当前位置:文档之家› 自锚式悬索桥施工控制

自锚式悬索桥施工控制

自锚式悬索桥施工控制
自锚式悬索桥施工控制

大跨度悬索桥主缆控制

大跨度悬索桥主缆的受力图式可简化为受沿索长分布的均布荷载和吊索处的集中荷载作用的柔性索,主缆的计算即可转化为求理想索结构的线形和内力问题。主缆线形是以吊点为分段点的分段悬链线,通过分段悬链线解析计算理论可以求得主缆在荷载作用下的线形和内力。

在对设计成桥状态精确计算的前提下,为了使竣工后的主缆线形符合设计要求,还需要在施工过程中对主缆的线形进行控制。其方法是事先计算出各施工阶段的超前控制值,并在施工过程中不断进行跟踪分析和调整。大跨度悬索桥的结构线形主要受主缆线形和吊索长度的控制,主缆一旦架设完成,其线形将不能进行调整;吊索长度根据主缆完成线形提出,一般也不预留太大的调整长度。因此主缆施工阶段的控制是整个施工过程中最重要的部分。精确计算出主缆初始安装位置和吊索制作长度等超前控制值非常关键,是保证悬索桥成桥后几何线形满足设计的必要条件。

5.1主缆系统施工控制计算的基本原理

5.1.1成桥主缆线形计算原理

悬索桥的成桥主缆线形是主缆设计的目标和基础,主缆索股下料长度计算、索股架设线形计算、索鞍的预偏量计算、空缆索夹安装位置计算、吊索的下料长度计算等均与成桥主缆线形有关,因此精确地计算成桥主缆线形是完成施工控制的前提。

悬索桥的成桥理想设计状态为:

①恒载状态下中跨的线形满足设计矢跨比;

②索塔塔顶在恒载状态下没有偏位,塔根不存在弯矩;

③恒载由主缆承担,加劲梁在恒载状态下不产生弯矩。

其中,状态③通常不易达到,跟主梁施工方法、顺序有关。对于大跨度悬索桥,事先只知道设计成桥状态结构的控制性几何形状参数,如主缆理论顶点、垂度、主缆跨径中点位置、桥面竖曲线、索夹水平位置、鞍座中心位置等,而主缆的精确线形和结构内力都是未知的,无法通过倒拆法精确计算架设参数。

根据设计给定的控制性几何形状参数,如给定主缆理论顶点和锚固点,则相当于悬索的几何约束边界条件已知。通过下列条件可确定主缆的成桥线形:①主缆上吊点的水平位置已知;②索夹上作用的集中荷载已知(吊索内力可以通过基于有限位移理论的非线性有限元法求得):③主缆通过给定点,如跨中的标高己知;④相邻两跨主缆在塔顶或索鞍处的平衡条件已知。根据3.2节所述的分段悬链线理论,对于具有给定的几何边界条件、分段点几何相容条件、分段点力学平衡条件及①、③两个已知条件,可确定主跨主缆的线形及内力。对于锚跨,由于缺少条件③,可通过已计算出的边跨主缆的内力按条件④确定该跨主缆的某端水平分力或张力,从而确定锚跨的主缆线形及内力。

5.1.2空缆线形及预偏量计算原理

空缆线形是主缆架设的依据,而且也是施工控制中唯一能控制的缆形,一旦主缆架设完成,就无法对主缆线形进行调整。因此,精确计算空缆线形十分重要。空缆状态下,主缆仅承受沿索长方向均布的自重荷载,几何线形可视为悬链线。依据无应力长度不变的原理,利用本文第三章的解析计算方法,可精确计算空缆线形。

索鞍预偏量是指以满足成桥状态的各跨主缆无应力索长空挂于索鞍上,使左右空索水平拉力相等时的鞍座移动量。索鞍预偏量设置的目的是为了在加劲梁吊装过程中,分阶段将主索鞍由边跨向跨中顶推,以平衡两侧主缆对索塔的水平分力,减小塔身弯曲,确保塔身应力不超过容许值,最终使塔身恢复到竖直状态。空缆线形是指具有初始索鞍预偏量下的线形,空缆线形和索鞍位置计算密切相关,索鞍预偏量计算是空缆状态计算中的一个内容。空缆线形和索鞍预偏量的计算采用以下变形相容条件及受力平衡条件:

(1)锚跨两锚固点的位置保持不变;

(2)在主缆自重作用下,中跨与边跨的索力水平分力在主索鞍处相等,在散索鞍两端的主缆轴力对转动中心的力矩相等:

(3)锚固点与散索鞍中心、散索鞍中心与主索鞍中心,两主索鞍中心之间(即各跨间)的主缆无应力长度等于相同温度时成桥状态的无应力长度。

空缆线形与索鞍预偏量计算时,己知主缆两端点坐标和各索段无应力长度等。首先假定空缆索端水平力和初始索鞍预偏量,计算其空缆线形及索端力,检验各鞍座两侧的索端力是否满足鞍座平衡条件,若不满足,则按影响矩阵法修正各鞍座预偏量重新迭代计算,直到满足平衡条件。若满足,计算此时主缆无应力长度,判断是否与己知值相符,如相符就说明假定的索端水平力正确,否则要修正假定值,通过解析计算方法迭代计算,应用拟牛顿迭代法求解非线性方程组,直到二者误差满足精度要求,最终将获得精确的空缆线形和各鞍座预偏量。

5.2主缆系统施工控制计算内容及方法

5.2.1主缆索股无应力下料长度计算

1.计算方法

无应力长度是指构件在标准温度下,截面应力为零时的长度;而有应力长度是指构件截面应力一定时,各项变形发生后所具有的表现长度。可见,无应力长度是一个常量,一经确定,无论作用其上的荷载组合是否发生变化,其本身的长度均保持恒定不变。

主缆索股无应力下料长度的精确计算是悬索桥主缆线形控制的最基本条件。主缆索股计算无应力长度是指索股两端前锚面间无应力状态的长度。中心索股计算无应力长度应是索股跨间无应力索长与绕索鞍无应力索长之和。计算无应力索长再考虑主缆两端伸入锚固长度和误差预留量后即为主缆中心索股无应力下料长度。

由于组成主缆的索股相互平行,所以可近似地认为:在中边跨处索股曲线和几何弦长组成的闭合图形与主缆中心线和其弦长围成的闭合图形几何相似144]。故对于偏离主缆中心的索股,其无应力长度与主缆中心索股无应力长度的比值等于相应的弦长之比。

索股无应力长度的计算采用先分段再求和的过程进行,即将主缆索股按锚跨、散索鞍、边跨、主索鞍、及中跨索段分别计算,然后将各索段的无应力长度相加得到全桥每根索股的计算无应力长度。索股长度计算分段如图5.4所示。

A B

C

D E F G

H

I

J

图5.4索股长度计算分段示意图

(l)中、边跨索鞍切点间的无应力索长计算,可依据分段悬链线理论迭代计算方法求得;

(2)主索鞍、散索鞍处索股无应力索长,可根据索鞍切点的计算位置,将绕索鞍的索股有应力长度,扣除此段索股的应力伸长量求得;

(3)锚跨空间索段是指从索股锚固点到索股在散索鞍上的竖弯切点间的索段。这一区间的主缆索股是离散的空间索股,每层索股与散索鞍切点都不一样,长度计算比较复杂。除需要知道索股在锚固点和起弯面的坐标外,还需要知道索股索力的分布,假设成桥时锚跨各索股在与散索鞍相切处的索力相等,利用边跨主缆的索力和散索鞍的平衡条件对锚跨进行计算,求得无应力长度。锚跨侧散索鞍鞍座内的索股是复杂的空间曲线,只能对其细分,计算每个微元的相关值,再累加求和。

5.2.2基准索股线形与预偏量计算

当采用PPWS 法时,主缆架设是以索

股为单位进行的,架设的第一根索股称为

基准索股。基准索股是根据绝对垂度(也就是标高)进行调整的,而其它索股则根据相

对于基准索股的高差进行相对垂度调整,

可直接用来指导施工的应是基准索股的空

缆状态。因此,在悬索桥结构线形的控制中,以基准索股的准确计算和测量控制最为重要。

目前,文献中所指的空缆状态一般是主缆架设完成且没有其它荷载作用时主缆的几何和力学状态,也就是成缆空缆状态,然后由这种空缆状态根据几何关系反算出基准索股控制点的标高等参数。实际上,这只是一种的近似方法,存在一定误差。首先,在索股架设过程中,索塔会产生压缩变形;其次,在这一过程中,后架设的索股在已架设的索一塔体系中对索塔产生新的影响,塔顶还会产生水平变位。因此,基准索股的线形和预偏量计算,应按照5.1.2中的空缆线形及预偏量计算原理计算,以获得准确的结果。

基准索股架设时的平衡条件有两种(如图 5.6),它们是计算预偏量的依据,不同的平衡条件,计算出的预偏量将会不同。第一种条件是要求索股在鞍槽内不滑动,即要求主缆在主索鞍两端索力相等,每束索股在散索鞍两端索力相等;第二种条件是要求索鞍不滑动或转动,即要求主索鞍两端主缆索力的水平分力相等,散索鞍两端主缆沿索鞍支承滑移面的分力相等。第一种条件降低了施工精度,适用于小跨径悬索桥,大跨径悬索桥基准索股架设线形计算目前大多采用第二种平衡条件。

