当前位置:文档之家› 全合成综述

全合成综述

全合成综述
全合成综述

阿枯米灵生物碱(?)-Vincorine的全合成分析

阿枯米灵生物碱(?)-Vincorine具有复杂的多环结构以及重要的生物活性一直吸引着众多化学合成工作者的关注。早在2009年,秦勇课题组率先完成了(?)-Vincorine的全合成工作,最近马大为课题组应用分子内氧化偶联的方法成功地以18步,总收率5%的路线合成了(?)-Vincorine。本文将对马课题组合成该化合物的方法进行简单的介绍。

一:(?)-Vincorine的逆合成分析

先将N4-C21键断开得到化合物11,化合物11可由12得到,12可由化合物13经分子内氧化偶联而得,化合物13则由14与15经迈克尔加成得到(Figure1)。

Figure1:(?)-Vincorine的逆合成分析

二:(?)-Vincorine的合成路线

该课题组以市售的5 - 甲氧基色胺为原料(16)经(Boc)2O及Pd(OAc)2的催化作用得到1,2,3,5四取代吲哚17,后烯烃双键氢化加成,酯基还原得到化合物18。18在IBX氧化下得到醛与丙二酸二甲酯反应得到化合物14,后经迈克尔加成得到化合物20.化合物20为一非对映异构体,将其混合物进行反应,氧化消除

得烯烃化合物21,该化合物为E式和Z混合物。选择性还原醛基,加上TBS保护,移除Boc即得化合物13。(Figure2)

Figure2

得到关键化合物13后便可尝试分子内氧化偶联反应,经反复实验确定在LiHMDS, I2, THF, ?40 °C to r.t.条件可以成功得到只有一种构型的目标产物23且

产率为67%。后经Krapcho的反应条件成功去除一个酯基,再通过氯化,环合,甲基化成功合成得到(?)-Vincorin。(Figure3)

Figure3

三:关键反应的应用

在全合成的路线中,用到了一些关键反应,正是这些反应的精妙使用,使这个复杂的分子的合成得以实现。

1:钯催化的C-H功能化反应

反应广泛应用于吲哚等的芳基化和烯烃化反应中,它不需要以往所需的卤素等离去集团的参与,直接在C-H键上交叉耦合。其普遍形式如Figure4。

Figure4

2:迈克尔加成

迈克尔加成反应必须在碱的催化下进行,常用的碱有:乙醇钠、

氢化钠、氨基钠和有机碱等。根据反应物的反应活性来选择合适的碱,如果反应物双方均有较高的反应活性时,用较弱的碱也能使反应进行:迈克尔加成反应有一定的区域选择性。加成时,烃基化的位置总是在取代较多的碳原子上。通式如:Figure5。

Figure5

3:分子内氧化偶联反应:

该小组曾做过类似的分子内氧化偶联反应,并取得成功。见:Figure6

Figure6

故以此为参考设计了(?)-Vincorine的合成思路,经过反复实验成果获得目标产物,且化合物构型单一。化合物13为一混合物,因为酯基和吲哚部分的排斥作用,pathB不能反应,故反应只能按照pathA进行,因而得到了构型单一的化合物23。见figure7

Figure7

参考文献:

Weiwei Zi, Weiqing Xie, and Dawei Ma*.Total Synthesis of Akuammiline Alkaloid (?)-Vincorine via Intramolecular Oxidative Coupling. J. Am. Chem. Soc. 2012, 134, 9126?9129

