当前位置:文档之家› 哈工大材料力学大作业--matlab编程

哈工大材料力学大作业--matlab编程

哈工大材料力学大作业--matlab编程
哈工大材料力学大作业--matlab编程

H a r b i n I n s t i t u t e o f T e c h n o l o g y

材料力学上机作业

课程名称:材料力学

设计题目:应力状态分析

院系:机电学院

班级:

分析者:

学号:

指导教师:张桂莲

设计时间:2013年6月18日

哈尔滨工业大学

材料力学上机课设计说明书

一, 设计题目

题目7 应力状态分析 输入:

1. 平面应力状态输入:

x y xy σστ(,,);某截面方位角α

2. 空间应力状态输入:

,x y z xy yz zx σσστττ(,,,,)

输出: 1. 输出主应力123σσσ(,,)

2. 最大切应力(13

max 132

σσττ-==

3.

如为平面应力状态则需要输出方位角α斜截面上的应力αα

στ、及主方向角*σα

4. 画出应力圆示意图

二, 程序计算设计过程

1. 平面应力状态分析

对于任意平面应力状态,有

max min σσ

=

2x y σσ+±

主应力为:

1max 23min ,0,σσσσσ===

并且由 2tan 2xy

x y

στασσ=- 可求得主应力方向角

1

3

σσ

αα、。

对于任意一个方位角α,有:

=

cos 2sin 222

sin 2cos 22

x y

x y

xy x y

xy αασσσσσατα

σστατα

+++

+-=-

+

从而,输入任意角α,即可求得该截面的应力状态

ααστ、

并且

ααστ、都是关于α的函数,上式即为应力圆的参数方程,参数为α。

将α从0到pi 取一系列的值,则可以求出一系列的ααστ、,在坐标系中找

到对应点,连接即可作出应力圆。 2. 三向应力状态分析

解特征方程 32

1230I I I σσσ-+-=

即可求出主应力123σσσ、、 其中:

123||||||||

x y z

x yx y zy z xz xy y yz z zx x x yx zx xy y zy xz

yz z I I I σσσστστσττστστσστττστττσ=-+??????=++ ? ? ?

????????

?= ? ???

再由 13

max 132

σσττ-== 可求得最大切应力。

求解三向应力圆:

三个圆121323C 、C 、C 的圆心分别为:

231312122313,0,0,0222C C C σσσσσσ+++??????

? ? ???????

、、

半径非别为:

23

13

12

122313r =

,r =

,r =

2

2

2

σσσσσσ---

由此可以求出三个应力圆的方程,从而作出三向应力圆。

三, 程序代码

reg=input('选择应力状态方式(1或2):');%1表示平面应力状态,2表示空间应力状态

if reg==1 %选择平面应力状态分析

%输入已知量,应力单位为MPa ,转角单位为rad

cgmx=input('输入x轴方向正应力 cgmx=');

cgmy=input('输入y轴方向正应力 cgmy=');

txy=input('输入切应力 txy=');

%求解主应力、主方向及最大剪应力并输出

cgm1=(cgmx+cgmy)/2+(((cgmx-cgmy)/2)^2+txy^2)^(1/2);

cgm2=0;

cgm3=(cgmx+cgmy)/2-(((cgmx-cgmy)/2)^2+txy^2)^(1/2);

tm=(cgm1-cgm3)/2;

aerfc=(1/2)*atan(2*txy/(cgmx-cgmy));

cgmt=(cgmx+cgmy)/2+(cgmx-cgmy)*cos(2*aerfc)/2+txy*sin(2*aerfc);

if cgmt==cgm1;

aerfc1=aerfc;

aerfc3=aerfc+pi/2;

else

aerfc3=aerfc;

aerfc1=aerfc+pi/2;

end

display('主应力为:');

display(cgm1);

display(cgm2);

display(cgm3);

display('主方向为:');

display(aerfc1);

display(aerfc3);

display('最大切应力为:');

display(tm);

% 求解任意截面上的应力

aerfa=input('输入截面方位(以弧度表示) aerfa=');

cgmr=(cgmx+cgmy)/2+(cgmx-cgmy)*cos(2*aerfa)/2+txy*sin(2*aerfa);

tr=-(cgmx-cgmy)*sin(2*aerfa)/2+txy*cos(2*aerfa);

display('截面处应力状况:');

display('正应力:');

display(cgmr);

display('切应力:');

display(tr);

%求解应力圆并作图

i=0;

for theta=0:pi/200:pi

cgmt=(cgmx+cgmy)/2+(cgmx-cgmy)*cos(2*theta)/2+txy*sin(2*theta); tt=-(cgmx-cgmy)*sin(2*theta)/2+txy*cos(2*theta);

i=i+1;

CG(i)=cgmt;TT(i)=tt;

plot(CG,TT),axis equal;

title('应力圆');xlabel('正应力cgm/ MPa');ylabel('切应力t/MPa');grid on;

end

elseif reg==2 %选择三向应力状态分析

%输入已知量,应力单位为MPa,转角单位为rad

cgmx=input('输入x轴方向正应力 cgmx=');

cgmy=input('输入y轴方向正应力 cgmy=');

cgmz=input('输入y轴方向正应力 cgmz=');

txy=input('输入切应力 txy=');

tyz=input('输入切应力 tyz=');

tzx=input('输入切应力 tzx=');