5.2.3空缆线形与预偏量计算

用解析迭代法计算出成桥状态的主缆几何形态及内力,再根据其结果迭代计算出空缆线形及塔顶主缆的水平力场,基准索股的调索,就是在计算得到的理论线形的基础上,测量结构各设计参数的实际值,并且考虑温度对索股的影响,把基准索股线形调整到或尽可能逼近理论计算的线形,以使结构的最终状态符合设计的意图。根据工程实际,把空缆分几个节段,边跨及中跨,上游和下游分别考虑。悬索桥的主缆在空缆状态下,主缆仅承受自身重量,呈悬链线形状,其计算模型见图4一3。

实际施工时,如果调整量是标高或拉力,是无法实施调索操作的。施工中最直观的就是索股的切向张拉量,因此,把基准索股的调整确定为以理论线形为目标,以切向张拉量为调整标准的施调计算。

图4一3空缆计算模型

己知待调索股两端坐标A(0,0),B (h ,l),及索股自重集度q 。坐标系如图4一3所示。由空缆线形的分析结果可知其所受的水平力Ho 、理想线形(垂度f) yo 。由于调整量以切向张拉量为准,对温度的修正也以长度修正来代替垂度修正,使施工操作更方便,计算也较简洁。根据实验结果,索股的线膨胀系数为51.210α-=?。

在调索之前,对索股的纵向温度及上下表面温度,进行连续测量,当索股纵向温差△T ≤2℃,索股上下缘的温差△T ≤1℃时,才能调整基准索股。索股的温度影响值以各测点的平均值为准。

理想线形状态下的缆长

[]0111sinh()sinh()s cl c c c

=

+-

式中 ()()11120cosh ,sin ,2sinh /22c q hc cl c c c H cl c -??=-=-=- ? ???

(4一4)

温度影响量为: 0*T S α?

则经过温度修正的理想状态索长为

000*S S T S α'=-?

现场实测结构状态,可得塔顶的水平位移及跨中点C 的里程及标高,根据塔顶的水平位移修正A 、B 两点的距离l ,再由以上的实测值用如下迭代的方法际状态下的水平力H 及实际的缆长S:

(l)根据A 、B 点间的实际距离l ,计算(4一4)式中的cl 及c2;

(2)由()121cosh y cx c c c

=++ 计算C 点的垂度,进而由A 点的标高和C 点的y 值计算出C 点的标高;

(3)比较c 点的计算标高和实测标高,以确定是否要调整H 的值。若不相等,调整H ,重新计算参数c 和cl 、2c ,再进行第二步的计算。如此循环,直至C

点的计算标高和实测标高相等。

(4)以此C 点的H 及参数c 、c1和c2,由(4一3)式计算出实际状态缆长S ,则在本次测量基础上的索股调整量为

0L S S '?=-

以此计算值来调整索股。调索采用先中跨,后边跨,上下游同时进行的方式。如此循环,直至实测线形与理论线形符合。

此迭代计算用excel 表格完成,易于实现,且数据直观,便于控制。实践证明方法简便,能满足设计精度的要求。

实测的索股标高,根据无应力长度相等的原理,由解状态即温度为20度塔顶竖直无偏位时的跨中垂度。据此可以判断出实测状态下索股的真实状态。根据计算,理想状态下空缆线形为中跨和边跨垂度。稳定观测判断,索股线形稳定,可以架设其它非基准索股。在架设非基准索股时,其线形调整是根据其与基准索股若即若离的原则,采用相对高度决定调整量的。要保证索股与索股之间的状态为若即若离,具体测量方法如图4一6所示,用一把直钢尺和水平尺量出被调整索股与基准索股的相对标高,重复量测三次取平均值作为最后的测量值。

其中:L1,L2分别为一脚杆,其上标有尺寸

刻划:

L3为装有水平管的水平尺:

L1,L2能在其上上下下移动,亦可水

平移动。准索股

基准索股

L3L2L1

b

a 水准管

图4一4非基准索股架设测量方法

索股架设及紧缆完成后,对主缆的线形在温度稳定时进行了测量。利用无应力长度相等的原理计算出理想状态的跨中垂度。

3.施工控制

针对主缆钢丝索股弹性模量和加劲梁自重恒载引起的主缆无应力长度误差,施工时应采取以下控制措施:

(l)由于主缆成桥真实的弹性模量不易获得,且由此引起的误差是不可调整的,建议严格根据相关规范在主缆架设前做试验确定主缆钢丝弹性模量、主缆索股整体弹性模量、热膨胀系数等辅助试验,以提前修正设计参数,并参照己建成桥梁的参数情况或者施工架设时对主缆进行预抬高,避免架设线形偏低(要求是宁高勿低)。施工时必须注意主缆的架设质量,使丝股钢丝保持平顺,不能交叉、扭转。

(2)在主缆架设前,如果对加劲梁、索夹等构件进行了称重试验,恒载引起的各跨主缆无应力长度误差就可以在施工控制时进行调整,由于设计恒载和实际恒载的不同导致的误差可以累积于锚跨,通过锚跨锚固杆预留的可调长度进行调整。

5.4.2主缆架设线形控制

主缆线形是决定成桥线形的主要因素,主缆的架设精度将决定成桥线形的精度。主缆的线形控制包括基准索股线形控制和一般索股的线形控制。其中基准索股的线形是基准值,一般索股是根据若即若离的原则控制与基准索股的相对高差来安装的。因此,大跨度悬索桥主缆架设过程中,基准索股的施工控制是关键。

主缆安装前索塔已完成,鞍座已经安装就位。为消除前期的施工误差影响,在索股架设前应精确测量主缆线形的实际边界条件,包括索塔、主散索鞍、锚旋的高程和桩号。另外,应收集精确的荷载参数,以减小后期不确定性误差。一般情况下,基准索股安装前加劲梁、索夹等构件均已完成了一大部分,需要对加劲梁和索夹进行精确称重,进行桥面铺装的容重试验等。在上述参数获得后,修正设计参数,保证主缆中跨的跨中矢高和索塔不偏位的情况下重新确定主缆的目标线形和各跨主缆的实际无应力长度。

1.基准索股线形控制

(l)控制参数的确定

基准索股架设完成后其线形为悬链线,跨中垂度f一旦确定,索股线形就确定下来,跨中垂度f根据跨中点的标高确定。基准索股架设阶段,可选择中跨和两侧边跨的跨中主缆结构分析与施工控制高(H1,H2,H3)以及主、散索鞍处的标高(H4,H。,H6,H7)作为控制参数(共7个),通过对各跨跨中标高的调整来调整跨中垂度,进而达到调整索股线形的目,见图5.15。锚跨跨中垂度与锚固端拉力有着固定的力学关系,因此通常选取锚跨的力作为控制参数。

5.15线形控制参数示意图

(2)基准索股的选定原则

①索股要处于相对自由状态:周围索股对其干扰性最小;②便于测量其他索股;③根基准索股管理一定数量的一般索股:索股分组以减少误差积累。

(3)控制参数的计算

在考虑温度、施工误差、猫道影响及吊装顺序的情况下对基准索的控制参数进行计,得到不同温度情况下的控制参数的值。

(4)温度测试

温度测试元件设置如图5.16。温度测试断面沿索长布置,共布置7个断面,每个断上下左右布设4个温度传感器测得温度。基准索股架设时,温度测点加密一倍,并根温度变化情况增减测点。

s

图5.16温度测点布置示意图

(5)线形调整

各跨控制参数的调整实质均是调整索长,由于索股中、边跨及锚跨是连通的,边跨跨中标高受到中跨调整的影响,锚跨又受到边跨调整的影响,因此调整应按先中跨、再边跨、最后锚跨的顺序进行。在索股架设和调整过程中,散索鞍被临时固定,因而中、边跨的调整和锚跨互不影响,可以先将中、边跨调整到位,最后调整锚跨中跨标高的调整对索股水平力的影响较小,但边跨标高的变化对索股水平力非常敏感,中跨调整时调出或调进的索长会改变边跨标高,索塔在调整过程中受到不平衡水平力作用将左右摆动,造成中跨和边跨的调整需要反复进行。为减少调整次数,避免盲目调整,需要事前制定调整方案。

为了使己整形入鞍的索股达到设计线形,白天架设完成的索股需要在夜间气温稳定、风速较小的时候对其进行垂度观测和调整。气温稳定的基本条件为:索股径向温差△T≤1℃;索股轴向温差△T≤2℃。

垂度调整量丫与索长调整量△l的关系,随垂跨比n而变化,边跨考虑倾角α的影响(中跨关系为△l=16n△f/3,边跨关系为△l=16n△f/(3cos3θ)。在进行索股调整前对基准索股的中、边跨跨中标高进行观测,得当时的值人,进行温度、猫道影响、施工误差修正后与设计值比较,计算出中跨索股的调整量鱿,进而得到调整长度△lz。在基准索股架设调整完后连续观测3天以上,每天观测选在夜间温度稳定的时段进行,每隔1小时观测一次,直至基准索股垂度稳定度达到要求,才可进行一般索股的架设与调整。

(6)基准索锚跨张力的控制

当中跨、边跨的标高调整完成后,即可进行锚跨的张力。锚跨主缆索股张拉时,通过设置于千斤顶上的压力传感器进行张拉力的控制,并与油压表的读数相互复核。

(7)基准索股在架设完成后续过程中的控制

基准索股架设完成后,各跨之间索股无应力长度就恒定不变,索鞍在塔顶有偏向边

跨侧相当大的预偏量。随着一般索股的陆续架设,索塔受到来自鞍座的越来越大的偏心

竖向压力作用,塔顶将向边跨侧发生越来越大的偏移,基准索股中跨标高将越来越高,

边跨则相反。因此,在主缆形成过程中,基准索股的线形是变化的,与主缆架设完成后

的成缆空缆线形存在显著的差异。

自锚式悬索桥施工控制

王鹏1、2吴迅1石雪飞1阮欣1

(1、同济大学桥梁工程系200092 2、广州市市政工程设计研究院510060)

摘要:本文系统地阐述了自锚式悬索桥施工控制的方法。空缆线形计算是自锚式悬索桥施工控制的关键环节,然后通过张拉吊杆使自锚式悬索桥达到理想的线形。本文结合工程实例详细介绍了自锚式悬索桥空缆线形计算的方法以及吊杆张拉施工过程的控制,并得出了一些有意义的结论,对其他相类似的工程有一定的指导作用。

关键词:自锚式悬索桥、空缆线形计算、施工控制

Construction Control of Self-anchored Suspension Bridge Abstract: This paper expounds the method of construction control of self-anchored suspension bridge. Analysis of cable shape at cable-finished stage is the key of construction control of self-anchored suspension bridge. And then we can gain the perfect shape of self-anchored suspension bridge by straining hangers. Through an example the author introduced the method of analysis of cable shape at cable-finished stage and construction control of straining of hangers and some useful conclusions are drawn.. And these may be of certain guidance for other similar engineering.

