ω=、338.71rad s ω=,相应的振型分别为 {}10.4450.9201.000X =?? ? ? ???、{}20.6540.5891.000X -=-?? ? ? ???、{}3 1.6541.2891.000X =-?? ? ? ??? 。试用振型分解反应谱法确定多遇地震作用下在该抗震主轴方向的框架层间地震剪力和层间位移角,并绘出层间地震剪力分布图。

金属塑性成型原理简答题计算题总结

1,应力张量可分解为哪两部分(请用张量表示出来)?各包含什么成分?物体在应力张量作用下发生变形,可分成哪两部分?他们又分别取决于什么? 右边的后一项表示球应力的状态,故称为应力球张量,其任何方向都是主方向,而且主应力相同,而任何切面上的剪应力均为零,所以球星应力张量它只引起物体的体积变化,而不能使物体发生形状变化 右边的后一项称为偏应力张量,在偏应力张量中不再包含有各项等应力的成分,因此偏应力张量不会引起物体的体积变化,再者,片应力张量中的剪应力成分与整个应力张量中的剪应力成分完全相同,因而应力偏张量使物体产生形状变化,而不能产生体积变化,材料的塑性变形就是由应力偏张量引起的 前者取决于应力张量中的球应力张量,而后者取决于偏应力张量:体积变化是弹性的,当偏应力张量满足一定的数量关系时,则物体发生塑性变形。 2.什么是热塑性变形?其软化过程有哪些?影响软化过程的主要因素有哪些? 从金属学角度看,在再结晶温度以上进行的塑性变形,称为热塑性变形或热塑性加工。圣餐实际中的热塑性加工,为了保证再结晶过程的顺利完成以及操作上的需要等,其变形温度远比再结晶温度高。 热塑性变形时的软化过程比较复杂,它与变形温度,应变速率,变形程度以及金属本身的性质等因素密切相关,按其性质可分为,动态回复,动态再结晶,静态回复,静态再结晶,亚动态再结晶。 动态回复和动态再结晶是在热塑性变形过程中发生的;而静态回复,静态再结晶和亚动态再结晶则是在热变形的间歇期间或热变形后利用金属的高温余热进行的。静态的和动态的回复或再结晶在机理上并没有本质的差别 3.两个屈服准则的最大区别在哪里?中间主应力α2对两个屈服准则的影响最大有多大?对于屈雷斯加屈服准则,及时中间应力α2在α1和α3之间任意变化,也不影响材料的屈服,但在密赛斯屈服准则中,中间应力是有影响的。 轴对称应力状态是,两个屈服准则是一致的;平面应变状态时两个屈服准则的差别最大,达15.5%;而在其余应力状态下,两个屈服准则的差别小雨15.5%,视中间的应力相对大小而定。 4.弹性本构方程和塑性本构方程有何区别?由此说明哪个求解更容易? 弹性本构方程:考虑了体积的变化,线性关系与变形历史无关,简单,唯一性 塑性本构方程:不考虑体积的变化,一般非线性。 5.应变全量εij与应变增量dεij的差别在哪里? 应变全量以变形开始的原始尺寸为度量基准,反应一次变形过程从起始到终了的总应变量 应变增量以变形过程中的某顺势状态为度量基准,反映该瞬时开始后一极短的时间的微分应变量。

地基变形计算技巧

应用进行地基变形计算的技巧 赵文廷 一、概述 国家标准《建筑地基基础设计规范》(—)规定:地基基础设计等级为甲级和乙级的建筑物应按地基变形设计,部分地基基础设计等级为丙级的建筑物应作地基变形验算。国家标准《岩土工程勘察规范》(—)及国家行业标准《高层建筑岩土工程勘察规范》(— —)规定:岩土工程勘察应预测和评价天然地基变形量。此外,对天然地基进行均匀性评价,也需要按地基变形计算方法确定钻孔的当量压缩模量。因此,地基变形计算是岩土工程师必作的主要工作之一。 地基变形计算是一项较烦索的工作,以往手工计算,不仅重复工作量大,而且很容易出错。如果采用电子表格进行地基变形计算,即可以提高计算效率,又可保证计算准性和精确性。下面介绍一下应用进行地基变形计算的一些技巧。 二、地基变形计算原理及要求 ㈠ 地基变形计算原理 地基变形计算方法有多种,国家现行标准《建筑地基基础设计规范》—(以下简称规范)规定:计算地基变形时,地基内的应力分布可采用各向同性均质线性变形体理论,其最终变形量可按下式计算: )(1110--=-='=∑i i i i n i si s s z z E p s s ααψψ 式中 s ——地基最终变形量(); s '——按分层总和法计算的地基变形量() ; s ψ——沉降计算经验系数,根据地基沉降观测资料及经验确定。无地区 经验时,可采用表的数值; n ——地基变形计算深度范围内所划分的土层数(图一); 图一:地基沉降计算简图 α 系数 曲线

0p ——对应于荷载效应准永久组合时,基础底面处的附加压力(); si E ——基础底面下第i 层土的压缩模量(),应取土层自重压力至土层自重 压力与附加压力之和压力段计算; i z 、1-i z ——基础底面至第i 土层、第1-i 土层底面的距离(); i α、1-i α——基础底面计算点至第i 土层、第1-i 土层底面范围内平均附加应力 系数,可按规范附录采用; s E ——地基变形计算深度范围内当量压缩模量(),应按下式计算: ∑∑= si i i s E A A E i A ——第i 土层附加应力系数沿土层厚度的积分值(),即: )(110---=i i i i i z z p A αα ∑i A ——地基变形计算深度范围内所有土层的附加应力系数沿土层厚度的 积分值之和(); ∑si i E A ——按分层总和法计算出的地基变形量(),即∑si i E A s '=。 表 沉降计算经验系数s ψ ㈡ 地基变形计算深度 规范规定:按“变形比法”确定地基变形计算深度n z (图一),应符合下式要求: n s '?≤∑='?n i i s 1

相关主题
文本预览
相关文档 最新文档