当前位置:文档之家› 材料成形原理重点及答案

材料成形原理重点及答案

材料成形原理重点及答案
材料成形原理重点及答案

一、名词解释

1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。

2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。

3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。

4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。

5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。

6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。

7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场

稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):

8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。

9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。

10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。

11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。

光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。

12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。

13 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。

14 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。

15 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。

15离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。

16 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形

貌。变质在改变共晶合金的非金属相的结晶形貌上有着重要的应用,而在等轴晶组织的获得和细化中采用的则是孕育方法。

17 联生结晶-熔池边界未熔母材晶粒表面,非自发形核就依附在这个表面,在较小的过冷度下以柱状晶的形态向焊缝中心生长,称为联生结晶(也称外延生长)。

18 择优生长-那些主干取向与热流方向平行的枝晶,较之取向不利的相邻枝晶生长得更为迅速。它们优先向内伸展并抑制相邻枝晶的生长。在逐渐淘汰趋向不利的晶体过程中发展成柱状晶组织。这种互相竞争淘汰的晶体生长过程称为晶体的择优生长。

19 快速凝固-是指采用急冷技术或深过冷技术获得很高的凝固前沿推进速率的凝固过程。

20 气体的溶解度—在一定温度和压力条件下,气体溶入金属的饱和浓度。影响溶解度的主要因素是温度及压力、气体的种类和合金的成分。

21 熔渣的碱度-是熔渣中的碱性氧化物与酸性氧化物浓度的比值(分子理论)或液态熔渣中自由氧离子的浓度(或氧离子的活度)(离子理论)。

22、长渣和短渣-熔渣的粘度随温度增高而急剧下降(快速)变化的渣称之为短渣;反之为长渣。

23 熔渣的氧化和还原能力-是指熔渣向液态金属中传入氧(或从液态金属中导出氧)的能力。

24 扩散脱氧-是在液态金属与熔渣界面上进行的,利用(FeO)与[FeO]能够互相转移, 趋于平衡时符合分配定律的机理进行脱氧。

25沉淀脱氧-是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并脱溶沉淀转入熔渣中的一种脱氧方式。

26真空脱氧-钢液的熔化过程是在真空条件下进行,利用抽真空降低气相中CO分压来加强钢液中碳的脱氧能力。

27 偏析-合金在凝固过程中发生的化学成分不均匀现象。

28微观和宏观偏析-微观偏析是指微小范围(约一个晶粒范围)内的化学成分不均匀现象,有晶界和晶内偏析之分。宏观偏析是指宏观尺寸上的偏析,包括:正常偏析、逆偏析、V形偏析和逆V形偏析、带状偏析与层状偏析和重力偏析。

29 气孔-因气体分子聚集而产生的孔洞。气孔有析出性气孔、反应性气孔和侵入性气孔之分。

30、冷裂纹和热裂纹-金属凝固冷却至室温附近发生的开裂现象称之为冷裂纹;在固相线附近发生的裂纹称之为热裂纹。

31 溶质再分配-由于合金凝固过程中随温度的变化,固液界面前沿溶质富集并形成浓度梯度。所以,溶质必须在液、固两相重新分布,即所谓的“溶质再分配”。

32 热流密度-单位时间内通过单位面积的热量。

33焊接-通过加热或加压,或者两者并用,用或不用填充材料,使两个分离的工件(同种或异种金属或非金属,也可以是金属与非金属)产生原子(分子)间结合而形成永久性连接的工艺工程。

34热影响区-焊接过程中,焊缝周围未熔化的母材在加热和冷却过程中,发生显微组织和力学性能变化的区域。该区主要发生物理冶金过程。

35焊接线能量E-单位长度上的焊接热输入量,E = IU/v

36 焊接的合金化-把需要的合金元素加入到金属中去的过程。合金化的目的:首先,补偿在高温下金属由于蒸发或氧化造成的损失;其次是为了消除缺陷,改善焊缝金属的组织与性能,或为了获得具有特殊性能的堆焊金属。

37 合金化的过渡系数-表征合金元素利用率高低的参数。η等于它在熔敷金属中的实际含量与它的原始含量之比。或者单位长度焊条中药皮重量与焊芯重量之比。

38 熔合比-焊缝中局部熔化母材所占比例

39内力-在外力作用下,变形体内各质点就会产生相互作用的力。

40内应力—没有外力的作用条件下,平衡物体内部的应力。

41焊接瞬时应力—在焊接加热冷却过程中某一瞬时中存在的应力。

42焊接残余应力—焊件完全冷却、温度均匀化后残留于焊件中的应力。

43焊接变形-在焊接过程中,由于不均匀加热和冷却收缩,势必使构件产生局部鼓曲、歪曲、弯曲或扭转等。焊接变形的基本形式有纵、横向收缩,角变形,弯曲变形,扭曲变形和波浪形等。实际的焊接变形常常是几种变形的组合。

44 裂纹-在应力与致脆因素的共同作用下,使材料的原子结合遭到破坏,在形成新界面时产生的缝隙称为裂纹。

45 塑性-指金属材料在外力作用下发生变形而不破坏其完整性的能力。

46热塑性变形-金属在再结晶温度以上的变形。

47、张量-由若干个当量坐标系改变时满足转换关系的所有分量的集合。

48 塑性-指固体材料在外力作用下发生永久变形而不被破坏其完整性的能力。

49 简单加载-是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。

50、应力球张量-也称静水应力状态,不能使物体产生形状变化,而只能产生体积变化,即不能使物体产生塑性变形。

51、加工硬化-随着变形程度的增加,(位错运动所受到的阻力增大),金属的强度和硬度增加,而塑性和韧性下降,即产生了加工硬化。

52、应变速率-单位时间内的应变,又称变形速度。

53、滑移-晶体在外力的作用下,其一部分沿着一定的晶面和该晶面上的一定晶向,相对于另一部分产生的相对移动。

54、主切应力平面-一般把切应力有极值的平面称为主切应力平面

55、平面应变状态-如果物体内所有质点都只在同一个坐标平面内发生变形,而在该平面的法线方向没有变形,这种变形称为平面变形。

56、附加应力-由于变形体各部分之间的不均匀变形受到整体性的限制,在各部分之间必将产生相互平衡的应力,该应力叫附加应力。

二、简答题

1 实际液态金属的结构

实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。

2 液态金属表面张力的影响因素

1)表面张力与原子间作用力的关系:原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑

2)表面张力与原子体积(δ3)成反比,与价电子数Z成正比

3)表面张力与温度:随温度升高而下降

4)合金元素或微量杂质元素对表面张力的影响。向系统中加入削弱原子间结合力的组元,会使u0减小,使表面内能和表面张力降低。

3 简述大平板铸件凝固时间计算的平方根定律

τ=ξ2/K2,即金属凝固时间与凝固层厚度的平方成正比。K为凝固系数,可由试验测定。当凝固结束时,ξ为大平板厚度的一半。

4 铸件凝固方式的分类(3分)

根据固、液相区的宽度,可将凝固过程分为逐层凝固方式与体积凝固方式(或糊状凝固方式)。当固液相区很窄时称为逐层凝固方式,反之为体积凝固方式。固液相区宽度介于两者之间的称为“中间凝固方式”。