Key words: self-anchored suspension bridge, analysis of cable shape at cable-finished stage, construction control

1工程概况

吴淞江自锚式悬索桥是上海安亭汽车城汽车博览公园内的一座景观桥梁,其总体布置见图(1.1)。跨径组合为25+70+25m,桥宽8m。主缆计算垂跨比为1/7.8,矢高9m。桥面以上塔高10.663m,桥面以下塔高 5.937m,双塔柱无风撑。主缆直接锚固于边跨主梁,采用7根61Φ5mm平行钢丝成品索编制排列而成。吊杆间距5.0m,采用37Φ5.1的镀锌高强钢丝成品索。主梁采用钢筋混凝土“П”形梁,标准梁高0.75m,主缆锚固区的端锚段为变截面,每侧长7.5m,宽9.1m,边墩支承线处梁高为2.0m,横截面为矩形实心断面,主要用作主缆锚固及平衡压重。索鞍采用双套管结构,外管埋于混凝土塔柱内,内管置于外管内,主缆裸索穿过内管。

图1.1 吴淞江自锚式悬索桥立面图

(vertical chart of the self-anchored suspension bridge over Wusong River )

2施工控制的目的、任务及方法

自锚式混凝土悬索桥的施工控制有三个主要任务,一是事先进行计算分析确定空缆线形,使主缆在建成时达到设计所希望的几何线形;二是使结构在建成时达到合理的内力状态,

这主要是指加劲梁和索塔的应力应不超过规范允许值;三是在施工过程中保证结构的安全。针对自锚式悬索桥结构及施工方法的特点,总的施工监控的原则是保证主梁和索塔内力在控制范围内的情况下,尽量达到设计的线形。

本桥主梁及塔柱均为钢筋混凝土构件,施工阶段也没有临时预应力束,因此保证施工阶段主梁及塔柱不开裂是施工过程中控制索力的主要因素,因此吊杆力必须分多级施加。除了在设计计算中进行细致的吊杆力施加步骤计算外,施工监控时在主梁、塔柱、主缆中埋设传感器,对主梁、索塔关键截面应力、主缆拉力进行跟踪观测,以保证全桥施工安全。

自锚式悬索桥一般采用满堂支架现浇主梁,然后浇筑桥面以上主塔,再安装主缆、最后通过张拉吊杆的方法进行施工,在施工过程中循环性的工序相当少,且对已施工结构进行调整的措施不多。因此,在施工前确定合理的施工步骤、现场严格按预定的施工步骤进行施工、及时发现和纠正已经存在的误差是本桥施工控制的关键。

自锚式混凝土主梁悬索桥施工误差主要出现在以下几个方面:桥面横梁及主梁重量的误差;混凝土配合比及弹性模量等的不准确;主缆定位时温度影响,包括主缆安装初始温度及吊杆张拉时的温度等;主梁上吊杆预埋位置和索夹安装位置误差;桥面施工荷载重量的误差;混凝土徐变及收缩参数的不确定引起的应力重分布等。

根据以上特点,本桥的施工控制采取在保证主梁内力满足要求的前提下,对结构变形(高程)、应力进行双控,其中以主梁、塔柱变形控制为主,应严格控制塔柱、主梁等关键截面在危险工况下的位移变化,同时关注关键截面应力发展状态及趋势。具体采用的方法如下:(1)结构施工前期分析

尽可能详细地了解施工过程,调查施工荷载的大小与位置。根据施工方法进行每一工况的有限元分析,尽可能精确模拟施工全过程,获得结构各施工阶段的期望状态,得出各施工过程中各断面的内力、应力和变形的期望值,对选定的施工控制主要参数及主要成果应形成施工控制预备文件,在此基础上进行施工误差灵敏度分析,确定各施工步骤的允许误差及误差出现后的内力及位移调整方案,作为施工依据。

(2)现场测试与现场计算分析调整

在施工全过程中,对全桥结构进行现场测试跟踪,将测量结果与计算结构进行分析对比,在出现误差时,通过结构线形、材料弹性模量、温度场等的现场测量结果,分析误差出现的原因,确定调整吊杆力误差的措施。

(3)关键部位的应力、内力及变形跟踪

根据前期分析的结果,确定结构在施工期间的薄弱环节,对施工期的危险状态进行结构应力状态监测,及结构变形状态测量。

3空缆线形计算

空缆线形计算是本桥施工控制的关键环节。本桥为钢筋混凝土自锚式悬索桥,施工时先

架设加劲梁和主缆,再通过张拉吊杆逐步使吊杆中

分布的影响,但为了使成桥时吊杆力均匀分布,且

加劲梁有一定的预拱度,在加劲梁和索塔应力满足

设计要求的情况下,可以微幅调整吊杆力的大小,

既使主缆达到设计的线形,又使得加劲梁和索塔受

力合理。因此,计算时要反复试算,在施工过程中

多安排几次张拉循环,使吊杆力逐步施加上去。试

算的原则就是使各工况下加劲梁和塔顶的位移不

能太大,塔梁交接处梁截面的应力和塔底的截面应力不能超过规范允许值。

空缆线形计算时,首先假设按一期恒载平均分配计算吊杆力,两吊杆间索段的力学模型

如图3-1所示。相邻索夹间主缆的基本线形可以采用文献[1]中的方程:

11sinh sinh i i i i i i H V V qs l q H H --??????-=-?? ? ???????

i i H h q = 式中q 为索单位长度重,s 为索曲线长度。

根据吊杆间任一索段的平衡方程计算成桥主缆线形,进而采用迭代的方法计算各索段无应力长度、鞍座的预偏量和空缆线形。

根据计算得到的空缆线形建立有限元模型进行非线性有限元计算。主梁、索塔均采用梁单元。本桥主缆直径较小,采用梁单元模拟时其抗弯惯矩很小,可以忽略不计,这与用杆单元模拟差别不大。吊杆采用拉索单元。全桥共133个单元。计算模型见图3.2。计算时考虑几何非线性因素的影响。为了保证计算的精度,每次施加的荷载应尽量小,因此整个施工过程中安排八次张拉循环,使得吊杆力逐步施加上去。其中第一至五次边跨吊杆和主跨吊杆同时张拉,安排在支架拆除前进行;支架拆除后进行第六张拉循环,只张拉主跨吊杆;桥面铺装分两次进行,第一次完成后进行第七次张拉循环;全部铺装完成后进行第八次张拉循环。

图3.2 吴淞江自锚式悬索桥计算模型

(analysis model of the self-anchored suspension bridge over Wusong River)

从有限元计算的结果来看,吊杆拉力与第一次的假定值相比有较大的差别,而且有限元计算得到的成桥时的主缆线形也与设计线形不符,因此需要按照重新计算得到的吊杆力再用数值方法计算成桥主缆线形和空缆线形。这样反复迭代几次,数值计算与有限元计算的结果就会基本吻合。

4 施工过程控制

4.1 主缆及索夹、吊杆的安装

根据计算确定的主缆无应力长度,计算主缆下料长度,然后根据计算得到的空缆线形安装主缆。本桥索鞍的构造比较特殊,施工过程中索鞍与索塔顶端很难使其产生相对移动。所以应该在吊杆张拉前,将主缆顶推到设计位置,然后将主缆固定在塔顶,这时索塔有向边跨的预偏,在以后的施工过程中,通过张拉吊索使索塔在成桥时的位置达到垂直。

4.2 吊杆张拉控制

吊杆张拉分七次循环进行。由于主缆顶推后测得的实际主缆线形与计算值有误差,所以必须调整计算模型中的主缆线形,再根据事先拟定的吊杆张拉力进行有限元分析,计算每次张拉时各吊杆的伸长量,吊杆张拉时就以此为主要控制目标,张拉力为辅。每次张拉完成后测量主缆的线形和桥面标高,测量关键截面的应力,应力测量截面的位置见图4.1。根据测量的应力和标高数据,分析下一张拉循环是否需要对张拉力进行调整,如不需调整就可进行下一循环张拉工作,否则调整张拉力重新计算吊杆伸长量,以后的张拉就依据新的吊杆伸长量进行。张拉时的现场图片见图4.2。

图4.1 应力测点布置示意图图4.2 张拉施工全景图

(sketch chart of the place for surveying stress) (panoramic picture about straining hangers)

通过五次循环张拉,加劲梁的自重已基本上由主缆承受了。从张拉所测得的数据来看,主要有以下一些特点:

(1)由于模型计算中考虑的加劲梁支承条件与实际不符,支架拆除前五次张拉循环加劲梁标高变化很快,与模型计算值相差较大。因此,张拉时应以伸长量控制为主。随着支架的拆除,加劲梁支承条件的影响消除,再经过一次张拉,主缆线形及主梁标高与模型计算值比较吻合。

(2)加劲梁上各应力测量截面的应力实测值与模型计算值存在一些差别,但总的趋势是吻合的。随着吊杆的不断张拉,主缆拉力不断增加,加劲梁内大部分截面都有一定的压力,只是在索塔支承处,由于位移变化的转折,在截面下缘出现了微小的拉应力,但并没有超过规范的允许值。

(3)由于施工过程中主缆在索塔顶是固定的,所以吊杆张拉前,应使索塔向边跨预偏,随着吊杆张拉,索塔逐渐向跨中靠拢,甚至向跨中倾斜,但要保证成桥时索塔垂直。施工过程中应密切监控索塔垂直度和底端的应力,一旦发现应力超过规范允许值就应调整张拉力。从所测得的塔底应力数据来看,塔底应力变化基本符合模型计算的规律,应力数值也没有超过规范允许值。

5结论

本文结合实例介绍了自锚式悬索桥施工控制方法,并从中得到了一些有意义的结论。

(1)在计算空缆线形时,可以先按主索鞍与塔顶可以相对滑动考虑。如果实际上主索鞍和塔顶在施工中是固定的,只要调整中、边跨吊杆拉力,使得索塔两侧的主缆水平力相等,塔顶基本没有水平位移即可。

(2)自锚式悬索桥施工控制的基础是空缆线形的计算,只要主缆的无应力长度和空缆线形计算准确,通过调整吊杆拉力,最终总能达到设计的成桥线形。

(3)自锚式悬索桥施工时,吊杆的张拉应以伸长量控制为准。这样做一是可以解决油压千斤顶的读数不准确,难以有效控制的问题;二是可以保证吊杆长度不会有很大的偏差,避免成桥时由于吊杆长度过长或过短造成返工;三是可以保证主缆线形平顺。

(4)当主索鞍与索塔顶端不能相对滑动时,施工过程中索塔顶端将会受到主缆不平衡水平力作用,在索塔底端产生弯矩。因此施工中应密切注意索塔底端的应力变化。

(5)吊杆张拉前应使索塔有向边跨侧的预偏,随着吊杆的张拉,索塔逐渐向跨中倾斜。施工中索塔会在垂直位置附近摆动。因此要时刻观测索塔的偏移量,以保证索塔的安全。最后通过调整吊杆拉力使成桥时索塔尽量处于垂直状态。

参考文献

[1] 项海帆,高等桥梁结构理论,人民交通出版社,2001

[2] 肖汝诚,项海帆,大跨径悬索桥结构分析理论及其专用程序系统的研究,中国公路学报,1998,第4期

[3] 罗喜恒,复杂悬索桥施工过程精细化分析研究,同济大学博士学位论文,2004

[4] 王鹏,悬索桥空缆状态线形分析,同济大学硕士学位论文,2005年3月

自锚式悬索桥施工方案

目录 1、工程概况 (1) 1.1工程概述 (1) 1.2主要技术标准 (1) 1.3、主桥结构 (2) 2、重难点分析 (2) 3、主梁施工工艺流程 (3) 3.1先梁后拱施工工艺 (3) 3.2 先缆后梁施工工艺流程 (5) 4、方案对比分析表 (6) 5、主要工程项目的施工方案 (7) 5.1、总体施工方案 (7) 5.1.1下部结构 (7) 5.1.2上部结构 (7) 5.1.3猫道、承重索、主缆架设 (8) 5.2各分部施工方案 (8) 5.2.1栈桥施工方案 (8) 5.2.2桥塔基础施工方案 (9) 5.2.3桥塔 (11) 5.2.4 主梁施工 (12) 3.2.5 缆索施工 (15) 5、施工机械设备计划 (20)

1、工程概况 1.1工程概述 东莞江南支流港湾大桥工程位于广东省东莞市,跨越江南支流,连接沙田阇西村与坭洲岛,为东南-西北走向。项目起点与港口大道平交,起点K0+000,沿西北方向穿越江南支流后,终点与坭洲岛疏港大道相交,终点桩号K2+922,路线全长2.922Km,设置桥跨为60+130+320+130+65=705m,见下图。 桥跨布置图(m) 1.2主要技术标准 (1)道路等级:一级公路兼顾城市主干道功能; (2)设计速度:主线60km/h; (3)设计荷载:公路-Ⅰ级; (4)主桥标准段桥宽:1.25m 风嘴+2.5m 人行道+2m 吊杆锚固区+0.75m 硬路肩+11.25m 行车道+0.5m 路缘带+1m 中央隔离带+0.5m 路缘带+11.25m 行车道+0.75m 硬路肩+2m 吊杆锚固区+2.5m 人行道+1.25m 风嘴,全宽37.5m; (5)设计洪水频率:1/300; (6)通航等级:现状河道为拟建桥梁所在河段坭尾至杨公洲中8km河段航道为Ⅳ级航道,通航500吨级船舶,航道尺寸为2.5m×50m×330m(水深×底宽×弯曲半径)。近期规划为Ⅲ级航道,通航1000吨级船舶,航道尺寸为2.5m×60m×480m(水深×底宽×弯曲半径)。远期规划为Ⅰ级航道,海轮5000 吨级,垂直航迹线方向通航孔尺寸为(270×34)m,本桥桥址处通航孔净宽须不小于294m,净高不小于34m;

悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展 悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主 要结构型式之一。悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚 碇等构成。从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。悬索 桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。 考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限 位移理论。挠度理论考虑了悬索桥几何非线性的主要因素,可用比 较简便的数值方法来分析,又有影响线可资利用,故很适用于初步 设计阶段的结构设计计算。有限位移理论则全面地考虑了悬索桥几 何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接 用于设计计算有诸多不便和困难。 悬索桥挠度理论是一种古典的悬索桥结构分析理论。这种理论 主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内 其计算结果比较接近结构的实际受力情况,具有较好的精度。悬索 桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。 最初的悬索桥分析理论是弹性理论。弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载 而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径 小于200米的悬索桥设计中应用[1]。但弹性理论假定缆索形状在加 载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入 变形影响的悬索桥挠度理论。

古典的挠度理论称为“膜理论”。它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。 悬索桥的挠度理论也是一种非线性的分析方法,至今仍不失为分析悬索桥的较简单实用的手段。但挠度理论在基本假设中忽略了吊杆的变位影响及加劲梁的剪切变形影响等,使分析结果的精度受到限制。随着计算方法、计算手段的发展,悬索桥的计算理论也发展到将悬索桥作为大位移构架来分析的有限位移理论。有限位移理论将整个悬索桥包括缆索、吊杆、索塔、加劲梁全部考虑在内,分析时可以将各种二次影响包括进去,从而使悬索桥的分析精度达到新的水平。 有限位移理论是20世纪60年代提出的计算理论。它是一种精确的理论,不需挠度理论所作的那些假定。其计算值一般要小于挠度理论[3]。根据参考文献,主跨为380m时,用有限位移理论计算的内力、挠度值,比挠度理论小10﹪;主跨768m时,在半跨加均

自锚式悬索桥

自锚式悬索桥的综述 2005-8-5【大中小】【打印】 摘要:介绍自锚式悬索桥的特点、历史及国内外发展情况。重点分析了钢筋混凝土桥的设计和发展,并对其施工工艺做了简单介绍。总结展望了自锚式悬索桥的发展空间及其需进一步研究的问题。 关键词:悬索桥;自锚式体系;施工;实例 一、前言 一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。 过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990 年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。 自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。 ②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。 ③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。 ④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。 ⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。 ⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。 自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。 ②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊

发展中的自锚式悬索桥

发展中的自锚式悬索桥 孙立刚 (辽宁省交通勘测设计院,沈阳110005) 摘 要 自锚式悬索桥因其优美的造型受到人们越来越多的关注,近年来已有多座自锚式悬索桥建成。本文总结了自锚式悬索桥的特点,并介绍了自锚式悬索桥的建造历史、结构形 式、理论研究、设计和施工等方面的发展状况。 关键词 自锚式悬索桥 发展 综述 悬索桥根据主缆锚固方式的不同可以分为两种:一种是锚固在基础上,主缆的水平分力和竖向分 力通过锚固体传递给地基,这是地锚式悬索桥;另外一种是将主缆锚固于加劲梁的梁端锚固体上,主缆的水平力由加劲梁承受,竖向分力由桥墩和配重抵消,这种悬索桥称为自锚式悬索桥。由于取消了庞大的锚碇,自锚式悬索桥不仅造型精致美观,满足城市空间小、对景观效果要求高的特点,而且也避开了在不良地质处修筑锚碇的技术难题。1自锚式悬索桥的发展历程 从建造历史来说,自锚式悬索桥并不是一种新桥型。19世纪后半叶,奥地利工程师约瑟夫?朗金和美国工程师查理斯?本德提出了自锚式悬索桥的造型。朗金于1870年在波兰建造了世界上首座小型铁路自锚式悬索桥。20世纪初,自锚式悬索桥首先在德国兴起,自1915年在莱茵河上建造的第一座大型自锚式悬索桥—科隆-迪兹桥起,到1929年共修建了5座自锚式悬索桥,其中1929年建成的科隆-米尔海姆桥主跨跨径达到315m ,保持自锚式悬索桥跨径记录70余年。在这期间美国和日本也建造了几座自锚式悬索桥 。 图1日本此花大桥立面图 40年代塔科马桥风毁事故后,悬索桥的建造步 入了低谷阶段。1954年德国工程师在杜伊斯堡完 成了跨径230m 的自锚式悬索桥后,世界上没有再建造这种桥。上世纪90年代,日本和韩国重新推出了这种桥型,并且注入了新的元素。1990年建成的日本此花大桥为单索面自锚式公路悬索桥,跨径布置为120m +300m +120m ,主缆垂跨比1:6,采用倾斜吊杆,加劲梁为钢箱梁,主塔为花瓶型;1999年建成的韩国永宗大桥为双索面公铁两用自锚式悬索桥,跨径布置125m +300m +125m ,垂跨比1:5,采用竖直吊杆,索面倾斜,花瓶型主塔,加劲梁是桁架梁与钢箱梁的双层组合结构,上层通行汽车,下层铺设铁路。这两座桥成为现代自锚式悬索桥的典型代表。美国奥克兰海湾新桥重建计划中包括一座单塔2跨自锚式悬索桥和一座3跨双塔自锚式悬索桥, 其中单塔悬索桥跨径达到385m 。这几座桥的设计和建成拉开了新世纪自锚式悬索桥研究和建造的序幕。2自锚式悬索桥在国内的迅速推广和发展2.1 国内自锚式悬索桥的建造概况 国内所建造的自锚式悬索桥的结构形式丰富多 样,材料选择不拘一格。从加劲梁的构造上来说,有钢混叠合梁、桁架梁、钢箱梁、混凝土箱梁、混凝土边主梁;有漂浮式体系,也有在桥塔处设置支座的支承体系;从造型上来说,多数采用了双塔多跨式结构,佛山平胜大桥为独塔单跨式结构,还建成了独塔双跨式的人行自锚式悬索桥;在加劲梁的材料使用方面,我国桥梁设计者首次提出了混凝土自锚式悬索桥的概念,即以钢筋混凝土代替钢作为加劲梁材料, 并且成功地建成了几座这种类型的悬索桥。2002年在金石滩金湾桥的建造中加劲梁首次使用了钢筋混凝土,随后建成的抚顺万新大桥和江山市北关大 ? 13?第11期 北方交通

自锚式悬索桥施工质量控制要点

自锚式悬索桥施工质量控制要点 发表时间:2018-06-01T11:02:36.360Z 来源:《基层建设》2018年第10期作者:刘瑞婷[导读] 摘要:自锚式悬索桥被运用的越来越广泛,而对于施工的控制还没有完全的统一,还需要经过不断地实践和总结。 南京市政公用工程质量检测中心站江苏省南京市 210000 摘要:自锚式悬索桥被运用的越来越广泛,而对于施工的控制还没有完全的统一,还需要经过不断地实践和总结。本文作了一些定性的分析,对施工而言有一定的指导意义,但还需要通过定量分析才能最终确定每种因素的影响程度和控制措施。 关键词:自锚式;悬索桥施工;施工控制 1引言 自锚式悬索桥是将主缆直接锚固在加劲梁上,靠主梁来承担主缆的水平分力,从而取消庞大的锚碇,同时主缆又对主梁施加了强大的免费预应力。本文主要阐述了桥梁施工控制及其必要性,分析了自锚式悬索桥施工控制的方法,并对自锚式悬索桥的施工控制进行了探讨。 2自锚式悬索桥施工技术 2.1主塔施工 悬索桥一般主塔较高, 塔身大多采用翻模法分段浇筑, 在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑, 以方便索鞍及缆索的施工。主塔的施工控制主要是垂直度监控, 每段混凝土施工完毕后, 在第二天早晨8: 00至9: 00 间温度相对稳定时, 利用全站仪对塔身垂直度进行监控, 以便调整塔身混凝土施工, 应避免在温度变化剧烈时段进行测试,同时随时观测混凝土质量, 及时对混凝土配比进行调整。 2.2鞍部施工 检查钢板顶面标高, 符合设计要求后清理表面和四周的销孔, 吊装就位, 对齐销孔使底座与钢板销接。在底座表面进行涂油处理, 安装索鞍主体。索鞍由索座、底板、索盖部分组成, 索鞍整体吊装和就位困难,可用吊车或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm 标,高误差最大值3mm。吊装入座后, 穿入销钉定位, 要求鞍体底面与底座密贴, 四周缝隙用黄油填实。 2.3主梁浇筑 主梁混凝土的浇筑同普通桥一样, 首先梁体标高的控制必须准确, 要通过精确的计算预留支架的沉降变形;其次, 梁体预埋件的预埋要求有较高的精度, 特别是拉杆的预留孔道要有准确的位置及良好的垂直度, 以保证在正常的张拉过程中拉杆始终位于孔道的正中心。主梁浇筑顺序应从两端对称向中间施工, 防止偏载产生的支架偏移, 施工时以水准仪观测支架沉降值, 并详细记录。待成型后立即复测梁体线型, 将实际线型与设计线型进行比较, 及时反馈信息, 以调整下一步施工。 另一方面,作为自锚式现浇混凝土悬索桥,箱梁支架的使用时间较长,一般在主缆、吊索施工完成、受力体系转换之后才可拆除,因此对支架的稳定性及防撞要求较高,所以在编制《现浇预应力混凝土箱梁专项施工方案》时应予以考虑。 2.4猫道施工 猫道施工工艺流程:承重绳下料→承重绳预张拉→承重绳线型调整→猫道面层、衡量、扶手绳安装→猫道吊装→猫道高度调整→抗风缆架设→形成猫道体系。 猫道施工中需要注意的是:猫道索两端的锚固设施要事先预埋在塔顶和锚梁中;猫道必须要设置可靠的抗风索体系;猫道的线型应始终保持与悬索桥钢缆的自由悬挂线型保持一致,为此,猫道索要设置能收紧、放松的装置,以便在施工过程中调整主缆受载后的线型。 2.5索部施工 1) 主缆架设 根据结构特点, 主缆架设可以采取在便桥或已浇筑桥面外侧直接展开, 用卷扬机配合长臂汽车吊从主梁的侧面起吊、安装就位。缆索的支撑: 为避免形成绞, 将成圈索放在可以旋转的支架上。在桥面每4-5m, 设置索托辊( 或敷设草包等柔性材料) , 以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大, 在牵引过程中采用小车承载索锚端。 缆索的牵引: 牵引采用卷扬机, 为避免牵钢丝绳过长, 索的纵向移动可分段进行, 索的移动分三段, 分别在二桥塔和索终点共设三台卷扬机。 缆索的起吊: 在塔的两侧设置导向滑车, 卷扬机固定在引桥桥面上主桥索塔附近, 卷扬机配合放索器将索在桥面上展开。主要用吊车起吊, 提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时, 在桥侧配置了3 台吊机, 即锚固区提升吊机、主索塔顶就位吊机和提升倒链。 当拉索锚固端牵引到位时, 用锚固区提升吊机安装主索锚具, 并一次锚固到设计位置, 吊机起重力在5t 以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m 时起重力大于45t 的汽车吊, 用于将主索直接吊上塔顶索鞍就位, 在吊装过程中为避免索的损伤, 索上吊点采用专用索夹保护;主索在提升到塔顶时, 由于主跨的索段比较长, 为确保吊机稳定, 可在适当的时候用塔上提升倒链协助吊装。 2) 主缆调整 在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值, 经设计单位同意后进行调整, 按照调整后的控制值进行安装, 调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度, 然后计算出各控制点标高。 主缆的调整采用75t 千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高, 完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后, 边跨根据设计提供的索力将主缆张拉到位。 3) 索夹安装 为避免索夹的扭转, 索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置, 确认后将该处的PE 护套剥除。索夹安装采用工作篮作为工作平台, 将工作篮安装在主缆上(或同普通悬索桥一样搭设猫道) , 承载安装人员在其上进行操作。索夹起吊采用汽吊, 索夹安装的关键是螺栓的坚固, 要分二次进行。索夹安装就位时用扳手预紧, 然后用扭力扳手第一次紧固, 吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行, 边跨从锚固点附近向塔顶进行。