%求解主应力及最大剪应力并输出

I1=cgmx+cgmy+cgmz;

I2=det([cgmx,txy;txy,cgmy])+det([cgmy,tyz;tyz,cgmz])+det([cgmz,tzx;tzx,c gmx]);

I3=det([cgmx,txy,tzx;txy,cgmy,tyz;tzx,tyz,cgmz]);

syms x;

ffp=x^3-I1*x^2+I2*x-I3;

cgm=solve(ffp);

cgm=eval(cgm);

cgm1=max(cgm(1),cgm(2));

cgm1=max(cgm1,cgm(3));

cgm3=min(cgm(1),cgm(2));

cgm3=min(cgm3,cgm(3));

cgm2=cgm(1)+cgm(2)+cgm(3)-cgm1-cgm3;

tm=(cgm1-cgm3)/2;

display('主应力为:');

display(cgm1);

display(cgm2);

display(cgm3);

display('最大切应力为:');

display(tm);

%求解应力圆并作图

i=0;

r12=(cgm1-cgm2)/2;

r23=(cgm2-cgm3)/2;

r13=(cgm1-cgm3)/2;

x12=(cgm1+cgm2)/2;

x23=(cgm2+cgm3)/2;

x13=(cgm1+cgm3)/2;

for theta=0:pi/200:2*pi X12=x12+r12*cos(theta); Y12=r12*sin(theta); X23=x23+r23*cos(theta); Y23=r23*sin(theta); X13=x13+r13*cos(theta); Y13=r13*sin(theta); i=i+1;

XX12(i)=X12;YY12(i)=Y12;XX23(i)=X23;YY23(i)=Y23;XX13(i)=X13;YY13(i)=Y13; plot(XX12,YY12,XX23,YY23,XX13,YY13),axis equal;

title('三向应力圆');xlabel('正应力cgm/ MPa');ylabel('切应力t/MPa');grid on;

text(x12,0,'C12');text(x23,0,'C23');text(x13,0,'C13'); end else

display('选择方式错误!'); end

四, 程序说明

程序运行后,首先给reg 变量赋值,选择应力状态方式,其中reg=1位平面应力状态,reg=2为三向应力状态。若输入reg 为其他值,则会显示“选择方式错误!”。 1.平面应力状态

若选择平面应力状态,则需要输入:正应力cgmx 、cgmy 以及切应力txy 。然后程序就会自动输出三个主应力:cgm1、cgm2、cgm3以及主应力方向角:aerfc1、aerfc3,和最大切应力:tm ,进一步输入任意截面方向角:aerfa ,即可求出该截面的正应力:cgmr ,切应力:tr 。同时作出应力圆的图像。 2.三向应力状态

若选择三向应力状态,则需要输入:正应力cgmx 、cgmy 、cgmz ,以及切应力txy 、tyz 、tzx 。然后程序会自动输出三个主应力:cgm1、cgm2、cgm3,以及最大切应力tm 。同时作出三向应力圆的图像。

五, 举例验证

例1.选择平面应力状态,已知=x y xy σστ40MPa,=-20MPa,=40MPa ,求主应力、主方向、最大切应力以及6

π

α=

斜截面上的应力,并作出应力圆。

例2.选择空间应力状态,已知:

=6a =20M =2=-4=0,=0x y z xy yz zx MPa σσστττ0MP ,Pa,0MPa,0MPa,MPa

求主应力及最大切应力,并作出应力圆。(材料力学第二单元课后第13题)

收获感悟:做这个材料大作业,虽然花费了很长时间,但是我感到收获很多。在此过程中,我对MATLAB从一无所知到熟练编辑,甚至接触到对界面编辑,这将成为我一生的财富,MATLAB也必将成为我日后工作的得力助手。我为能有一次这样锻炼的机会而感到幸运,希望以后还会更多这样的机会充实自己。对于应力分析部分,我想也会因为这次程序的编写而理解的更加深刻。不足之处在于因时间关系,没有完