5 简述Jackson因子与界面结构的关系

Jackson因子α可视为固—液界面结构的判据:凡α≤2的物质,晶体表面有一半空缺位置时自由能降低,此时的固—液界面形态被称为粗糙界面,大部分金属属于此类;凡属α>5的物质凝固时界面为光滑面,有机物及无机物属于此类;α=2~5的物质,常为多种方式的混合,Bi、Si、Sb等属于此类。

6 试写出“固相无扩散,液相只有有限扩散”条件下“成分过冷”的判据,并分析哪些条件有助于形成“成分过冷”。

“固相无扩散,液相只有有限扩散”条件下“成分过冷”的判据:

00

(1)

L

L

G m C K R D K

-

<

下列条件有助于形成“成分过冷”:

(1)液相中温度梯度G L小,即温度场不陡。(2)晶体生长速度快(R大)。(3)液相线斜率m L大。

(4)原始成分浓度C0高。(5)液相中溶质扩散系数D L低。(6)K0<1时,K0小;K0>1时,K0大。

7 写出成分过冷判别式(在“固相无扩散,液相为有限扩散”条件下),讨论溶质原始含量C0、晶体生长速度R、界面前沿液相中的温度梯度GL对成分过冷程度的影响,并以图示或文字描述它们对合金单相固溶体结晶形貌的影响。

答:成分过冷判别式为:

00

(1)

L l

G m C K

R K

-

<

(1)随着C0增加,成分过冷程度增加;

(2)随着R增加,成分过冷程度增加;

(3)随着GL减小,成分过冷程度增加;

如图所示,当C0一定时,GL减小,或R增加,晶体形貌由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶;而当GL、R一定时,随C0的增加晶体形貌也同样由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶。

8 层片状共晶的形核和长大方式

形成具有两相沿着径向并排生长的球形共生界面双相核心的“双相形核”,领先相表面一旦出现第二相,则可通过这种彼此依附、交替生长的“搭桥”方式产生新的层片来构成所需的共生界面,而不需要每个层片重新生核。

9. 铸件的凝固组织可分为几类,它们分别描述铸件凝固组织的那些特点?

铸件的凝固组织可分为宏观和微观两方面。宏观组织主要是指铸态晶粒的形状、尺寸、取向和分布情况;微观组织主要描述晶粒内部的结构形态,如树枝晶、胞状晶等亚结构组织等。

影响液态充型能力的因素

(1)金属性质方面的因素—如合金的化学成分、比热容、热导率、粘度、杂质及气体含量等。

(2)铸型性质方便的因素—铸型的阻力、蓄热系数等。

(3)浇注条件及铸件结构因素—浇注温度、浇注系统、静压头压力。逐渐结构越复杂、厚薄过渡面越多,则型腔结构越复杂,流动阻力越大,液态金属充型能力就越差。

11 防止气孔产生的措施

a. 减少氢的来源。化学方法或机械办法清理焊丝或工件表面氧化膜。

b. 合理选择规范参数。钨极氩弧焊选较大焊接电流和较快焊速。熔化极气体保护焊时选较低焊速并提高焊接线能量有利于

减少气孔。

c. 采用氩气中加少量CO2或O2的熔化极混合气体保护焊。

d. 对厚的工件适当预热。

12 夹杂物对金属性能的影响

夹杂物破坏了金属的连续性,使强度和塑性下降;

尖角形夹杂物易引起应力集中,显著降低冲击韧性和疲劳强度;

易熔夹杂物分布于晶界,不仅降低强度且能引起热裂;

促进气孔的形成,既能吸附气体,又促使气泡形核;

在某些情况下,也可利用夹杂物改善金属的某些性能,如提高材料的硬度、增加耐磨性以及细化金属组织等。

13. 常见焊缝中的夹杂物有几类,它们会对焊缝产生哪些危害?(6分)

答:(1)氧化物夹杂。主要降低焊缝金属的韧性。

(2)氮化物夹杂。在时效过程中以针状分布在晶粒上或穿过晶界,使焊缝金属的塑性、韧性急剧下降。

(3)硫化物夹杂。硫从过饱和固溶体中析出,形成硫化物夹杂,以MnS和FeS形式存在于焊缝中。FeS沿晶界析出与FeO形成低熔点共晶,增加热裂纹生成的敏感性。

14 试比较缩孔与缩松的形成机理

缩松-结晶温度范围较宽的合金,一般按照体积凝固的方式凝固,凝固区内的小晶体很容易发展成为发达的树枝晶。当固相达到一定数量形成晶体骨架时,尚未凝固的液态金属便被分割成一个个互不相通的小熔池。在随后的冷却过程中,小熔池内的液体将发生液态收缩和凝固收缩,已凝固的金属则发生固态收缩。由于熔池金属的液态收缩和凝固收缩之和大于其固态收缩,两者之差引起的细小孔洞又得不到外部液体的补充,便在相应部位形成了分散性的细小缩孔,即缩松。

缩孔-纯金属、共晶成分合金和结晶温度范围窄的合金,在一般铸造条件下按由表及里逐层凝固的方式凝固。由于金属或合金在冷却过程中发生的液态收缩和凝固收缩大于固态收缩,从而在铸件最后凝固的部位形成尺寸较大的集中缩孔。

15. 简述凝固裂纹的形成机理及防止措施。

金属在凝固过程中要经历液-固状态和固-液状态两个阶段,在温度较高的液-固阶段,晶体数量较少,相邻晶体间不发生接触,液态金属可在晶体间自由流动,此时金属的变形主要由液体承担,已凝固的晶体只作少量的相互位移,其形状基本不变。随着温度的降低,晶体不断增多且不断长大。进入固-液阶段后,多数液态金属已凝固成晶体,此时塑性变形的基本特点是晶体间的相互移动,晶体本身也会发生一些变形。当晶体交替长合构成枝晶骨架时,残留的少量液体尤其是低熔共晶,便以薄膜形式存在于晶体之间,且难以自由流动。由于液态薄膜抗变形阻力小,形变将集中于液膜所在的晶间,使之成为薄弱环节。此时若存在足够大的拉伸应力,则在晶体发生塑性变形之前,液膜所在晶界就会优先开裂,最终形成凝固裂纹。

可从冶金和工艺两个方面采取措施,防止热裂纹的产生。

(一)冶金措施

1.限制有害杂质;2.微合金化和变质处理;3.改进铸钢的脱氧工艺,提高脱氧效果,以减少晶界的氧化物夹杂,达到减少热裂倾向之目的;4.改善金属组织;5.利用“愈合”作用。

(二)工艺措施

1.焊接工艺措施;2.铸造工艺措施。

16 冷裂纹的分类及其影响冷裂纹形成的因素

延迟裂纹-这类裂纹是在氢、钢材淬硬组织和拘束应力的共同作用下产生的,形成温度一般在Ms 以下200℃至室温范围,由于氢的作用而具有明显的延迟特征,故又称为氢致裂纹。裂纹的产生存在着潜伏期(几小时、几天甚至更长)、缓慢扩展期和突然开裂三个连续过程。由于能量的释放,常可听到较清晰的开裂声音(可用声发射仪来监测),常发生在刚性较大的低碳钢、低合金钢的焊接结构中。

淬硬脆化裂纹-某些淬硬倾向大的钢种,热加工后冷却到Ms 至室温时,因发生马氏体相变而脆化,在拘束应力作用下即可产生开裂。这种裂纹又称为淬火裂纹,其产生与氢的关系不大,基本无延迟现象,成形加工后常立即出现。这类裂纹常出现在具有强烈淬硬倾向的高(中)碳钢、高强度合金钢、工具钢的焊件中。