钢筋混凝土自锚式悬索桥的设计与施工 李宝银

钢筋混凝土自锚式悬索桥的设计与施工李宝银 发表时间:2018-05-16T17:18:56.467Z 来源:《基层建设》2018年第2期作者:李宝银于向前 [导读] 摘要:在我国交通事业不断发展的过程中,更多的桥梁工程得到了建设。 陕西中林集团工程设计研究有限公司陕西省西安市 710000 摘要:在我国交通事业不断发展的过程中,更多的桥梁工程得到了建设。其中,自锚式悬索桥是一种主要的桥梁类型。在本文中,将就钢筋混凝土自锚式悬索桥的设计与施工进行一定的研究。 关键词:钢筋混凝土;自锚式悬索桥;设计;施工 1 引言 在现今桥梁工程建设中,自锚式悬索桥得到了较多的建设。该桥梁类型即通过桥面的应用实现主索水平拉力的平衡,以此起到取消桥梁两侧混凝土锚固基础的效果。在工程施工区域地基土条件较差的情况下,通过该方式的应用,即能够对桥梁建设费用进行有效的降低,在实际处理当中具有较高的优越性。 2 工程设计概况 我国南部某城市自锚式悬索桥,该桥长度为(24+70+24),共三跨,截面宽度24.4m,机动车道为双向四车道,分隔带宽度2.4m,两侧具有2m的人行道以及2.5m的飞机动车道,桥梁全长130m。该桥梁荷载设计为城市B级,其上部主要承力结构为自锚式柔性悬索,桥面为纵横向桁架梁,桥面材料为现浇钢筋混凝土材料,其吊装情况如下图:” 图1 在安装桥梁悬索部分时,该工程已经完成了基坑的压实以及回填处理。工程具体建设当中,在不同索塔位置具有支架的搭设,为 6×4×25m,该直接作为吊装反力架进行使用。在实际安装主缆以及索鞍时,使用吊车同卷扬机系统相配合的方式进行处理。在安装吊杆以及索夹时,则通过机械的应用为活动工作平台,其上方具有活动轨道的设置。 3 施工步骤 3.1 索鞍施工 在该项工作当中,通过卷扬机的使用按照一定顺序吊起索鞍不同构件进行统一的拼装处理,在具体拼装过程中,需要通过全站仪的使用做好位置、高程以及轴线的测量,在获得测量结果后对其进行定位调整处理,保证其能够同设计要求相符合。在完成索鞍的定位拼装处理后,通过临时固定装置的使用对其进行固定处理,之后定位主缆的入鞍,在该项工作完成后,在索体同鞍槽间需要通过铅板的使用进行填塞处理,通过该方式的应用实现索鞍内部主缆摩擦力的提升,之后通过螺旋千斤顶以及塔顶反力托架的使用紧压索鞍同主缆间的压块。在安装悬挂系统时,需要做好定位调整工作,保证塔柱同索鞍在偏移误差方面能够对施工要求进行满足,并紧固好临时固定装置。 3.2 安装主缆 在该工程当中,先安装自锚式主缆,之后再安装悬索,通过该种安装方式的应用,在完成主缆安装后,悬索在安装时即能够具有一个固定的施工场地。在架设主缆时,需要在完成架设的钢桁量上以桥梁的纵向方向在其两侧位置对一条施工的便道进行铺设,宽度为4m。之后在桥梁纵向位置对导向滚轮支架进行设置,保证不同支架间具有2m的间距,以此对桥面同主缆放索时的摩擦力进行减少,以此起到对主缆刮擦进行减轻的作用。在主缆运输到现场后,要通过吊车的使用吊起主缆索盘,在将其放置在放索上后以纵向桥梁方向铺开主缆主线,通过螺母的使用将其在锚定桁梁上固定,之后调整好锚具位置,保证垫板同锚具中心处于同一轴线之上,并使用吊车同卷扬机设备吊起主缆,将其放置在索鞍槽当中,做好起吊点的科学确定。 3.3 索夹安装 在该项工作当中,通过主缆上的记号剥除索夹位置的聚乙烯护套,通过直径1mm软钢丝材料的使用在主缆裸露位置进行缠绕处理,以此对钢丝同索夹的抗滑力进行提升。之后,通过卷扬机材料的使用吊起索夹,将其在主缆上安装,在实际安装过程当中,需要做好定位精确性的控制,保证其能够对设计要求进行满足,之后通过千斤顶的使用张拉索夹螺栓,保证预应力大小能够同设计要求相符合。为了保障张拉效果,可以在每个索夹位置都对一台千斤顶进行安装,以并联方式进行连接处理,以此保证在实际张拉过程当中都能够同步施加预应力。 3.4 吊杆安装 在该项工作当中,使用索夹安装夹子进行处理。在安装过程中,需要通过上锚头的使用做好索夹同上锚头的连接,之后通过吊杆下锚头的使用使其同钢桁梁进行连接,在其上方做好偏转校正装置的安装,在做好锚具拧紧处理后固定,之后,对索夹安装夹子进行移动,使其在到达下个吊杆之后再按照上述方式安装,直至全部吊杆全部安装完成为止。 3.5 钢桁梁脱架 在完成吊杆的安装后,即需要对其进行调整处理,在保证主线能够同设计要求相符合的情况下拆除钢桁架下的满堂脚手架。在完成拆

继续教育-自锚式悬索桥的施工监控

第1题 施工监测一般要求什么时间进行 A.早晨日出之前 B.晚上太阳落山之后 C.没有要求随时都可以测 D.根据施工的进度确定 答案:A 您的答案:A 题目分数:6 此题得分:6.0 批注: 第2题 关于自锚式悬索桥的施工,说法错误的是? A.自锚式悬索桥是先施工加劲梁再施工主缆 B.鞍座施工时要先预偏,然后再顶推 C.自锚式悬索桥的吊杆在施工中无需张拉 D.施工应进行施工过程控制,应使成桥线形和内力符合设计要求。答案:C 您的答案:C 题目分数:6 此题得分:6.0 批注: 第3题 自锚式悬索桥的施工中鞍座一般顶推几次? A.一次 B.两次 C.根据设计图纸上的要求确定 D.根据施工监控的计算分析确定 E.三次 答案:D 您的答案:D 题目分数:6 此题得分:6.0 批注: 第4题 主缆的无应力索长如何确定? A.设计单位给定 B.监控单位给定

C.监控单位计算出无应力索长后请设计单位确认后给定 D.监控单位和施工单位共同商定 答案:C 您的答案:C 题目分数:7 此题得分:7.0 批注: 第5题 监控单位的施工监控指令下发给谁? A.业主单位 B.监理单位 C.设计单位 D.施工单位 答案:B 您的答案:B 题目分数:7 此题得分:7.0 批注: 第6题 桥梁施工监控工作开展过程中需要和哪些单位联系 A.建设单位 B.设计单位 C.监理单位 D.施工单位 E.质监站 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:6 此题得分:6.0 批注: 第7题 自锚式悬索桥施工监测的内容有哪些? A.加劲梁、索塔和主缆的线形 B.吊杆、主缆的索力 C.加劲梁、索塔的应力 D.索夹的紧固力 E.温度监测 答案:A,B,C,E

自锚式悬索桥施工控制

大跨度悬索桥主缆控制 大跨度悬索桥主缆的受力图式可简化为受沿索长分布的均布荷载和吊索处的集中荷载作用的柔性索,主缆的计算即可转化为求理想索结构的线形和内力问题。主缆线形是以吊点为分段点的分段悬链线,通过分段悬链线解析计算理论可以求得主缆在荷载作用下的线形和内力。 在对设计成桥状态精确计算的前提下,为了使竣工后的主缆线形符合设计要求,还需要在施工过程中对主缆的线形进行控制。其方法是事先计算出各施工阶段的超前控制值,并在施工过程中不断进行跟踪分析和调整。大跨度悬索桥的结构线形主要受主缆线形和吊索长度的控制,主缆一旦架设完成,其线形将不能进行调整;吊索长度根据主缆完成线形提出,一般也不预留太大的调整长度。因此主缆施工阶段的控制是整个施工过程中最重要的部分。精确计算出主缆初始安装位置和吊索制作长度等超前控制值非常关键,是保证悬索桥成桥后几何线形满足设计的必要条件。 5.1主缆系统施工控制计算的基本原理 5.1.1成桥主缆线形计算原理 悬索桥的成桥主缆线形是主缆设计的目标和基础,主缆索股下料长度计算、索股架设线形计算、索鞍的预偏量计算、空缆索夹安装位置计算、吊索的下料长度计算等均与成桥主缆线形有关,因此精确地计算成桥主缆线形是完成施工控制的前提。 悬索桥的成桥理想设计状态为: ①恒载状态下中跨的线形满足设计矢跨比; ②索塔塔顶在恒载状态下没有偏位,塔根不存在弯矩; ③恒载由主缆承担,加劲梁在恒载状态下不产生弯矩。 其中,状态③通常不易达到,跟主梁施工方法、顺序有关。对于大跨度悬索桥,事先只知道设计成桥状态结构的控制性几何形状参数,如主缆理论顶点、垂度、主缆跨径中点位置、桥面竖曲线、索夹水平位置、鞍座中心位置等,而主缆的精确线形和结构内力都是未知的,无法通过倒拆法精确计算架设参数。 根据设计给定的控制性几何形状参数,如给定主缆理论顶点和锚固点,则相当于悬索的几何约束边界条件已知。通过下列条件可确定主缆的成桥线形:①主缆上吊点的水平位置已知;②索夹上作用的集中荷载已知(吊索内力可以通过基于有限位移理论的非线性有限元法求得):③主缆通过给定点,如跨中的标高己知;④相邻两跨主缆在塔顶或索鞍处的平衡条件已知。根据3.2节所述的分段悬链线理论,对于具有给定的几何边界条件、分段点几何相容条件、分段点力学平衡条件及①、③两个已知条件,可确定主跨主缆的线形及内力。对于锚跨,由于缺少条件③,可通过已计算出的边跨主缆的内力按条件④确定该跨主缆的某端水平分力或张力,从而确定锚跨的主缆线形及内力。 5.1.2空缆线形及预偏量计算原理 空缆线形是主缆架设的依据,而且也是施工控制中唯一能控制的缆形,一旦主缆架设完成,就无法对主缆线形进行调整。因此,精确计算空缆线形十分重要。空缆状态下,主缆仅承受沿索长方向均布的自重荷载,几何线形可视为悬链线。依据无应力长度不变的原理,利用本文第三章的解析计算方法,可精确计算空缆线形。 索鞍预偏量是指以满足成桥状态的各跨主缆无应力索长空挂于索鞍上,使左右空索水平拉力相等时的鞍座移动量。索鞍预偏量设置的目的是为了在加劲梁吊装过程中,分阶段将主索鞍由边跨向跨中顶推,以平衡两侧主缆对索塔的水平分力,减小塔身弯曲,确保塔身应力不超过容许值,最终使塔身恢复到竖直状态。空缆线形是指具有初始索鞍预偏量下的线形,空缆线形和索鞍位置计算密切相关,索鞍预偏量计算是空缆状态计算中的一个内容。空缆线形和索鞍预偏量的计算采用以下变形相容条件及受力平衡条件:

自锚式悬索桥的特点与计算

八、自锚式悬索桥的特点与计算 吴清明伍佳玉 一、悬索桥计算原理 1、恒载内力: 柔性的悬索在均布荷载作用下,为抛物线形。悬索的承载原理,功能等价于同等跨径的简支梁。简支梁的跨中弯矩 M=QL2/8 悬索拉力作功 M=H*F 悬索水平拉力 H= QL2/(8*F) 悬索座标 Y=4*(F/ L2)*X*(L-X) 悬索垂度 F 悬索斜率 tg α=4*(F/L)*(L-X) 悬索最大拉力 Tmax=H/COS α=H*SEC α 2、活载内力: 在集中荷载作用时,悬索的变形很大,为满足行车需要,需要通过桥面加劲梁来分布荷载,弯矩由桥面加劲梁来承担,悬索的变形与桥面加劲梁相同。桥面加劲梁为弹性支承连续梁,它不便手工计算,采用有限单元法计算则方便。 (1)弹性理论: 不考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加。加劲梁的弯矩:弹性理论 M=M-h*y 式中:简支梁的活载弯矩M,悬索座标y,活载引起的水平拉力h。 (2)变位理论: 考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加,这种竖向变位与悬索的水平拉力所作的功,将减小桥面加劲梁的弯矩。加劲梁的弯矩: 变位理论 M=M-h*y-(H-h)*v 式中:活载产生的撓度v 二、自锚式悬索桥计算原理 自锚式悬索桥的内力计算复杂,应采用非线性有限单元法来计算。对于几何可变的缆索单元,需作加大弹性模量的应力刚化处理。悬索作为几何可变体系,活载作用的变形影响很大,是非线性变形影响的主要因素。本文采用线性有限单元法作简化计算的方法,是先按线性程序计算出活载撓度,修正活载撓度的座标以后,再用线性有限单元法作迭代计算。即采

自锚式悬索桥抗震计算及减隔振措施

自锚式悬索桥抗震理论及减振措施 1.自锚式悬索桥简介 1.1 悬索桥的适用范围 自锚式悬索桥作为一种独特的柔性悬吊组合体系,有其自身的受力特点,其优 点为: (1)不需要修建大体积的锚碇,所以特别适用于地质条件较差的地区; (2)受地形限制小,可结合地形灵活布置; (3)保留悬索桥美观,错落有致的线性,特别适合景观要求较高的城市桥梁; (4)钢筋混凝土的加劲梁在轴向压力下刚度有很大的提高,且后期养护较钢梁有很大的优势。 自锚式悬索桥也有其不足之处: (1)在较大轴压作用下,梁需要加大截面,会引起自重增大,限制了跨度; (2)施工步骤受到影响。必须先制造主塔、加劲梁在安装主缆和吊杆,需要搭建大量的临时支架来建造加劲梁; (3)锚固区局部受力复杂; (4)受到主缆非线性影响,吊杆的张拉时施工控制困难; (5)加劲梁属于压弯构件,需提高刚度来保证稳定。 1.2 自锚式悬索桥的分类 自锚式悬索桥的结构形式主要有三种:美式自锚式悬索桥、英式自锚式悬索桥及其他类型自锚式悬索桥。 (1)美式自锚式悬索桥 美式自锚式悬索桥的基本特征为采用竖直吊杆。采用钢桁架的自锚式悬索桥的加劲梁是连续的,以承受主缆传递的压力。加劲梁可做成双层公铁两用。可以调整钢桁架的高度来提高加劲梁的刚度以保证桥梁有足够的刚度。此类自锚悬索桥的典型代表为韩国的永宗大桥。 (2)英式自锚式悬索桥 此类悬索桥的基本特征是采用三角形的斜吊杆和刚度较小的流线形扁平翼状钢箱梁作为加劲梁,用钢筋混凝土塔代替钢塔,有的还将主缆和加劲梁在跨中固结。其优点是钢箱梁可减轻恒荷载,因而减小了主缆截面,降低了用钢量。钢箱梁抗扭刚度大,受到横向的风力较小,有利于抗风,并大大减小了桥塔所承受的横向力,缺点是三角形斜吊杆在吊点处的结构复杂。此类自锚式悬索桥的典型代表为日本的此花大桥。 (3)其他类型的自锚式悬索桥 其他类型的自锚式悬索桥采用了竖直吊杆和流线形钢箱梁作为加劲梁,加劲梁的材料可采用钢材或钢筋混凝土材料。现在的钢筋混凝土自锚式悬索桥都采用此种形式,典型代表为抚顺万新大桥等。钢结构的自锚式悬索桥除有双层通车要求的外大部分都采用此类形式,如美国的旧金山一奥克兰海湾大桥。钢筋混凝土加劲梁桥与钢箱形加劲梁桥相比优点为主缆的轴力可为混凝土提供预应力,混凝土比钢材抗压性能更强。钢筋混凝土自锚式悬索桥在中小跨度桥梁中造价要比钢自锚式悬索桥低,特别适用于中小跨径公路桥梁及人行桥。 1.3 悬索桥的受力性能 自锚式悬索桥是由主缆、吊杆、加劲梁、主塔、鞍座和锚固构造等构成的柔性悬吊体系。成桥时,主要由主缆、加劲梁和主塔共同承担结构的自重和外荷载。主缆是结构体系中的主要承重构件,是几何可变体,主要承受拉力作用。主缆不仅可以通过自身弹性变形,而且可以通过其几何形状的改变来影响体系平衡,表现出大位移非线性的力学特征,这是悬索桥区别于其它桥梁结构的重要特征之一。主缆在恒载作用下具有很大的初始张拉力,对后续结构

自锚式悬索桥计算

自锚式悬索桥计算 自锚式悬索桥计算可采用有限单元程序解决,而施工矛盾很突出,需要寻求合理的施工办法。采用复合钢管砼、钢管砼、加劲钢管作加劲梁,配合钢筋砼或正交异性板钢桥面,能够解决自锚式悬索桥存在的问题。按照一般桥梁的常用形式,城市桥梁可以加设悬挑人行道,作了系列跨径的探索计算,以探求自锚式悬索桥大、中、小跨径的内力变化和变形规律。 1、计算指标: ⑴、跨径:L=80、100、120、150、180、200、250、300、350、400、450、480 M ⑵垂跨比:F/L=1/6 ⑶加劲梁形式: ①、T形梁(钢筋砼桥面):L=80、100、120、150、180 M ②、4 m板桁梁(钢筋砼桥面):L=200、250、300 M ③、5 m板桁梁(钢筋砼桥面):L=300、350、400、450、480 M

④、3.5 m空腹板桁梁(正交异性板钢桥面):L=180、200、250、300 M ⑤、5.5 m板桁梁(正交异性板钢桥面):L=300、350、400、450、480 M 2、吊杆距离: ⑴、L=8 M :L=80、100、120、150、180、200、250、300 M ⑵、L=10 M :L=300、350、400、450、480 M 3、计算程序: 线性平面杆系程序。 计算材料弹性模量:复合钢管砼Ec=43000 Mpa 碳素钢丝Ey=200000 Mpa 温度:升温T=30C 4、计算成果: 为了摸索自锚式悬索桥的内力变化规律和特点,作了较多跨径指标的计算。为了简化计算工作,便于对内力变化规律的认识,加劲梁的刚度未作变化,故对少数跨径指标并不适合。计算的成果也反映出了自锚式悬索桥的内力变化规律,证明了它独具的特点。对不同桥宽的计算结果,

自锚式悬索桥的施工监控

第1题施工监测一般要求什么时间进行 A.早晨日岀之前 B.晚上太阳落山之后 C.没有要求随时都可以测 D.根据施工的进度确定答案:A 您的答案:A 题目分数:6 此题得分:6.0 批注: 第2题关于自锚式悬索桥的施工,说法错误的是? A.自锚式悬索桥是先施工加劲梁再施工主缆 B.鞍座施工时要先预偏,然后再顶推 C.自锚式悬索桥的吊杆在施工中无需张拉 D.施工应进行施工过程控制,应使成桥线形和内力符合设计要求。答案:C 您的答案:C 题目分数:6 此题得分:6.0 批注: 第3题 自锚式悬索桥的施工中鞍座一般顶推几次? A.一次 B.两次 C.根据设计图纸上的要求确定 D.根据施工监控的计算分析确定 E.三次答案:D 您的答案:D 题目分数:6

此题得分:6.0 批注: 第4题 主缆的无应力索长如何确定? A.设计单位给定 B.监控单位给定 C.监控单位计算出无应力索长后请设计单位确认后给定 D.监控单位和施工单位共同商定答案:C 您的答案:C 题目分数:7 此题得分:7.0 批注: 第5题 监控单位的施工监控指令下发给谁? A.业主单位 B.监理单位 C.设计单位 D.施工单位 答案:B 您的答案:B 题目分数:7

批注: 第6题 桥梁施工监控工作开展过程中需要和哪些单位联系 A.建设单位 B.设计单位 C.监理单位 D.施工单位 E.质监站 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:6 此题得分:6.0 批注: 第7题 自锚式悬索桥施工监测的内容有哪些? A.加劲梁、索塔和主缆的线形 B.吊杆、主缆的索力 C.加劲梁、索塔的应力 D.索夹的紧固力 E.温度监测 答案:A,B,C,E 您的答案:B,D 题目分数:7

悬索桥施工方案..