全编出界面。所呈现的界面还不能进行运算。

界面相应程序见电子版。

哈工大材料力学性能大作业-铁碳马氏体的强化机制

铁碳马氏体的强化机制 摘要:钢中铁碳马氏体的最主要特性是高强度、高硬度,其硬度随碳含量的增加而升高。马氏体的强化机制是多种强化机制共同作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和综合强化等。本文介绍了铁碳马氏体及其金相组织和力学特性,着重深入分析马氏体的强化机制。 关键词:铁碳马氏体强化机制 1.马氏体的概念,组织及力学特性 1.1马氏体的概念 马氏体,也有称为麻田散铁,是纯金属或合金从某一固相转变成另一固相时的产物;在转变过程中,原子不扩散,化学成分不改变,但晶格发生变化,同时新旧相间维持一定的位向关系并且具有切变共格的特征。 马氏体最先在淬火钢中发现,是由奥氏体转变成的,是碳在α铁中的过饱和固溶体。以德国冶金学家阿道夫·马登斯(A.Martens)的名字命名;现在马氏体型相变的产物统称为“马氏体”。马氏体的开始和终止温度,分别称为M始点和M终点;钢中的马氏体在显微镜下常呈针状,并伴有未经转变的奥氏体(残留奥氏体);钢中的马氏体的硬度随碳量增加而增高;高碳钢的马氏体的硬度高而脆,而低碳钢的马氏体具有较高的韧性。 1.3马氏体的力学特性 铁碳马氏体最主要的性质就是高硬度、高强度,其硬度随碳含量的增加而增加。但是当碳含量达到6%时,淬火钢的硬度达到最大值,这是因为碳含量进一步提高,虽然马氏体的硬度会提高但是由于残余奥氏体量的增加,使钢的硬度反而下降。 2.铁碳马氏体的晶体学特性和金相形貌 钢经马氏体转变形成的产物。绝大多数工业用钢中马氏体属于铁碳马氏体,是碳在体心立方结构铁中的过饱和固溶体。 铁碳合金的奥氏体具有很宽的碳含量范围,所形成的马氏体在晶体学特性、亚结构和金相形貌方面差别很大。可以把铁碳马氏体按碳含量分为5个组别(见表)【1】。

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩1221241020 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。测定压缩 时铸铁的强度极限σb。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

材料力学上机大作业(哈工大)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 材料力学上机报告 课程名称:材料力学 设计题目:二向应力状态分析 院系:XXXXXX 班级:XXXXXX 设计者:XXXXXX 学号:XXXXXX 设计时间:2013.06.18 哈尔滨工业大学

二向应力状态分析 一:课题要求 1.输入:任意一点的应力状态:(σx、σy、τxy);某截面方位角α 2.输出:输入点的主应力(σ1、σ2、σ3),方位角α斜截面上的应力σ α、τα。 及主方向角α 3.画出应力圆示意图。 4.程序运行时为界面显示形式。 二:程序框图 三:所编程序 x=str2double(get(handles.edit1,'string')); y=str2double(get(handles.edit2,'string')); xy=str2double(get(handles.edit3,'string'));

M=str2double(get(handles.edit4,'string')); %将窗口输入值分别赋给x,y,xy,M b=sqrt((x/2-y/2)^2+xy^2);x1=(x+y)/2+b;x3=(x+y)/2-b; x2=0; if x1<0 x2=x1; x1=0; end t=(x1-x3)/2; M=M*pi/180; b1=(x+y)/2+(x-y)*cos(2*M)/2-xy*sin(2*M); b2=(x-y)*sin(2*M)/2+xy*cos(2*M); b3=90*atan((-2*xy)/(x+y))/pi;%计算输出的主切应力大小、方向和截面上的应力并赋值set(handles.edit5,'string',x1); set(handles.edit6,'string',x2); set(handles.edit7,'string',x3); set(handles.edit9,'string',t); set(handles.edit10,'string',b3); set(handles.edit11,'string',b1); set(handles.edit12,'string',b2);%在输出窗口显示主切应力大小、方向和截面上应力 b4=sqrt(b.^2+t.^2); v1=(x+y)/2-b4:0.001:(x+y)/2+b4; b11=sqrt(b4.^2-(v1-(x+y)/2).^2);b12=-sqrt(b4.^2-(v1-(x+y)/2).^2); %绘制应力圆上的点 axes(handles.axes1); %选择应力圆的输出地址 plot(v1,b11,v1,b12);grid on%绘制应力圆 以上程序为在matlab中使用GUI编程时的主代码,界面代码请见m文件。四:运行过程、结果和应力圆 在matlab中打开m文件,按F5使程序运行,显示窗口如下: 左侧为输入窗口,中间为相应的主切应力和斜截面应力的输出窗口,右侧为二向

哈工大材料力学试卷及答案-16页精选文档

一、填空题:请将正确答案写在划线内(每空1分,计16 分) ⒈ 工程构件正常工作的条件 是 ――――――――――――、、――――――――――――、―――――――――――――。 ⒉ 工程上将延伸律-------πδ的材料称为脆性材料。 ⒊ 矩形截面梁横截面上最大剪应力max τ出现在―――――――――――各点,其值 =τmax -------------。 4.平面弯曲梁的q 、F s 、M 微分关系的表达式分别为--------------、、-------------、、 5.四个常用的古典强度理论的表达式分别为 6.用主应力表示的广义虎克定律为 ――――――――――――――――――――― ; 二、单项选择题 ⒈ 没有明显屈服平台的塑性材料,其破坏应力取材料的――――――――――――。 ⑴ 比例极限p σ; ⑵ 名义屈服极限2.0σ; ⑶ 强度极限b σ; ⑷ 根据需要确定。 2. 矩形截面的核心形状为----------------------------------------------。 ⑴ 矩形; ⑵ 菱形; ⑶ 正方形; ⑷三角形。 3. 杆件的刚度是指――――――――――――――-。 ⑴ 杆件的软硬程度; ⑵ 杆件的承载能力; ⑶ 杆件对弯曲变形的抵抗能力; ⑷ 杆件对弹性变形的抵抗能力; 4. 图示二向应力单元体,如剪应力改变方向,则―――――――――――――。 ⑴ 主应力的大小和主平面的方位都将改变;