低塑性脆化裂纹-它是某些低塑性材料冷却到较低温度时,由于体积收缩所引起的应变超过了材料本身所具有的塑性储备量时所产生的裂纹。这种裂纹通常也无延迟现象,常发生在铸铁或硬质合金构件的成形加工中。如灰口铸铁在400℃以下基本无塑性,焊接裂纹倾向很大。

影响因素-扩散氢的含量与分布、钢材的淬硬倾向和拘束应力状态。

17.共晶凝固过程中的共生生长与离异生长(4分)

答:共生生长:共晶结晶时,后析出的相依附于领先析出的相表面析出,两相具有共同的生长界面,依靠溶质原子在界面前沿的横向扩散,彼此偶合地共同向前生长。

离异生长:共晶两相的析出在时间上和空间上是彼此分离的,没有共生共晶的特征。

18. 集中缩孔的形成机理(3分)

答:纯金属、共晶和结晶温度范围窄的合金,一般按由表及里的逐层凝固方式凝固,当液态收缩和凝固收缩大于固态收缩时,便会在最后凝固部位形成尺寸较大的集中缩孔。

19 保证熔焊焊接接头的措施:

(1)选择合适的母材;

(2)选择合适的焊材;

(3)控制焊接热过程,保证焊缝金属达到成分和组织要求及焊接接头的力学性能;

(4)控制HAZ的组织转变,使接头满足设计和使用要求;

(5)控制使焊接接头性能下降且在局部加热和冷却过程中产生的成分偏析、夹杂、气孔、裂纹、催化等缺陷。

20 比较焊接温度场和焊接热循环

焊接热循环-在焊接热源的作用下,焊件上某点的温度随时间的变化过程称为焊接热循环。

焊接温度场-移动热源焊接过程中,焊件上各点温度随时间及空间而变化(不稳定温度场),但经过一段时间后,达到准稳定状态(移动热源周围的温度场不随时间改变)。

21表征焊接热循环的参数分别是哪几个

加入速度ωH、最高加热温度Tmax、相变温度以上停留的时间tH和冷却速度ωc。

22. 焊接过程的特殊性(以低合金钢为例):

(1)加热温度高,在熔合线附近温度可达l350~l400℃;

(2)加热速度快,加热速度比热处理时快几十倍甚至几百倍

(3)高温停留时间短,在AC3以上保温的时间很短(一般手工电弧焊约为4~20s,埋弧焊时30~l00s)

(4)自然条件下连续冷却,(个别情况下进行焊后保温缓冷);

(5)加热的局部性和移动性;

(6)在应力状态下进行组织转变。

23 影响HAZ硬度的因素有那两个

(1)母材的脆硬倾向是内因,即化学成分。材料淬硬倾向的评价指标—碳当量(Carbon Equivalent)是反映钢中化学成分对硬化程度的影响,它是把钢中合金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影响程度折合成碳的相当含量。

(2)HAZ的冷却速度是外因,即焊接规范。

24 比较粗晶脆化、组织转变脆化、析出脆化和热应变失效脆化

粗晶脆化-在热循环的作用下,熔合线附近和过热区将发生晶粒粗化。粗化程度受钢种的化学成分、组织状态、加热温度和时间的影响。

组织转变脆化-焊接HAZ中由于出现脆硬组织而产生的脆化称之组织脆化。

析出脆化-析出脆化的机理目前认为是由于析出物出现以后,阻碍了位错运动,使塑性变形难以进行。

热应变失效脆化-产生应变时效脆化的原因, 主要是由于应变引起位错增殖,焊接热循环时,碳、氮原子析集到这些位错的周围形成所谓Cottrell气团,对位错产生钉扎和阻塞作用而使材料脆化。

25减少焊接残余应力的措施

(1)热处理法—一般将工件加热到塑性状态的温度,并保温一段时间,利用蠕变产生新的塑性变形,消除残余应力。再缓冷,使厚、薄部位的温度均匀。

(2) 机械法—如对压力容器、桥梁等采用加载办法降低残余应力。原理是利用加载所产生的均匀拉伸应力与焊接应力相叠加,使存在于高拉伸应力区的应力值达到屈服强度值,迫使材料发生塑性变形,卸载后该区的残余应力得以完全或部分消除。

(3) 共振法—将焊件在共振条件下振动10~15min,以达到消除焊接残余应力的目的。该法的优点:设备费用低,花费时间少,易于操作,无氧化皮,不受工件大小尺寸的限制。不会因热处理规范不当产生裂纹。

26 焊接变形的基本形式

(1)收缩变形(Contraction Deformation)—焊接整体尺寸的减小,包括焊缝的纵向和横向收缩。

(2)角变形(Angular Deformation)—焊缝截面上下不对称或受热不均匀时,焊缝因横向上下收缩不一致,引起的变形。V形坡口的对接接头和角接接头易出现角变形。

(3)弯曲变形(Curving Deformation)—焊缝在结构上不对称分布,使得焊缝的纵向收缩不对称,引起焊件向一侧弯曲,形成的变形。

(4)波浪变形(Waviness Deformation)—焊接薄板结构时,焊接压应力使薄板失稳,引起不规则的变形。

(5)扭曲变形(Twist Deformation)—焊缝的角变形沿焊缝长度方向分布不均匀和焊件纵向错边引起的,也是结构中焊缝布置不对称,或者焊接顺序和施焊方向不合理有关。

27 防止防止热裂纹的措施

总原则,主要控制焊缝金属成分和调整焊接参数。

1 焊缝成分的控制

(1)选择合适的焊接材料—对一定的母材选用不同的焊接材料,可以得到不同成分的焊缝,在抗裂性上出现不同的差异。如加入细化晶粒元素Mo、V、Ti、Nb等可以提高抗烈性的常用办法。

(2)限制有害的杂质—对于不同材料的焊缝,有害元素的杂质也不同。各种材料中,均必须严格控制P、S的含量。合金元素越高的材料,对P和S的限制要求越严格。

2 调整焊接工艺—焊接工艺的影响主要有以下几个方面:

(1) 适宜的焊接参数—适当增加焊接电流、电压提高焊接热输入和预热温度,可以减少焊缝金属的应变速率,从而减低热裂纹的倾向。

(2) 控制焊缝金属成形系数—在不同的焊接方法和接头形式的条件下,选用合适的成形系数。

(3) 减少熔合比—减少熔合比,即减少母材对焊缝的稀释作用,包括焊缝中合金元素的稀释,及母材中有害元素对焊缝的影响。

(4) 减少拘束度—选择合理的焊接顺序,尽可能让大多数焊缝在较小的刚度下进行焊接,使焊缝的拘束应变减小。

28 氢致裂纹的机理—可用氢的应力诱导扩散理论进行解释

该理论认为:金属内部的晶格缺陷等缺陷提供了裂纹源,在缺陷前沿(即缺口处)会形成应力集中的三向应力区。于是应力的诱导下,使氢向高应力区扩散,并发生聚集。当氢的浓度达到一定值时,将促使位错移动或增殖。此时缺口尖端微区的塑性变形量随氢的浓度增加而增大。当氢的浓度达到临界值时,便发生局部开裂现象,导致裂纹向前扩展;并在裂纹尖端形成新的三向应力区,促使氢向新的三向应力区内扩散聚集。此时裂纹暂停向前扩展,只有当裂纹尖端局部的氢浓度达到临界值时,裂纹才能进一步扩展。由此可见氢致裂纹的启裂需要一段时间(即潜伏期),而且裂纹的扩展是一个断续的过程。裂纹停顿的时间正是氢再次进行扩散和聚集,并达到临界浓度所需的时间。