地锚式钢结构悬索桥施工技术总结 1?工程概况 悬索桥是以承受拉力的缆索或链索作为主要承重构件的桥梁,由悬索、索塔、锚碇、吊杆、桥面系等部分组成。悬索桥的主要承重构件是悬索,它主要承受拉力,一般用抗拉强度高的钢材(钢丝、钢缆等)制作。由于悬索桥可以充分利用材料的强度,并具有用料省、自重轻的特点,因此悬索桥在各种体系桥梁中的跨越能力最大,根据神华宁煤400万吨/年间接液化项目澄清文件平面图等相关资料,两座悬索桥分别跨铁路悬索桥、过经四路悬索桥。跨度范围几十米到两百米左右,横跨铁路悬索桥主跨要在100米以上。 悬索桥又分为自锚式与地锚式两大类,本工程的悬索桥主要用于管道的敷设,对于桥面的路面要求不高,但是对钢性有一定要求。地锚式钢结构悬索桥的施工工艺与自锚式混凝土悬索桥及重力式悬索桥有很大区别,其施工重点在于钢结构梁的曲线挠度控制,及各种预埋件、构件的精度控制,难点是悬索桥张拉过程中的索力调整及主缆、索鞍的防腐处理,地锚式钢结构悬索桥具有造价高,跨度小,但外型曲线优美结构线条透明,适用景观工程等特点,本方案为地锚式钢结构悬索桥安装。 图1结构示意图 2.编制依据 1.《钢结构工程施工质量验收规范》GB50205-2001 2.《公路工程质量检验评定标准》JTGF80/1-2004,

3.《公路桥涵施工技术规范》JTT041-2000 4.《简易架空缆索吊》北京 3施工要点: 悬索桥的主梁由吊杆支撑,主梁弯矩与跨度关系不大。钢梁组成平面梁格和后期铺 设的混凝土桥面板构成。2道纵梁的横向位置与吊杆的横向位置相同,吊杆直接锚固在 纵梁上。 自锚式悬索桥采用先缆后梁施工方案的施工顺序如下: (1) 在桥墩上架设第一段主梁,与桥墩临时链接,该链接可传递较大的水平力; (2) 把猫道主缆锚固在墩顶主梁上; (3) 分步架设主梁:先吊装边上的压力之前,主缆和临时连接系梁,形成能够承受轴 力的钢骨架,然后在钢骨架上施工主梁的其他部分。纵梁承受压力之前,主缆和猫道承 重索的水平力由桥墩承受,大缆水平力从桥墩转移到纵梁,可用图 2所示的临时固结装 置解决。图2所示为广州鹤洞大桥斜拉桥临时固结装置,可方便进行系统转化 施工过程中,边墩最不利的受力工况为吊装最后阶段纵梁:纵梁不能承受压力,主缆 受自重、吊杆拉力(承受纵梁及连接系的重力)和猫道自重作用,其水平力全部由边墩 承受 次方法实施需要着重考虑的问题包括桥墩的设计尺寸、 工字型主梁的稳定性和大缆与 桥墩的临时固结等,需要进行计算制定详细的施工方案。 3.1桩基施工 由于没有设计相关内容,根据现场地质条件桥塔桩基设计采用钻孔桩基础,桩基类 型均为摩L 30.0 m || 1 Hi r 1」 I 1 -* ?刀 ■ 桃删m 盛眾戟曲 图1 Fig. 1 主蝶示It Main prdei 主SL 桥强示盍 Fi 曲 2 The of nuin cable ffld pier

自锚式悬索桥的受力原理及优缺点

自锚式悬索桥的受力原理及优缺点 自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。 自锚式悬索桥有以下的优点:

①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。 ②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,也可做成单塔双跨的悬索桥。 ③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。 ④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。 ⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。 ⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。 自锚式悬索桥也不可避免地有其自身的缺点:

悬索桥施工方案88530

地锚式钢结构悬索桥施工技术总结 1.工程概况 悬索桥是以承受拉力的缆索或链索作为主要承重构件的桥梁,由悬索、索塔、锚碇、吊杆、桥面系等部分组成。悬索桥的主要承重构件是悬索,它主要承受拉力,一般用抗拉强度高的钢材(钢丝、钢缆等)制作。由于悬索桥可以充分利用材料的强度,并具有用料省、自重轻的特点,因此悬索桥在各种体系桥梁中的跨越能力最大,根据神华宁煤400万吨/年间接液化项目澄清文件平面图等相关资料,两座悬索桥分别跨铁路悬索桥、过经四路悬索桥。跨度范围几十米到两百米左右,横跨铁路悬索桥主跨要在100米以上。 悬索桥又分为自锚式与地锚式两大类,本工程的悬索桥主要用于管道的敷设,对于桥面的路面要求不高,但是对钢性有一定要求。地锚式钢结构悬索桥的施工工艺与自锚式混凝土悬索桥及重力式悬索桥有很大区别,其施工重点在于钢结构梁的曲线挠度控制,及各种预埋件、构件的精度控制,难点是悬索桥张拉过程中的索力调整及主缆、索鞍的防腐处理,地锚式钢结构悬索桥具有造价高,跨度小,但外型曲线优美结构线条透明,适用景观工程等特点,本方案为地锚式钢结构悬索桥安装。 图1结构示意图 2.编制依据 1.《钢结构工程施工质量验收规范》GB50205-2001, 2.《公路工程质量检验评定标准》JTGF80/1-2004, 3.《公路桥涵施工技术规范》JTT041-2000 4.《简易架空缆索吊》北京 3施工要点: 悬索桥的主梁由吊杆支撑,主梁弯矩与跨度关系不大。钢梁组成平面梁格和后期铺

设的混凝土桥面板构成。2道纵梁的横向位置与吊杆的横向位置相同,吊杆直接锚固在纵梁上。 自锚式悬索桥采用先缆后梁施工方案的施工顺序如下: (1)在桥墩上架设第一段主梁,与桥墩临时链接,该链接可传递较大的水平力; (2)把猫道主缆锚固在墩顶主梁上; (3)分步架设主梁:先吊装边上的压力之前,主缆和临时连接系梁,形成能够承受轴力的钢骨架,然后在钢骨架上施工主梁的其他部分。纵梁承受压力之前,主缆和猫道承重索的水平力由桥墩承受,大缆水平力从桥墩转移到纵梁,可用图2所示的临时固结装置解决。图2所示为广州鹤洞大桥斜拉桥临时固结装置,可方便进行系统转化。 施工过程中,边墩最不利的受力工况为吊装最后阶段纵梁:纵梁不能承受压力,主缆受自重、吊杆拉力(承受纵梁及连接系的重力)和猫道自重作用,其水平力全部由边墩承受。 次方法实施需要着重考虑的问题包括桥墩的设计尺寸、工字型主梁的稳定性和大缆与桥墩的临时固结等,需要进行计算制定详细的施工方案。 3.1桩基施工 由于没有设计相关内容,根据现场地质条件桥塔桩基设计采用钻孔桩基础,桩基类型均为摩擦桩,深度以设计为准。 3.2承台及锚碇施工 基坑开挖至承台底以下0.3米后,进行地基夯实。在上面浇筑砼垫层厚度20厘米,然后在垫层上放线定位,承台一次整体立模浇筑,锚碇分两次浇筑完成,每次是200立方砼。

自锚式悬索桥的计算

自锚式悬索桥的计算 北京迈达斯技术有限公司 2004.12

目 录 1.使用精确分析方法确定自锚式悬索桥三维形状 2.三维悬索桥建模助手(索体系平衡状态) 2.1简化的索体系平衡状态分析方法(Ohtsuki方法) 2.1.1竖向平面内分析 2.1.2水平面内分析 2.2精确的索体系平衡状态分析方法 3.悬索桥分析控制(整体结构体系平衡状态)

1. 使用精确分析方法确定自锚式悬索桥三维形状 决定自锚式悬索桥形状的精确分析一般分为两个阶段。如下列流程图所示,第一个阶段确定整体结构形成前状态(无应力索长状态),第二个阶段确定包含加劲梁、索塔墩等全部结构体系形成后的状态。

2. 三维悬索桥建模助手(索体系平衡状态) 图1. 悬索桥建模助手 MIDAS/Civil的悬索桥建模助手用于前面所述的确定整体结构形成前状态(无应力索长状态)的程序,建模助手内部又经历了两个步骤的分析过程。第一个步骤使用Ohtsuki博士的简化计算方法进行简化的初始平衡分析,在此阶段通过输入的加劲梁的均布荷载和Y、Z方向的垂度确定主缆的水平力和其三维坐标。第二个步骤为精确的初始平衡分析阶段,是使用前一步骤得到的主缆坐标和水平张力,通过非线性分析计算准确的索无应力长状态。 图2. 悬索桥建模助手

2.1 简化的索体系平衡状态分析方法(Ohtsuki方法) 下面介绍悬索桥建模助手的第一个步骤中使用的Ohtsuki方法。 该方法采用了日本Ohtsuki博士使用的计算索平衡状态方程式,其基本假定如下: (1) 吊杆仅在横桥向倾斜,始终垂直于顺桥向。 (2) 主缆张力沿顺桥向分量在全跨相同。 (3) 主缆与吊杆的连接节点之间的索呈直线形状,而非抛物线形状。 (4) 主缆两端坐标、跨中垂度、吊杆在加劲梁上的吊点位置、加劲梁的恒荷载等为已 知量。 吊杆间主缆的张力分布如下图所示。 图3. 主缆张力 一般来说将索分别投影在竖向和水平面上,利用在各自平面上张力和恒荷载的平衡关系进行分析,下面分别介绍竖向和水平面的分析过程。

相关主题
文本预览
相关文档 最新文档