⑵ 主应力的大小和主平面的方位都不会改变; ⑶ 主应力的大小不变,主平面的方位改变; ⑷ 主应力的大小改变,主平面的方位不变。 5、图示拉杆头和拉杆的横截面均为圆形,拉杆头的剪切面积A =――――――――――――。 A.Dh π B.dh π C.4/2d π D.4/)(22d D -π 6、当系统的温度升高时,下列结构中的――――――――――不会产生温度应力. A B C D 三、简答题(每小题6分,计12分) 1.支承情况不 同的圆截面压杆如图所示,已知各杆的直径和材料均 相同且都为大柔度杆。①若只考虑纸平面内的稳定,问:那个杆的临界力最大?②若在保持截面的面积不变的条件下将各压杆的截面改成正方形, 试问各压杆的稳定性是提高了还是降了? 2.分别按第三和第四强度理论设计弯扭组合变形杆件的截面,按第三强度论设 计的杆件截面比按第四强度理论设计的截面那个大?为什麽? 四、(12分)某形截面的外伸梁如图所示,已知:mm 600=l ,截面对中性轴的惯性矩46mm 1073.5?=z I ,m m 721=y ,m m 382=y 。梁上的荷载 kN 9,kN 2421==F F 。 材料的许用拉应力[]a MP 30=t σ,许用压应力 []a MP 90=c σ,试校核梁的强度。 五、(14分)荷载F作用在梁AB 及CD 的联接处,试求每根梁在连接处所

哈工大—低碳钢拉伸试验

试验一 金属材料的拉伸与压缩试验 1.1概 述 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式: 图1.1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.3 0S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.65 0S =π0 45S d 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。 此外,试件的表面要求一定的光洁度。光洁度对屈服点有影响。因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。 1.2拉伸实验 一、实验目的: 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。 3. 确定铸铁在拉伸时的力学机械性能。 二、实验原理: 拉伸实验是测定材料力学性能最基本的实验之一。在单向拉伸时F —ΔL (力——变形)曲线的形式代表了不同材料的力学性能,利用: 0F S σ= 0L L ε?= 可得到σ—ε曲线关系。

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

2015哈工大材料力学试题

哈尔滨工业大学 2015 学年 春 季学期 材料力学期末 试 题

解:挠曲线近似微分方程 )(x M v EI ='' (a ) 3)()(kx x q x M -=='' 积分两次 A x k x M +-='4)(4 B Ax x k x M ++-=20 )(5 由边界条件 00 ==x M , 0==l x M 求出 0=B , 20 4 l k A = )(20 )(4 5x l x k x M --= (b) (10分) 式(a )代入式(b) )(20 4 5x l x k v EI -- ='' 积分两次 C x l x k v EI +-- =')2 6(202 46 D Cx x l x k EIv ++-- =)6 42(203 47 (c ) 由边界条件 00==x v , 0==l x v 得出 0=D , 140 6 kl C -= 代入(c )式 )67(8406347x l x l x EI k v +-- = (8分) EI kl A 1406 -=θ (2分)

1 (2分) (a) (2分) ]1 1 2 1 2 1 [ 1 ] 2 3 2 2 2 1 [ 4 ? ? + ? ? + ? ? ? ? =l l EA l l l EI EA l 12 55 =(4分) ] 2 2 2 1 [ 1 1 Fl l l EI F ? ? ? - = EA Fl 5 - =(3分) ,得F F X09 .1 11 12 1 = =(拉) (3分) 画出弯矩图、轴力图如下: (4分) (2分)

解:一次静不定问题 杆1、杆2均为二力杆 杆1受拉,强度问题; 杆2受压,稳定问题 由于是静不定结构,1、2均失效结构才失效 杆1失效时的极限轴力 9210202010230661=????==-A F s s σ KN (5分) 计算杆2的临界轴力 1574 3610213 =??==i l μλ 3.9910 2001020014.36 9 =???==p p E σπλ p λλ>,大柔度杆,用欧拉公式 4.811036414 .3157 1020014.3622 92222=?????==-A E F cr λπ KN (10分) 由AB 杆的平衡 0=∑A M 032sin 145sin =?-?+?F F F s cr αo 6.46)22 1122(3122=?+?+?=s cr F F F KN (5分)

哈尔滨工业大学 - 乐学网(哈工大交互式网络教学平台)