29 热塑性变形机理及其对金属组织和性能的影响

金属热塑性变形机理主要有以下几种:晶内滑移,晶内孪生,晶界滑移,扩散蠕变。其中,晶内滑移是

最主要的行为方式。孪生多发生在高温高速变形;晶界滑移和扩散蠕变只发生在高温变形的时候。

热塑性变形对金属的组织和性能的影响主要表现在以下几点:

1.改善晶粒组织

2.锻合内部缺陷

3.形成纤维状组织

4.改善碳化物和夹杂物分布

5.改善偏析

30、简述张量的基本性质

(1)张量不变量。张量的分量一定可以组成某些函数f (Pij ) ,这些函数值与坐标轴无关,它不随坐标而改变,这样的函数,叫做张量不变量。二阶张量存在三个独立的不变量。

(2)张量可以叠加和分解。几个同阶张量各对应的分量之和或差定义为另一个同阶张量。两个相同的张量之差定义为零张量。

(3)张量可分为对称张量、非对称张量、反对称张量。若张量具有性质Pij= Pji,就叫对称张量;若张量具有性质Pij=?Pji,且当i=j 时对应的分量为0,则叫反对称张量;如果张量Pij≠Pji,就叫非对称张量。任意非对称张量可以分解为一个对称张量和一个反对称张量。

(4)二阶对称张量存在三个主轴和三个主值。如果以主轴为坐标轴,则两个下角标不同的分量均为零,只留下两个下角标相同的三个分量,叫作主值。

31 变形连续方程的物理意义

表示:只有当应变分量之间满足一定的关系时,物体变形后才是连续的。否则,变形后会出现“撕裂”或“重叠”,变形体的连续性遭到破坏。

32 焊接熔池的凝固条件

(1) 熔池金属的体积小,冷却速度快

(2) 温差大、过热温度高

(3) 动态凝固过程

(4) 液态金属对流激烈

33 氢对焊缝金属的质量有何影响?(6分)

(a)氢脆。氢使钢在室温附近的塑性严重下降。

(b)白点(鱼眼)。碳钢或低合金钢在拉伸或弯曲断面上出现银白色的圆形局部脆断点。若产生白点,则其塑性大大降低。

(c)形成气孔。形成析出性氢气孔。

(d)冷裂纹。氢是促使产生冷裂纹的主要因素之一。

三、计算题

1.在直角坐标系中,一点的应力状态表示成张量的形式为

50-50-50-505ij σ??

??=??????

用应力状态特征方程求出该点的主应力和主方向。(8分)

解:应力张量不变量为

1222222235

()50

2()0

x y z x y z y x z xy xz zy x y z xy zy xz z xy y xz x zy J J J σσσσσσσσστττσσστττστστστ=++==-+++++==+-++=

代入应力状态特征方程,得 3

2-5-50=0 -10)(+5)=0σσσσσσ或( 解得12310;=0;5σσσ==-

将应力分量代入P317式(14-10),并与式(14-11)联合写成方程组

222(5-)l-5n=0(-5-)m=0

-5l+(5-)n=0l +m +n =1σσσ?????????为求主方向,可将解得的三个主应力值分别代入上述方程组的前

三式中的任意两式,并与第四式联立求解,可求得三个主方向的方向余弦为

1111222233330,0,0,1,0

l m n l m n l m n σσσ=========对于:对于:对于:

2. 试推导均质形核的临界形核功。(7分)

均质晶核形成时,设晶核为球体,系统自由能变化△G 由两部分组成,即作为相变驱动力的液-固体积自由能之差(由△GV 引起)和阻碍相变的固-液界面能(由σLS 引起)

32443V V LS LS G G G V A r r Vs Vs σππσ???=+=+ (1) 式中,V 为晶核体积;Vs 为形核晶体的摩尔体积;A 为晶核表面积。

因为H /V m m G T T ?=-??

要求出临界形核半径r*(即r 的最大值),只要0=???r G 即可:

22LS s LS s m v m V V T r G H T σσ*=-=??? (2)

将式(2)代入式(1),可得到均质形核的临界形核功 23163s m LS m V T G H T πσ*???= ?????

3 试推导非均质形核的临界形核功。

假设晶核在界面上形成球冠状,达到平衡时则存在以下关系:

cos LS CS CL σσσθ=+ (1)

式中,LS σ、CS σ、CL σ分别为液相与基底、液相与晶核、晶核与基底间的界面张力;θ为润湿角。

该系统吉布斯自由能的变化为

()C V CS CS LS CL CL G V G A A σσσ+-+V V 异=- (2)

式中,C V 为球冠的体积,即固态核心的体积;

CS A 为晶核与夹杂物间的界面面积;CL A 为晶核与液相的界面面积。 因此有:

3220(sin )(cos )(23cos cos )3C r V r d r r θππθθθθ=-=-+? (3) 202sin ()2(1cos )CL A r rd r θ

πθθπθ==-? (4)

22222(sin )sin (1cos )

CS A r r r πθπθπθ===- (5) 将式(3)~(5)代入式(2)得

332cos cos V CL G r G r θθππσ+V V 异42-3=(-+4)()34 (6)

对式(6)求导,并令0d G dr V 异=,可求出 CL CL V 22G m r T L T σσ*=V V 异=

3CL CL 2V 16()()A ()3G n G f G f f πσθθσθ***=V V V 异

均1==3 4 流体力学的斯托克斯公式计算气泡或夹杂上浮的速度。

2

()29m B g r ρρνη-=其中:r 为气泡或夹杂的半径,m ρ为液态合金密度,B ρ为夹杂或气泡密度,g 为重力加速度。η为粘度或粘度系数。

5 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。

6 P5

7 第6题。

7 P105第5题

8已知塑性状态下某质点的应力张量为??????????---=25005015005050ij σ(MPa ),应变增量δε1.0=x d (δ为一微小量),试求应变

增量的其余分量。(6分) 解:1503250150503-=----=++=z

y x m σσσσ

根据增量理论有:

λσεd d ij ij ?=' 所以:

()δδδσσεσελ001.0150501.03/25015050501.0'=+-=-----=-==m x x x x

d d d

所以: δλλσε001.0100050005010015025005015015005015050'???????????-=???????????+-+-+-=?=d d d ij ij ??????????-=δδδδ1.00005.0000005.001.0

9推导希尔(Scheil)公式(固相无扩散而液相充分混合均匀的溶质再分配),必要时画出该条件下成分与离开固-液界面前沿距离关系图。

设试样从一端开始凝固。开始时T =TL ,Cs =K0C0,CL =C0。降至T*时,固-液界面上固相成分Cs*与液相成分CL*平衡,

由于固相中无扩散,成分沿斜线由K0C0逐渐上升(固相先后凝固各部分成分不同);而液相因完全混合,平均成分*L L C C =,这

种情况下

*()(1)L L S C C dfs fs dC -=-,即***00()(1)()S S S C C C dfs fs d K K -=-

于是有**01(1)S S dC dfs fs K C =--,积分得*0ln(1)ln (1)S lnC fs A K --=+-

**00ln[(1)](1)(1)S S lnC lnC A fs K K -=-=-- 0(1)*ln[(1)]K S A fs lnC --=

0(1)*(1)K S A fs C --= fs =0时,*00S C K C =

所以00A K C = 0(1)*00(1)K S C K C fs -=- 0(1)*0K L L C K f -= (Scheil 公式)

10对于Oxyz 直角坐标系,已知受力物体内一点的应力张量为

017201720000100ij σ??