【文献综述】四氨基铁酞菁的合成与表征

文献综述 高分子材料与工程 四氨基铁酞菁的合成与表征 1.引言 酞菁(Pc)类化合物的独特的物化性质,从1907年酞菁被发现至今越来越受到世界科技界的关注。作为一种高级功能材料,其在高科技领域中的应用与日俱增。广泛用于高效催化、生物模拟、超导材料、非线性材料、信息储存、智能识别等尖端技术中。然而,酞菁的难溶、难提纯和特殊构型分子的难合成,在一定程度上限制了其应用。 酞菁化合物是一类化学稳定性很高的化合物,其具有良好的耐晒、耐热、耐碱、耐酸性及色泽鲜明等性能。但由无取代基的酞菁类化合物存在溶解性能差缺点,在一定程度上影响了它们的应用性能,因此人们在研究一种可以应用无取代基酞菁类化合物的同时,也在努力寻找溶解性好而又能兼具无取代基酞菁化合物优点的新型酞菁类化合物。 在早期的研究中,酞菁和金属酞菁主要是被用作颜料和染料,这主要是酞菁化合物是一类化学稳定性很高的化合物,其具有良好的耐晒、耐热、耐碱、耐酸性及色泽鲜明等性能,制成的颜料和染料(蓝色、绿色)不仅色光十分鲜艳,着色力很高,而且十分稳定且无毒,。但由无取代基的酞菁类化合物存在溶解性能差缺点,在一定程度上影响了它们的应用性能,因此人们在研究一种可以应用无取代基酞菁类化合物的同时,也在努力寻找溶解性好而又能兼具无取代基酞菁化合物优点的新型酞菁类化合物。为此,酞菁颜料、染料被广泛的应用于印刷油墨、涂料、塑料、橡胶、皮革、纺织品及食品中。 2.酞菁的合成工艺及提纯 无取代酞菁及其配合物由于二电子之间的作用力很强,分子之间容易发生强烈的聚集作用,因此,在一般的溶剂中难以溶解,如难溶于水,在大多数有机溶剂中的溶解度也很小。这就限制了对它的研究和应用。为了提高其溶解性能,人们开发出各种方法,将多种多样的取代基团引入酞菁分子中。人们发现,四取代的金属酞菁配合物的溶解性比相应对称性的八取代的金属酞菁溶解性更好;a位取代基比p位的有更大的

金属酞菁

金属酞菁 金属酞菁配合物是一类独特的二维p-π共轭大环体系物质,具有很好的热稳定性和化学稳定性。过去几十年的研究表明:酞菁由于其比较特殊的结构特点,显示出良好的二阶和三阶非线性光学性质[3,4],以酞菁为母体的非线性光学材料的开发和应用范围越来越广泛。目前,酞菁环内已经和70 多种金属或非金属结合而得到不同中心原子的酞菁配合物[5],而且,在酞菁的苯环上也能方便地引入多种取代基,从而通过对内部中心原子和外围取代基的化学修饰,可以得到不同光学性能的新材料。 紫外-可见光谱由于金属酞菁配合物在多种有机溶剂中的溶解性很差,研究选择浓硫酸来溶解它们。通过表3 可以知道,所有合成的金属酞菁配合物300~900 nm 的紫外-可见区内都有两个较强的吸收溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。研究表明:过渡金属离子影响酞菁的π-共轭时涉及一些电荷转移机理。其中包括金属离子-配体(d-π) 电荷转移机理、配体-金属离子(π-d)电荷转移机理和金属-金属(d-d)电荷转移机理。这些电荷转移机理将在HOMO-LUMO 之间产生新的能级差,从而改变酞菁的光电性能[15,16]。铁,钴,镍,铜作为过渡金属元素,也存在上述电荷转移机理,由于本研究用溶液法测量,所以可以不考虑d-d 电荷转移机理。但是随着原子序数的增加,金属离子的d 电子也相应增加。在电荷转移过程中,原子序数大的金属离子与酞菁环之间的d-π电子共轭水平也要比原子序数低的金属离子的共轭水平高一些。所以随着金属的原子序数的增加,酞菁环的紫外吸收也会发生红移。金属离子与酞菁环平面的扭曲程度、即非共面程度越高,越有利于酞菁环上电子云的流动,从而更容易使电子发生跃迁。 d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非线性光学系数。而主族元素铝为中心的酞菁配合物的非线性光学系数的大小则处于这四个过渡金属为中心的酞菁配合物的中间,即大于酞菁亚铁(II)和酞菁钴(II)的三阶非线性系数而小于酞菁镍(II)和酞菁铜(II) 的系数。这是因为分子构型呈金字塔锥型的酞菁铝的酞菁环平面受Al3+离子的影响发生扭曲、非共面程度比较高,这种构型有利于酞菁环上电子云的流动,所以酞菁铝同过渡金属铁、钴等d 电子较少的金属离子为中心的金属酞菁配合物相比时,扭曲的平面对三阶非线性光学性能的促进作用大于 d 电子与酞菁环共轭造成的对非线性光学系数的提高效果;当与d 电子数目较多的镍、铜为中心离子的金属酞菁配合物比较时,扭曲平面的作用就小于再共轭的效果。