《计算机图形学》课程教学大纲 课程编号:S4030190 课程中文名称:计算机图形学 课程英文名称:Computer Graphics 总学时:30 讲课学时:20 实验学时:10 总学分:2 授课对象:计算机科学与技术专业、信息安全专业、生物信息技术专业 先修课程:高级语言程序设计,数据结构与算法 课程分类:专业课 开课单位:计算机科学与技术学院 一、课程教学目的 《计算机图形学》是计算机科学与技术专业本科教学中的一门重要的专业课。在计算机科学与技术专业的教学计划中占有重要地位和作用,其主要特点是理论与实践结合性强,是许多后续课程(如图像处理,模式识别,多媒体技术,虚拟现实,计算机视觉等)的基础课程,在CAD/CAM、(汽车、船舶、飞机的)外形设计、计算机动画、计算机艺术、过程控制、系统环境模拟、地理信息系统、科学计算的可视化等领域都有重要的应用。学习本课程旨在使学生掌握基本图形生成算法、图形变换与裁剪、真实感图形生成算法、计算机动画技术的基本原理,在此基础上,通过编写算法实现程序加深对图形学基本内容的理解,提高用理论指导实践的能力,为学生今后学习其他相关课程和从事计算机图形学及其应用方面的研究打下坚实基础。 二、教学内容及学时安排 1. 绪论(2学时) 计算机图形学的研究内容及其与相关学科的关系,计算机图形学的发展与应用 2. 图形输入输出设备(2学时) 交互式计算机图形处理系统的组成,图形输入设备,图形输出设备,图形显示原理,图形软件标准

3. 基本图形生成算法(4学时) 直线、圆弧的DDA生成算法、Bresenham生成算法,扫描线填充算法的基本原理,有序边表算法,边填充算法,种子填充算法的基本原理,简单的种子填充算法,扫描线种子填充算法 4. 图形变换与裁剪(6学时) 窗口视图变换,齐次坐标技术,二、三维图形几何变换,平行投影、透视投影变换,线段的Cohen-Sutherland裁剪、Liang-Basky裁剪算法,多边形的逐边裁剪、双边裁剪算法 5. 计算机动画(2学时) 传统动画与计算机动画,计算机动画中的常用技术,用flash制作简单的二维动画的方法 6. 高级计算机图形学快速浏览(4学时) 包括:自由曲线设计专题,几何造型与分形艺术专题,颜色科学及其应用专题,真实感图形显示专题 三、教学基本要求 1.课程基本要求 要求学生在学习完本课程以后,能对计算机图形学的研究内容及其应用方向有一个全面的认识和了解,了解计算机图形学的研究内容及其与相关学科的关系,了解计算机图形学在汽车、船舶、飞机的外形设计,以及计算机动画、计算机艺术、过程控制、系统环境模拟、虚拟现实等领域中的应用,掌握一些基本的图形生成算法(包括直线和圆弧的生成算法、区域填充算法、图形几何变换、投影变换,线段裁剪、多边形裁剪算法等)和图形显示原理,三维实体的基本表示方法、以及三维真实感图形显示的方法、常用的计算机动画技术等内容,为以后深入研究和从事相关领域的科研奠定基础。 2.实验基本要求 为了加深掌握常用的图形生成算法的基本原理,配合教学内容安排相应的实验,共10学时,以验证课堂的理论;进一步培养学生的动手能力、设计能力和解决问题的能力。 (1)编程实现一个基本图形生成算法(直线、圆弧生成算法,实区域填充算

哈工大材料力学上机实验资料报告材料

材料力学I上机实验 设计报告 院系:机电学院 班级: 1308*** 姓名: *** 学号: 11308***** 指导教师:桂莲

时间: 2015年6月

一、问题描述 1、应力状态分析 对于空间或者是平面应力状态的相关计算,如果采用人工计算的方式比较繁琐而且容易出错,对于这种简单的重复计算,编制相应的程序则可以大大提高计算准确度和人工计算强度。 对于平面应力状态,输入量应为(,,x y xy σστ),以及某截面的方位角α,其输出数据应为该单元体所受主应力(123,,σσσ),所受最大剪应力(13 max 132 σσττ-== ),以及方位角为α的斜截面上的应力(,ααστ)以及主方向 角σα,同时还要画出其应力圆示意图,以直观的显示其应力状态。 对于空间应力状态,输入量则应该为各应力(,,,,,x y z xy yz xz σσστττ),其输出数据应该为该单元体所受主应力(123,,σσσ),所受最大剪应力(13 max 132 σσττ-==),同时还要画出其应力圆示意图,以直观的显示其应力状 态。 这样,应力状态分析的基本任务就可以完成。 2、常用截面图形几何性质的分析 在生活中,有各种各样的几何形状,但是对于工程实际中经常用到的构件,其截面的几何形状则非常有限。对于不同的截面,其形心位置、对于形心轴的惯性矩也就有所不同,这样在进行如弯曲、扭转等的应力分析时就会到来不便,因此编制相应的程序来计算相关截面的几何性质也就具有了实际应用价值和可行性。 在这部分程序中,截面几何形状分为三角形、矩形、椭圆形、梯形、圆形、扇形等多种形式,对于不同的截面形状,输入量也就不同。例如,对于扇形应输入直径和圆心角(,d α);对于梯形则应输入上底、下底和高(,,a b h );对于椭圆形,则要输入长轴长和短轴长(,a b )等等,在此不一一列举,具体输入数据请参看程序运行。不过对于不同的截面,其输出的量都是相同的,即截面形心的