??=?????? 求出该点的应力张量不变量、主应力、主切应力、最大切应力、等效应力、应力偏张量及应力球张量 解:应力张量不变量为

122222223100

()29584

2()2958400x y z x y z y x z xy xz zy x y z xy zy xz z xy y xz x zy J J J σσσσσσσσστττσσστττστστστ=++==-+++++==+-++=-

由应力状态方程321230J J J σσσ---=解得主应力 123172100172Mpa

Mpa

Mpa σσσ===-

主切应力 121223233131362

1362

1722Mpa

Mpa Mpa σστσστσστ-=±=±-=±=±-=±=m 最大切应力 max 172Mpa τ=±

等效应力

314.25Mpa σ=

= 应力张量得分解 1231

()33.33m Mpa σσσσ=++=-

应力球张量

33.300033.300033.3m σ?? ?= ? ??? 偏张量为 100172

03100172031000

03??- ? ? ?- ? ? ? ???

材料成型原理

硕士研究生入学考试《材料成形原理》命题大纲 第一部分考试说明 一、考试性质 《材料成形原理》考试科目是我校为招收材料成形及控制工程、材料加工工程专业硕士研究生而设置的,由我校材料科学与工程学院命题。考试的评价标准是普通高等学校材料成形及控制工程和相近专业优秀本科毕业生能达到的及格或及格以上水平。 二、考试的学科范围 应考范围包括:焊接热源及热过程,熔池凝固及焊缝固态相变,焊接化学冶金,焊接热影响区的组织与性能,焊接缺陷与控制;金属塑性成形的物理基础,应力分析,应变分析,屈服准则,应力应变关系,变形与流动问题,塑性成形力学的工程应用。 三、评价目标 《材料成形原理》是材料成形及控制工程和相关专业重要的专业基础课。本课程考试旨在考查考生是否了解材料成形的基本过程、基本特点、基本概念和基本理论,是否掌握了材料成形的基本原理、基本规律及应用。 四、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; 第二部分考查要点 一、焊接热源及热过程 1、与焊接热过程相关的基本概念 2、熔焊过程温度场 3、焊接热循环 二、熔池凝固及焊缝固态相变 1、焊接熔池凝固特点 2、焊接熔池结晶形态 3、结晶组织的细化 4、焊缝金属的化学成分不均匀性 5、焊缝固态相变 6、焊缝性能的控制 三、焊接化学冶金 1、焊接化学冶金过程的特点 2、焊缝金属与气相的相互作用 3、焊缝金属与熔渣的相互作用 4、焊缝金属的脱氧与脱硫 5、合金过渡 四、焊接热影响区的组织与性能 1、焊接热循环条件下的金属组织转变特点 2、焊接热影响区的组织与性能

五、焊接缺陷与控制 1、焊缝中的夹杂与气孔 2、焊接裂纹 六、金属塑性成形的物理基础 1、冷塑性变形与热塑性变形 2、影响塑性与变形抗力的因素 七、应力分析 1、应力张量的性质 2、点的应力状态与任意斜面上的应力 3、主应力,主切应力,等效应力 4、应力球张量与偏张量 八、应变分析 1、应变张量的性质 2、工程应变、对数应变、真实应变 九、屈服准则 1、Tresca屈服准则与Mises屈服准则 2、屈服轨迹与屈服表面 十、应力应变关系 1、塑性应力应变关系 2、增量理论与全量理论 十一、变形与流动问题 1、影响变形与流动的因素 2、摩擦及其影响 十二、塑性成形力学的工程应用。 1、主应力法的应用 2、滑移线法的应用 2014试题范围:今年的真题跟去年论坛里回忆的真题考的内容有80%都不一样。还是分为必做题和选做题,必做题100分,选做题50分。必做题包括塑性和焊接,选做题塑性焊接二选一。必做题前四题是塑性,后五题为焊接。选做题中:塑性部分是三题计算题,焊接部分有五题,第一题是计算题,后四题为分析简答题。 必做题:塑性考了 1.冷塑性变形对金属组织和性能的影响。2.什么是应力偏张量,应力球张量以及它们的物理意义。 3.考了对数应变和相对应变。4.还考了塑性成形过程中的力学方程。焊接考了 1.结晶裂纹的影响因素,防治措施 2.还考了熔渣的脱氧 3.熔渣的碱度对金属氧化,脱氧等等的影响。其他的忘了,跟去年考的很不一样,好多不会。 选作题;塑性是考了三个计算题,我没注意看,反正考了利用屈服准则来计算,还考了正应力,切应力,主应力的计算。最后一题利用主应力法来计算什么,我选做题选的是焊接,

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。 热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

材料成形原理课后习题解答

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=?(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成形原理经典试题及答案

《材料成形基础》试卷(A)卷 考试时间:120 分钟考试方式:半开卷学院班级姓名学号 一、填空题(每空0.5分,共20分) 1. 润湿角是衡量界面张力的标志,润湿角?≥90°,表面液体不能润湿固体;2.晶体结晶时,有时会以枝晶生长方式进行,此时固液界面前液体中的温度梯度为负。3.灰铸铁凝固时,其收缩量远小于白口铁或钢,其原因在于碳的石墨化膨胀作用。 4. 孕育和变质处理是控制金属(或合金)铸态组织的主要方法,两者的主要区别在于孕育主要影响生核过程,而变质则主要改变晶体生长方式。 5.液态金属成形过程中在固相线附近产生的裂纹称为热裂纹,而在室温附近产生的裂纹称为冷裂纹。 6.铸造合金从浇注温度冷却到室温一般要经历液态收缩、固态收缩和凝固收缩三个收缩阶段。 7.焊缝中的宏观偏析可分为层状偏析和区域偏析。 8.液态金属成形过程中在附近产生的裂纹称为热裂纹,而在附近产生的裂纹成为冷裂纹。 9.铸件凝固方式有逐层凝固、体积凝固、中间凝固,其中逐层凝固方式容易产生集中性缩孔,一般采用同时凝固原则可以消除;体积凝固方式易产生分散性缩松,采用顺序凝固原则可以消除此缺陷。 10.金属塑性加工就是在外力作用下使金属产生塑性变形加工方法。