免费在线查合成路线

免费在线查合成路线 https://www.doczj.com/doc/384705406.html,/depts/chem... tice/medialib/data/ 有机合成: Organic Syntheses(有机合成手册), John Wiley & Sons (免费) https://www.doczj.com/doc/384705406.html,/ Named Organic Reactions Collection from the University of Oxford (有机合成中的命名反应库) (免费) https://www.doczj.com/doc/384705406.html,/thirdyearcomputing/NamedOrganicReac... 有机化学资源导航Organic Chemistry Resources Worldwide https://www.doczj.com/doc/384705406.html,/ 有机合成文献综述数据库Synthesis Reviews (免费) https://www.doczj.com/doc/384705406.html,/srev/srev.htm CAMEO (预测有机化学反应产物的软件) https://www.doczj.com/doc/384705406.html,/products/cameo/index.shtml Carbohydrate Letters (免费,摘要) https://www.doczj.com/doc/384705406.html,/Carbohydrate_Letters/ Carbohydrate Research (免费,摘要) https://www.doczj.com/doc/384705406.html,/locate/carres Current Organic Chemistry (免费,摘要) https://www.doczj.com/doc/384705406.html,/coc/index.html Electronic Encyclopedia of Reagents for Organic Synthesis (有机合成试剂百科全书e-EROS) https://www.doczj.com/doc/384705406.html,/eros/ European Journal of Organic Chemistry (免费,摘要) https://www.doczj.com/doc/384705406.html,/jpages/1434-193X/ Methods in Organic Synthesis (MOS,有机合成方法) https://www.doczj.com/doc/384705406.html,/is/database/mosabou.htm Organic Letters (免费,目录) https://www.doczj.com/doc/384705406.html,/journals/orlef7/index.html Organometallics (免费,目录) https://www.doczj.com/doc/384705406.html,/journals/orgnd7/index.html Russian Journal of Bioorganic Chemistry (Bioorganicheskaya Khimiya) (免费,摘要) http://www.wkap.nl/journalhome.htm/1068-1620 Russian Journal of Organic Chemistry (Zhurnal Organicheskoi Khimii) (免费,摘要) http://www.maik.rssi.ru/journals/orgchem.htm Science of Synthesis: Houben-Weyl Methods of Molecular Transformation https://www.doczj.com/doc/384705406.html,/ Solid-Phase Synthesis database (固相有机合成)