哈工大材料力学试卷及答案资料

一、填空题:请将正确答案写在划线内(每空1分,计16分)⒈ 工程构件正常工作的条件是 ――――――――――――、、――――――――――――、―――――――――――――。 ⒉ 工程上将延伸律------- δ的材料称为脆性材料。 ⒊ 矩形截面梁横截面上最大剪应力max τ出现在―――――――――――各点,其值=τmax -------------。 4.平面弯曲梁的q 、F s 、M 微分关系的表达式分别为--------------、、-------------、、 ----------------。 5.四个常用的古典强度理论的表达式分别为 ―――――――――――――――――、―――――――――――――――――――――、 ――――――――――――――、 ―――――――――――――――――――――――――――――――――。 6.用主应力表示的广义虎克定律为 ――――――――――――――――――――― ; ――――――――――――――――――――――;-―――――――――――――――――――――――。 二、单项选择题 ⒈ 没有明显屈服平台的塑性材料,其破坏应力取材料的――――――――――――。 ⑴ 比例极限p σ; ⑵ 名义屈服极限2.0σ; ⑶ 强度极限b σ; ⑷ 根据需要确定。 2. 矩形截面的核心形状为----------------------------------------------。 ⑴ 矩形; ⑵ 菱形; ⑶ 正方形; ⑷三角形。 3. 杆件的刚度是指――――――――――――――-。 ⑴ 杆件的软硬程度; ⑵ 杆件的承载能力; ⑶ 杆件对弯曲变形的抵抗能力; ⑷ 杆件对弹性变形的抵抗能力; 4. 图示二向应力单元体,如剪应力改变方向,则―――――――――――――。 ⑴ 主应力的大小和主平面的方位都将改变; ⑵ 主应力的大小和主平面的方位都不会改变; ⑶ 主应力的大小不变,主平面的方位改变; ⑷ 主应力的大小改变,主平面的方位不变。 5、图示拉杆头和拉杆的横截面均为圆形,拉杆头的剪切面积A =――――――――――――。 A.Dh π B.dh π C.4/2 d π D.4/)(2 2 d D -π 6、当系统的温度升高时,下列结构中的――――――――――不会产生温度应力. A B

哈工大材料力学试卷及答案

一、填空题:请将正确答案写在划线内(每空1分,计16分) ⒈ 工程构件正常工作的条件是 ――――――――――――、 、――――――――――――、―――――――――――――。 ⒉ 工程上将延伸律------- δ的材料称为脆性材料。 ⒊ 矩形截面梁横截面上最大剪应力max τ出现在―――――――――――各点,其值=τmax -------------。 4.平面弯曲梁的q 、F s 、M 微分关系的表达式分别为--------------、、-------------、、 ---------------- 。 5.四个常用的古典强度理论的表达式分别为 ――――――――――――――――― 、―――――――――――――――――――――、 ―――――――――――――― 、 ――――――――――――――――――――――――――――――――― 。 6.用主应力表示的广义虎克定律为 ――――――――――――――――――――― ; ―――――――――――――――――――――― ;-―――――――――――――――――――――――。 二、单项选择题 ⒈ 没有明显屈服平台的塑性材料,其破坏应力取材料的――――――――――――。 ⑴ 比例极限p σ; ⑵ 名义屈服极限2.0σ; ⑶ 强度极限b σ; ⑷ 根据需要确定。 2. 矩形截面的核心形状为----------------------------------------------。 ⑴ 矩形; ⑵ 菱形; ⑶ 正方形; ⑷三角形。 3. 杆件的刚度是指――――――――――――――-。 ⑴ 杆件的软硬程度; ⑵ 杆件的承载能力; ⑶ 杆件对弯曲变形的抵抗能力; ⑷ 杆件对弹性变形的抵抗能力; 4. 图示二向应力单元体,如剪应力改变方向,则―――――――――――――。 ⑴ 主应力的大小和主平面的方位都将改变; ⑵ 主应力的大小和主平面的方位都不会改变; ⑶ 主应力的大小不变,主平面的方位改变;

材料力学试题及答案哈尔滨工业大学

哈尔滨工业大学 学年第二学期材料力学试题(A 卷) 1、图示刚性梁AB 由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A 1和A 2,若载荷P 使刚梁平行下移,则其横截面面积( )。 A 、A 1〈A 2 B 、A 1 〉A 2 C 、A 1=A 2 D 、A 1、A 2为任意 2、建立圆周的扭转应力公式τρ=M ρρ/I ρ时需考虑下列因素中的哪几个?答:( ) (1)扭矩M T 与剪应力τρ的关系M T =∫A τρρ dA (2)变形的几何关系(即变形协调条件) (3)剪切虎克定律 (4)极惯性矩的关系式I T =∫A ρ2dA A 、(1) B 、(1)(2) C 、(1)(2)(3) D 、全部 3、二向应力状态如图所示,其最大主应力σ1=( ) A 、σ B 、2σ C 、3σ D 、4σ 4、高度等于宽度两倍(h=2b)的矩形截面梁,承受垂直方向的载荷,若 仅将竖放截面改为平放截面,其它条件都不变,则梁的强度( ) A 、提高到原来的2倍 B 、提高到原来的4倍 C 、降低到原来的1/2倍 D 、降低到原来的1/4倍 5. 已知图示二梁的抗弯截面刚度EI 相同,若二者自由端的挠度相等,则P 1/P 2= ( ) A 、2 B 、4 题一、3图 工程技术学院 _______________专业 班级 姓名____________ 学号 ---------------------------------------------------密 封 线 内 不 准 答 题------------------------------------------------------------- 题一、4题一、1图