1.12.塑性变形时,由于外力所作的功转化为热能,从而使物体的温度升高的现象称为 温度效应。 2.13.在完全不产生回复和再结晶温度以下进行的塑性变形称为冷变形。 14.多晶体塑性变形时,除了晶内的滑移和产生,还包括晶界的滑动和转动。 3.15.单位面积上的内力称为应力。 4.16.物体在变形时,如果只在一个平面内产生变形,在这个平面称为塑性流平面。17.细晶超塑性时要求其组织超细化、等轴化和稳定化。18.轧制时,变形区可以分为后滑区、中性区和前滑区三个区域。19.棒材挤压变形时,其变形过程分为填充和挤压两个阶段。20.冲裁件的切断面由圆角带、光亮带、断裂带三个部分组成。 二、判断题(在括号内打“√”或“×”,每小题0.5分,共10分)1.酸性渣一般称为长渣,碱性渣一般称为短渣,前者不适宜仰焊,后者可适用于全位置焊。(√ ) 2.低合金高强度钢焊接时,通常的焊接工艺为:采取预热、后热处理,大的线能量。( x ) 3.电弧电压增加,焊缝含氮量增加;焊接电流增加,焊缝含氮量减少。(√ ) 4.电弧电压增加时,熔池的最大深度增大;焊接电流增加,熔池的最大宽度增大。( x ) 5.在非均质生核中,外来固相凹面衬底的生核能力比凸面衬底弱。( x ) 6.液态金属导热系数越小,其相应的充型能力就越好;与此相同,铸型的导热系数越小,越有利于液态金属的充型。(√ ) 7.在K0<1的合金中,由于逆偏析,使得合金铸件表层范围内溶质的浓度分布由外向内逐渐降低。(√ ) 8. 粘度反映了原子间结合力的强弱,与熔点有共同性,难熔化合物的粘度较高,而熔点较低的共晶成分合金其粘度较熔点较高的非共晶成分合金的低。 (√ ) 9.两边是塑性区的速度间断线在速端图中为两条光滑曲线,并且两曲线的距离即为速度间断线的间断值。(√ )

材料成型原理(上)考试重点复习题

《材料成形原理》阶段测验 (第一章) 班级:姓名:学号成绩: 1、下图中偶分布函数g(r),液体g(r)为c图,晶态固体g(r)为a图,气体g(r)为 b 图。 (a)(b)(c) 2、液态金属是由大量不停“游动”着的原子团簇组成,团簇内为某种有序结构,团簇周围是一些散乱无序的原子。由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变,这种现象称为结构起伏。 3、对于液态合金,若同种元素的原子间结合力F(A-A、B-B) 大于异类元素的原子间结合力F(A-B),则形成富A及富B的原子团簇,具有这样的原子团簇的液体仅有“拓扑短程序”;若熔体的异类组元具有负的混合热,往往F(A -B)>F(A-A、B-B),则在液体中形成具有A-B化学键的原子团簇,具有这样的原子团簇的液体同时还有“化学短程序”。 4、液体的原子之间结合力(或原子间结合能U)越大,则内摩擦阻力越大,粘度也就越大。液 体粘度η随原子间结合能U按指数关系增加,即(公式):?? ? ? ? ? = T U T B B k exp k 2 3 τ δ η。 5、加入价电子多的溶质元素,由于造成合金表面双电层的电荷密度大,从而造成对表面压力大,而使整个系统的表面张力增大。 6、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、合金的结晶潜热H ?越大,浇注温 度 浇 T、铸型温度T型越高,充型能力越强。 7、两相质点间结合力越大,界面能越小,界面张力就越小。两相间的界面张力越大,则润湿角越大,表示两相间润湿性越差。 8、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、 合金的结晶潜热H ?越小,浇注温度 浇 T、铸型温度T型越高, 充型能力越强。 9、右图为碱金属液态的径向分布函数RDF,请在图中标注液 态K的平均原子间距r1的位置,并以积分面积(涂剖面线)表 达液态K的配位数N1的求法。见图中标注 10、试总结原子间相互作用力、温度、原子间距、表面活性元 素对液态金属的粘度、表面张力的总体规律。(可写于背面)

华中科技大学-材料成型原理考试重点.

第一篇第一章液态金属的结构和性质 1.凝固不过只是一种相变过程,即物质从液态转变成固态的过程称为凝固。 2.相变不只是发生在固相、液相、气相三相之间,在固相中间也是会有相变,即同素异构转变。 3.对金属晶体加热以后,晶体受热膨胀,若对晶体进一步加热,则达到激活能数值的原子数量也进一步增加。原子离开点阵后,即留下自由点阵—空穴。 空穴的产生,造成局部地区的势垒的减少,使得邻近的原子进入空穴位置,这样就是造成空穴的位移。在熔点附近,空穴数目可以达到原子总数的1%。这样在实际晶体中,除按一定点阵排列外,尚有离位原子与空穴。 当这些原子的数量达到某一数量值时,首先在晶界处的原子跨越势垒而处于激活状态,以致能脱离晶粒的表面而向邻近的晶粒跳跃,导致原有晶粒失去固定形状与尺寸,晶粒间可出现相对流动,称为晶界粘性流动。 液态金属中的原子排列,在几个原子间距的小范围内与固态原子基本一致,而远离原子后就完全不同于固态,这个就称为“近程有序”、“远程无序”。固态的原子为远程有序。 4.在熔点温度的固态变为同温度的液态时,金属要吸收大量的热量,称为熔化潜热。 5.固态金属的加热熔化符合热力学规律:Eq=d(U+pV)=dU+pdV=dH dS=Eq/T,其大小描述了金属由固态变成液态时原子由规则排列变成非规则排列的紊乱程度。 6.熵值变化是系统结构紊乱性变化的量度。 7.液态金属的结构:纯金属结构是由原子集团、游离原子和空穴组成;液态金属的结构是不稳定的,而是处于瞬息万变的状态,这种原子集团与空穴的变化现象称为“结构起伏”,同时还存在大量的能量起伏。

实际液态金属极其复杂,其中包括各种化学成分的原子集团、游离原子、空穴、夹杂物及气泡,是一种“浑浊”的液体。存在温度起伏、结构起伏和成分起伏。 8.液态金属的性质:⑴粘度:实质上就是原子间作用力,影响因素①化学成分 一般的难熔化合物的物体粘度高,而熔点低的共晶成分合金的粘度低;②温度 液态金属的粘度随温度的升高而降低;③非金属夹杂物 液态金属中固态的非金属夹杂物使液态金属的粘度增加,主要是因为夹杂物的存在使液态金属成为不均匀的多相体系,液相流动时的内摩擦力增加所致。意义:①对液态金属净化的影响;上浮的动力F=V(γ1-γ2),半径在0.1cm 以下的球形杂质阻力Fc=6πrνη,由此可知速度,此即斯托克斯公式;②对液态合金流动阻力的影响;当液体以层流方式流动时,阻力系数大,流动阻力大,因此在成型过程中以紊流方式流动最好;③对液态金属中液态合金对流的影响,液态金属在冷却和凝固过程中,由于存在温度差和浓度差而产生浮力,它是液态合金对流的驱动力,当浮力大于或等于粘滞力时则产生对流,粘度越大对流强度越小。 ⑵表面张力液体或固体同空气或真空接触的界面叫表面,一小部分的液体单独在大气中出现时,力图保持球形状态,说明总有一个力的作用使其趋向球状,这个力称为表面张力。 液体内部分子或原子处于力的平衡状态,而表面层上的分子或原子受力不均匀,结果产生指向液体内部的合力,此即表面张力产生的根源。 ΔW=σΔA=ΔGb ,即为单元 面积的自由能,界面能σAB=σA+σB―W AB 影响表面张力的因素①熔点,表面张力的实质是质点间的作用力,故原子间结合力大的物质,其熔点、沸点高,则表面张力往往越大。②温度 大部分金属和合金,如铝、镁,锌等,其表面张力随温度升高而降低,因为温度升高使液体质点间结合力减弱。③溶质元素 溶质元素对表面张力的影响分为两类,使表面张力降低的溶质元素叫做表面活性元素,“活性”之义表面含量大于内部含量,称为正吸附元素;提高表面张力的元素称为非表面活性元素,θ σσσcos Lc Sc SL +=