哈尔滨工业大学深圳 模式识别 2017 考试重要知识点

λ(αi | ωj ) be the loss incurred for taking action αi when the state of nature is ωj. action αi assign the sample into any class- Conditional risk ∑ ===c j j j j i i x P x R 1)|()|()|(ωωαλαfor i = 1,…,a Select the action αi for which R(αi | x) is minimum R is minimum and R in this case is called the Bayes risk = best reasonable result that can be achieved! λij :loss incurred for deciding ωi when the true state of nature is ωj g i (x) = - R(αi | x) max. discriminant corresponds to min. risk g i (x) = P(ωi | x) max. discrimination corresponds to max. posterior g i (x) ≡ p(x | ωi ) P(ωi )g i (x) = ln p(x | ωi ) + ln P(ωi ) 问题由估计似然概率变为估计正态分布的参数问题 极大似然估计和贝叶斯估计结果接近相同,但方法概念不同

Please present the basic ideas of the maximum likelihood estimation method and Bayesian estimation method. When do these two methods have similar results ? 请描述最大似然估计方法和贝叶斯估计方法的基本概念。什么情况下两个方法有类似的结果? I.Maximum-likelihood view the parameters as quantities whose values are fixed but unknown. The best estimate of their value is defined to be the one that maximizes the probability of obtaining the samples actually observed. II.Bayesian methods view the parameters as random variables having some known prior distribution. Observation of the samples converts this to a posterior density, thereby revising our opinion about the true values of the parameters. III.Under the condition that the number of the training samples approaches to the infinity, the estimation of the mean obtained using Bayesian estimation method is almost identical to that obtained using the maximum likelihood estimation method.

材料力学拉伸压缩实验

材料力学拉伸压缩实验

拉伸实验 一.实验目的 1.学习液压万能实验机的构造原理,并进行操作练习。 2.确定低碳钢的流动极限(屈服极限)、强度极限、延伸率和面积收缩率。 3.确定铸铁的强度极限。 4.观察材料在拉伸过程中所表现的各种现象。 二.实验仪器 液压式万能实验机,游标卡尺。 三.实验原理 塑性材料和脆性材料在拉伸时的力学性能。(参考材料力学课本及其它相关书籍) 四.实验步骤 1.铸铁实验 (1) 用游标卡尺量取试件的直径。在试件上选取3个位置,每个位置互相垂 直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。 (2) 按下油泵"开",打开送油阀,使活动平台上升5-10mm后,按下油泵"停",关闭送油阀。

(8) 试件断裂后,立即按下油泵"停",关闭送油阀。 (9) 取下试件,将试件断裂后的两部分重新合拢,量取试件断裂后的标距长度和断口处的最小直径(互相垂直地测量2次)。 (10) 打开回油阀,将活动平台降到零点以后,关上回油阀。 五.实验记录 试件 低碳钢 铸铁 实验前 实验后 实验前 实验 后 形 状 (请描述断口) (请描 述断 口) 直径 (第1 次) 无 直径 (第2 次) 直径 (第3 次) 计算 长度 无 无 流动 荷载 无 极限 荷载 六.预习思考题 1) 为什么拉伸试件两端较粗,中间较细?中间和两端采用光滑曲线过渡,而不是直角连接?

2) 在试件夹紧后,能不能启动控制下夹头的电动机?为什么? 3) 在实验开始时,为什么先将活动平台升起一定高度? 4) 分析试件在拉伸状态下各点的主应力大小和方向。 5) 什么是屈服点?在拉伸实验中应该如何读取屈服荷载?如果没有明显的屈服点应该怎样处理? 6) 在低碳钢拉伸实验中,在试件中部作了一个5或10长的标距,这是用来干什么的?如果拉伸试件是矩形截面,其标距的长度是多少? 7) 如果拉伸试件是屈服失效,请用最大剪应力理论分析一下试件可能的断口形状。 8) 如果拉伸试件是断裂失效,请用最大拉应力理论分析一下试件可能的断口形状。 9) 什么是塑性材料?什么是脆性材料?(如果在你做的其它实验中也有此题,回答一次即可) 七.分析思考题 1) 拉伸实验中你是怎样测量试件直径的?为什么采用这种方法?你有其它方法测量直径吗?你的依据是什么? 2) 两种拉伸试件的断口形状分别是什么样的?怎样解释这种结果? 3) 通过拉伸实验你觉得低碳钢的塑性性能如何?你的依据是什么?铸铁呢? 4) 低碳钢的极限荷载是断裂时的荷载吗?在颈缩阶段,试件的应力是增大还是减小? 5) 在拉伸、压缩、扭转三个试验中,你已经做了那些实验?请通过这些实验,总结一下低碳钢的抗拉、抗压、抗扭强度的大小关系。同样地,请总结一下铸铁的抗拉、抗压、抗扭强度的大小关系。 6) 结合你已经做过的实验(拉伸、压缩、扭转),请对比低碳钢和铸铁的抗拉、抗压、抗扭强度的大小关系。举例说明其使用范围。 7) 结合你已经做过的实验(拉伸、压缩、扭转),请分析低碳钢的荷载-位移曲线有什么共同点?

哈工大材料力学2012年春期末考试试卷

1. 图示结构,受力如图,各段材料相同,均为优质碳钢,横梁AB 的抗 弯刚度为 EI ,AC 杆的抗拉压刚度为EA ,其中29l I A =。要求: (1) 求AC 杆的内力; (2) 若m 2=l ,梁AB 的惯性矩45m 104.3-?=I ,抗弯截面模量 34m 1009.3-?=W , 材料许用应力MPa 160][=σ。AC 杆横截面为正方形,其边长为b ,材料的210GPa =E ,MPa 280=p σ,MPa 306=s σ,MPa 461=a ,MPa 568.2=b ,规定的稳定安全系数2.1][=st n 。试确定许可载荷][q 。 2. 图示刚架,各段材料、直径、长度均相同,GPa 200=E ,mm 40=d , m 5.0=l 。 一总重量kN 10=W 的重物,在高度mm 300=h 处,自由下落冲击到刚度系数m /N 1026?=c 的弹簧上。要求: (1)求A 截面在垂直方向的冲击位移Ad ?;

(2)确定C 截面的转角Cd θ 。 3. 图示结构A 端固定,各段材料、直径相同,材料弹性模量GPa 200=E , 泊松 比3.0=ν,许用应力MPa 170][=σ,直径mm 10=d 。在外力F 的作用下,测得AB 段外表面一点k 处(见图)与母线成 45方向的线应变445109.3-?-= ε。要求: (1)试按第三强度理论校核结构的强度; (2)若材料的剪切弹性模量GPa 80=G ,许用单位扭转角m /3][ =?, 请校核结 构的刚度。

4.等截面均质圆杆,材料弹性模量E 、横向变形系数ν均已知。若在杆中央处作用分布集度为q 的均布压力,试证明该杆的轴向变形为q E l ν2-=?。 (10分)

最新哈工大材料力学上机大作业(压杆稳定)

哈工大材料力学上机大作业(压杆稳定)

材料力学上机大作业 压杆稳定分析 作者班号: 1008102 作者学号: 作者姓名: 指导教师: 完成时间:

1、题目: 压杆稳定分析 输入: 1.截面参数输入 圆截面—d 圆环截面—D,d 矩形截面—h,b 工字型截面—对形心轴的惯性矩I y、I z及截面面积A 2.相当长度系数、长度l 3.材料参数:E、,σp、σs;线性经验公式系数a、b 4.工作压力P及稳定安全系数n w 输出: 1.绘制临界应力总图(图示) 2.临界压力P cr或临界应力σcr 3.稳定安全校核结果 2、程序及截图 Private Sub Command1_Click() Form1.Hide Form2.Show End Sub Private Sub Command2_Click() Form1.Hide Form3.Show End Sub Private Sub Command3_Click() Form1.Hide Form4.Show End Sub Private Sub Command4_Click() Form1.Hide Form4.Show

End Sub Private Sub Command1_Click() Dim d, u, l, e, tp, ts, a, b, p, n, t As Double Dim i, s As Double Dim r, rp, rs As Double Const pi = 3.1415 d = Text1.Text u = Text2.Text l = Text3.Text e = Text4.Text tp = Text5.Text ts = Text6.Text a = Text7.Text b = Text8.Text p = Text9.Text n = Text10.Text i = pi * d ^ 4 / 64 s = pi * d * d / 4 r = 1000 * u * l / Sqr(i / s) rp = pi * Sqr(e / tp) rs = (a - ts) / b If r >= rp Then t = pi ^ 2 * e / (r ^ 2 * n) Text11.Text = t If p / s <= t Then Text12.Text = "满足稳定条件" Else Text12.Text = "不满足稳定条件" End If ElseIf r >= rs Then t = (a - b * r) / n Text11.Text = t If p / s <= t Then Text12.Text = "满足稳定条件" Else Text12.Text = "不满足稳定条件" End If Else Text11.Text = "" Text12.Text = "这是一个强度问题" End If Dim y As Double Picture1.Cls Picture1.ScaleMode = 0 Picture1.Scale (-10, 300)-(200, -10) Picture1.DrawWidth = 1 Picture1.Line (0, 0)-(200, 0), RGB(0, 0, 255) Picture1.Line (0, 0)-(0, 300), RGB(0, 0, 255) For x = 0 To rs Step 0.01 y = ts Picture1.PSet (x, y), RGB(255, 0, 0) Next x For x = rs To rp Step 0.01 y = a - b * x Picture1.PSet (x, y), RGB(255, 0, 0) Next x For x = rp To 300 Step 0.01 y = pi ^ 2 * e / x ^ 2 Picture1.PSet (x, y), RGB(255, 0, 0) Next x End Sub

相关主题
文本预览
相关文档 最新文档