材料成形原理课后习题解答

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或裂 纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。 答: 液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而界 面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r 为球面的半径;(2)ρ=σ(1/r 1+1/r 2),式中r 1、r 2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 答: 液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条 件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 解: 浇注模型如下: 则产生机械粘砂的临界压力 ρ=2σ/r 显然 r = 2 1 ×= 则 ρ=4 10*5.05 .1*2-=6000Pa 不产生机械粘砂所允许的压头为 H =ρ/(ρ液*g )= 10 *75006000 = 解: 由Stokes 公式 上浮速度 9 2(2v )12r r r -=

《材料成形原理》重点及答案

一、名词解释 1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。 6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。 7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场 稳定温度场-不随时间而变的温度场(即温度只是坐标的函数): 8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。 9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。 10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核”。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。

《材料成形原理》复习资料

《材料成形原理》复习题(铸) 第二章 液态金属的结构和性质 1. 粘度。影响粘度大小的因素?粘度对材料成形过程的影响? 1)粘度:是液体在层流情况下,各液层间的摩擦阻力。其实质是原子间的结合力。 2)粘度大小由液态金属结构决定与温度、压力、杂质有关: (1)粘度与原子离位激活能U 成正比,与相邻原子平衡位置的平均距离的三次方成反比。(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。 (3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。 3)粘度对材料成形过程的影响 (1)对液态金属净化(气体、杂质排出)的影响。(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G 越小。 2.?表面张力。影响表面张力的因素?表面张力对材料成形过程及部件质量的影响? 1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。其实质是质点间的作用力。 2)影响表面张力的因素 (1)熔点:熔沸点高,表面张力往往越大。(2)温度:温度上升,表面张力下降,如A l、Mg 、Zn 等,但Cu 、Fe 相反。(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。(4)流体性质:不同的流体,表面张力不同。 3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。 3.?液态金属的流动性。影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响? 1)液态金属的流动性是指液态金属本身的流动能力。 2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。 3)好的流动性利于缺陷的防止:(1)补缩(2)防裂(3)充型(4)气体与杂质易上浮。 4. 液态金属的充型能力。影响液态金属的充型能力的因素? 1)液态金属的充型能力是指液态金属充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。 2)影响液态金属的充型能力的因素有: (1)内因是金属自身流动性;(2)外因有型的性质、浇注条件、型腔结构形状[(1)金属性质:1)合金成分2)结晶潜热3)比热、密度、导热系数 4)粘度5)表面张力;(2)铸型性质方面因素:1)型的蓄热系数大2)型的温度3)型中气体;(3)浇注条件方面因素:1)浇注温度2)充型压头3)浇注系统结构;(4)铸件结构方面因素:1)折算厚度2)复杂程度] 5.?液态金属的充型能力与流动性的区别和联系? 1)液态金属的充型能力首先取决于液态金属本身的流动能力,同时又和外界条件密切相关。 2)液态金属自身的流动能力称为“流动性”,由液态金属的成分、温度、杂质含量等决定的,而与外界因素无关,流动性可认为是特定条件下的充型能力。 3)液态金属流动性好,其充型能力强,反之其充型能力差,但这可以通过外界条件来提高充型能力。 第三章 液态金属凝固热力学和动力学 1.?什么是溶质再分配?溶质分配系数表达式? 1)溶质再分配:合金析出的固相中溶质含量不同于其周围液相内溶质含量的现象,产生成分梯度,引起溶质扩散。 2)溶质分配系数k:凝固过程中固液界面固相侧溶质质量分数m S 与液相中溶质质量分数m L 之比,即k=m S/mL 。 2. 均质形核与非均质形核(异质形核)。 1)均质形核:依靠液态金属内部自身的结构自发的形核。 2)非均质形核:依靠外来夹杂或型壁所提供的异质界面进行形核过程。 3.?界面共格对应关系及其判别? 1)固体质点的某一晶面和晶核的原子排列规律相似,原子间距离相近或在一定的范围内成比例,就可能实现界面共格对应,该固体质点就可能成为形核的衬底。这种对应关系叫共格对应关系。 2)共格对应关系用点阵失配度δ衡量即 % 100||?-=z z s a a a δ (1)δ≤5%为完全共格,形核能力强;(2)5%<δ≤25%为部分共格,夹杂物衬底有一定的形核能力;(3)δ>25%为不共格,夹杂物衬底无形核能力。 4. 点阵失配度 点阵失配度δ即 % 100||?-=z z s a a a δ 其中a s 、a z 分别为夹杂物、晶核原子间距离。用来衡量界面共格对应关系。 5. 晶体的宏观长大方式? 1)平面方式长大 条件:(1)固液界面前方液体的正温度梯度分布G L>0,液相温度高于界面温度T i;(2)固液前方液体过冷区域及过冷度极小;(3)晶体生长时凝固潜热的析出方向同晶体生长方向相反。生长过程:生长时,一旦某一晶体生长伸入液相区就会被重新熔化,从而导致晶体以平面方式生长。 2)树枝晶方式长大 条件:(1)固液界面前方负温度梯度分布G L <0,液相温度低于凝固温度T i ;(2)固液界面前液体过冷区域较大,距界面越远的液体其过冷度越大;(3)晶体生长时凝固潜热析出的方向同晶体生长方向相同。生长过程:界面上突起的晶体将快速伸入过冷液体中,一次晶臂长出二次晶臂,甚至长出三次晶臂,产生枝晶,以树枝晶方式生长。 6. 固液界面微观结构有哪几种? 1)粗糙界面:当a ≤2,x=0.5时,界面固相一侧的点阵位置有50%左右被固相原子占据,另部分位置空着,其微观上是粗糙的、高低不平的,大多数金属都属于这种结构。

材料成型原理复习

《材料成型原理》试卷 一、铸件形成原理部分(共40分) (1)过冷度;(2)液态成形;(3)复合材料;(4) 定向凝固; (1)过冷度:金属的理论结晶温度与实际结晶温度的差,称为过冷度。 (2)液态成形:将液态金属浇入铸型后,凝固后获得一定形状和性能的铸件或铸锭的加工法。 (3)复合材料:有两种或两种以上物理和化学性质不同的物质复合组成的一种多相固体。(4)定向凝固:定向凝固是使金属或合金在熔体中定向生长晶体的一种工艺方法。 (5)溶质再分配系数:凝固过程中固-液界面固相侧溶质质量分数与液相中溶质质量分数之比,称为溶质再分配系数。 2、回答下列问题 (1)影响液态金属凝固过程的因素有哪些?影响液态金属凝固的过程的主要因素是化学成分;冷却速率是影响凝固过程的主要工艺因素;液态合金的结构和性质等对液态金属的凝固也具有重要影响。 (2)热过冷与成分过冷有什么本质区别?热过冷完全由热扩散控制。成分过冷由固-液界前方溶质的再分配引起的,成分过冷不仅受热扩散控制,更受溶质扩散控制。 (3)简述铸件(锭)典型宏观凝固组织的三个晶区.表面细晶粒区是紧靠型壁的激冷组织,由无规则排列的细小等轴晶组成;中间柱状晶区由垂直于型壁彼此平行排列的柱状晶粒组成;内部等轴晶区由各向同性的等轴晶组成。 3、对于厚大金属型钢锭如何获得细等轴晶组织?降低浇注温度,有利于游离晶粒的残存和产生较多的游离晶粒;对金属液处理,向液态金属中添加生核剂,强化非均质形核;浇注系统的设计要考虑到低温快速浇注,使游离晶不重熔;引起铸型内液体流动,游离晶增多,获得等轴晶。 二、焊接原理部分1简述氢在金属中的有害作用。氢脆,白点,气孔,冷裂纹2写出锰沉淀脱氧反应式,并说明熔渣的酸碱性对锰脱氧效果的影响.[Mn] + [FeO] = [Fe] + (MnO),酸性渣脱氧效果好,碱度越大,锰的脱氧效果越差。3冷裂纹的三大形成要素是什麽?钢材的淬硬倾向,氢含量及其分布,拘束应力状态4说明低碳钢或不易淬火钢热影响区组织分布.(1)熔合区:组织不均匀;(2)过热区:组织粗大; (3)相变重结晶区(正火区):组织均匀细小;(4)不完全重结晶区:晶粒大小不一,组织分布不均匀. 一、填空题 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。 2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 4.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。 5.液态金属凝固时由热扩散引起的过冷称为热过冷。 6.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区不同形态的晶区。 7.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。 8.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 9.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。

材料成形原理试题

填空题: 1、铸件的宏观凝固组织主要是指 ,其通常包括 、 和 三个典型晶区。 2、金属塑性变形的基本规律有 和 。 3、铸件凝固组织中的微观偏析可分为 、 和 等,其均可通过 方法消除。 4、在塑性加工中润滑的目的是 , 模具寿命和产品质量, 变形抗力,提高金属的充满模腔的能力等。 5、材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 。 6、钢冷挤压前,需要对坯料表面进行 润滑处理。 7、铸造应力有 、 和? 三种。 8、铸件的宏观凝固组织主要是指 ,其通常包 括 、 和 三个典型晶区。 9、铸件凝固组织中的微观偏析可分为 、 和 等,其均可通 过 方法消除。 10、在塑性加工中润滑的目的是 , 模具寿命和产品质量, 变形 抗力,提高金属的充满模腔的能力等。 11、材料的加工过程可以用相关的材料流程、 流程和 流程来描述。材料流程中,用来产生材料的形状、尺寸和(或) 变化的过程称为基本过程。材料流程中的基本过 程又分为机械过程、 过程和化学过程过程。 12、通常所说弹塑性力学三大基础方程指的是 方程、 方程和 方 程 。其中表达变形与应变之间关系的是 方程。 13、液态金属成形过程中在 附近产生的裂纹称为热裂纹,而在 附近产生的裂纹称为冷裂纹。 14、润湿角是衡量界面张力的标志。界面张力达到平衡时,杨氏方程可写为 =θcos 。当 时,液体能润湿固体;=θcos 时,为绝对润湿; 当 时,液体绝对不能润湿固体。 15、在塑性加工中润滑的目的是 ,提高模具寿命和产品质量, 变形 抗力,提高金属的充满模腔的能力等。 16、材料中一点的两种应力状态相等的充要条件是两应力状态的 分别相等。 17、采用主应力法分析宽度为B 的细长薄板在平锤下压缩变形。已知平衡方程为: 02=+h dx d k x τσ,接触表面摩擦条件y k f στ=,利用近似屈服条件为k y x 2=-σσ,方程的通解为: ,其中的积分常数,可根据边界条件: 确定,C = 。 18.液态金属或合金中一般存在 起伏、 起伏和 起伏。 19、铸件的宏观凝固组织主要是指 ,其通常包 括 、 和 三个典型晶区。

材料成形原理重点及答案

一、名词解释 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。 离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形貌。变质在改变共晶合金的非金属相的结晶形貌上有着重要的应用,而在等轴晶组织的获得和细化中采用的则是孕育方法。 联生结晶-熔池边界未熔母材晶粒表面,非自发形核就依附在这个表面,在较小的过冷度下以柱状晶的形态向焊缝中心生长,称为联生结晶(也称外延生长)。 择优生长-那些主干取向与热流方向平行的枝晶,较之取向不利的相邻枝晶生长得更为迅速。它们优先向内伸展并抑制相邻枝晶的生长。在逐渐淘汰趋向不利的晶体过程中发展成柱状晶组织。这种互相竞争淘汰的晶体生长过程称为晶体的择优生长。 快速凝固-是指采用急冷技术或深过冷技术获得很高的凝固前沿推进速率的凝固过程。 气体的溶解度—在一定温度和压力条件下,气体溶入金属的饱和浓度。影响溶解度的主要因素是温度及压力、气体的种类和合金的成分。 熔渣的碱度-是熔渣中的碱性氧化物与酸性氧化物浓度的比值(分子理论)或液态熔渣中自由氧离子的浓度(或氧离子的活度)(离子理论)。 熔渣的氧化和还原能力-是指熔渣向液态金属中传入氧(或从液态金属中导出氧)的能力。

超有用的材料成型原理试卷试题及答案(精选.)

陕西工学院考试试卷(B)标准答案 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 5.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。6.液态金属凝固时由热扩散引起的过冷称为热过冷。 7.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同形态的晶区。 8.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响大于工件表面的粗糙 度对摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做A。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,A准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做B。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生A。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的B应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 mB中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。(X )

材料成形原理 吴树森 答案.docx1

第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂 纹组成。原子集团的空穴或裂纹内分布着排列无规则的游离的 原子,这样的结构处于瞬息万变的状态,液体内部存在着能量 起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空 穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应 于液-气的交界面,而界面张力对应于固-液、液-气、固- 固、固-气、液-液、气-气的交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因表面张力而 长生的曲面为球面时,r为球面的半径;(2)ρ=?(1/r1+1/r2), 式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因 素;不同点:流动性是确定条件下的冲型能力,它是液态金属 本身的流动能力,由液态合金的成分、温度、杂质含量决定, 与外界因素无关。而冲型能力首先取决于流动性,同时又与铸 件结构、浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比

热、密度、导热系大;④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③ 提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚 度; ②降低结构复杂程度。 1.4 解: 浇注模型如下: 则产生机械粘砂的临界压力 ρ=2?/r 显然 r =2 1 ×0.1cm =0.05cm 则 ρ=4 10*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为

《材料成形原理》重点及作业答案

一、名词解释 1、粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 2、液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 液态金属的流动性越强,其充型能力越好。 3、液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。稳定温度场通常是指温度不变的温度场。 4、均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。金属结晶过程中,过冷度越大,则形核率越高。实际液态金属(合金)凝固过程中的形核方式多为异质形核。 5、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。 6、“成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。 7、共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。 8、离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共

材料成型原理课后题答案

第三章: 8:实际金属液态合金结构与理想纯金属液态结构有何不同 答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。液态中存在着很大的能量起伏。而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。 12:简述液态金属的表面张力的实质及其影响因数。 答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。 影响因数:熔点、温度和溶质元素。 13:简述界面现象对液态成形过程的影响。 答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。 15:简述过冷度与液态金属凝固的关系。 答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。液态金属不会在没有过冷度的情况下凝固。 16:用动力学理论阐述液态金属完成凝固的过程。 答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。 17:简述异质形核与均质形核的区别。 答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。 异质形核与固体杂质接触,减少了表面自由能的增加。 异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。 18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长 答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。 ②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。 19:简述晶体的微观长大方式及长大速率。 答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。 20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响 答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。 凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固

相关主题
文本预览
相关文档 最新文档