酞菁铁Ⅱ的制备及表征

酞菁铁(Ⅱ)的制备及表征 武汉大学化学与分子科学学院 王小尚 200331050033 摘要: 通过制备Fe(OH)2·4H2O制备酞菁铁(Ⅱ), 并对产品进行纯化,通过紫外及红外的方法分析确定其组成 关键字:酞菁铁(Ⅱ);制备;纯化;红外;紫外分光法 1.前言 酞菁类化合物可以看成四氮杂卟啉的衍生物,具有D2h点群对称性。其在染料工业和光电功能材料等方面获得了巨大的应用,并具有电致变色效应,在室温下有很好的液晶相,也在催化剂,抗辐射剂等方面也有重要作用。 酞菁类化合物的合成一般采用Linstead合成方法,其提纯比较困难。反应产物中含有大量的杂质,包括原料和一些其他高分子聚合物,常用的提纯方法有微热丙酮索氏萃取除杂,真空升华,浓H2SO4再沉淀或色谱柱提纯。 合成酞菁铁的前体有:邻苯二甲酸,邻苯二甲酸酐,邻苯二甲氰,邻苯二甲酸氨酯等。 本实验以邻苯二甲酸酐,Fe(OH)2·4H2O(自制),尿素为原料,以(NH4)2MoO4为催化剂,采用固相熔融法合成FePc,用真空升华法提纯产物,纯产物经元素分析,红外及紫外可见光谱表征。 2.实验部分 2.1试剂及仪器: 1.试剂 还原铁粉,6mol/L盐酸,邻苯二甲酸酐,尿素,乙醇,10%氢氧化钠,酸铵,浓硫酸2.仪器 减压过滤装置,旋转蒸发仪,真空干燥器,量筒(50mL),三口瓶(250mL,100mL),滤纸,烧杯(250mL),24#圆底烧瓶(100mL),24#空气冷凝管,24#磨口弯头,24#磨口塞,油泵,19#导气管,橡皮管,电热套(250mL), 研钵,温度计(3000C),长玻棒,容量瓶(50mL)表面皿,牛角勺,天平,氮气钢瓶,管式电炉,旋子流量计,石英管,烘箱,小瓷舟,UV-Vis 分光光度计,红外光谱仪。 2.2实验步骤: 1. FeCl2·4H2O的制备 称取5.67g还原铁粉放入100 mL的三口烧瓶中,并向其中加入30 mL6mol/L的盐酸溶液,缓缓通入氮气至液面下,烧瓶上的一个瓶口用导气管将逸出气体(包括反应的生的H2和为了防止氧化而通入的N2以及少量HCl气体)通经过安全瓶(防倒吸)导入稀碱溶液(中和逸出的少量HCl气体)。适当控制通气量,大约每秒钟两个气泡。 当反应进行大约两个半小时后,反应瓶中H2产生的速度减慢时,迅速减压过滤得到氯化亚铁浅绿色溶液。过滤时可向减压漏斗上方通N2,减少Fe2+的氧化。将滤液迅速转入已用氮气冲洗过的100mL24#圆底烧瓶中,旋转蒸发出现大量浅绿色结晶。将三口瓶取出,冷却,放入冰水浴中待其结晶,但要使晶体能够倒出(留少量液体),迅速抽滤,立即转移至

金属酞菁的合成及表征

金属酞菁的合成及表征 摘要:本实验是以苯酐-尿素法合成酞菁钴,以邻苯二甲酸酐、无水CoCl2、尿素为原料,以(NH4)2MoO4为催化剂,采用金属模版法合成酞菁钴,用浓硫酸再沉淀法提纯产物,纯产物通过红外光谱、紫外可见光谱进行表征。 关键词:苯酐-尿素;酞菁钴;合成;光谱测定 1 引言 酞菁类化合物是四氮大环配体的重要种类,酞菁是一个大环化合物,环内有一个空穴,可以容纳铁、钴、铜等金属元素,并结合生成金属配合物。金属原子取代了位于该平面分子中心的两个氢原子。由于与金属元素生成配位化合物,所以在金属酞菁分子中只有16个π电子,又由于分子的共轭作用,与金属原子相连的共价键和配位键在本质上是等同的。故酞菁类化合物具有高度共轭π体系。它能与金属离子形成金属酞菁配合物,其分子结构式如图。这类配合物具有半导体、光电导、光化学反应活性、荧光、光记忆等特性。金属酞菁是近年来广泛研究的经典金属类大环配合物中的一类,其基本结构和天然金属卟啉相似,具有良好的热稳定性,因此金属酞菁在光电转换、催化活性小分子、信息存储、生物模拟及工业染料等方面有重要的应用。金属酞菁的合成方法主要是模版法,即通过简单配体单元与中心金属离子的配位作用,然后再结合成金属大环配合物,金属离子起模版作用。 金属酞菁的分子结构

合成反应途径如下(以邻苯二甲酸酐为原料): 2 实验内容与步骤 2.1仪器与试剂 仪器:台秤、研钵、三颈瓶(250ml)、空气冷凝管、圆底烧瓶(100mL)、铁架台、玻璃棒、抽滤瓶、布氏漏斗、可控温电热套(250mL)、电炉、温度计、抽滤瓶 DZF-III型真空干燥箱 SHZ-III型循环水真空泵、紫外─可见分光光度计 试剂:邻苯二甲酸酐、尿素、钼酸铵、无水CoCl 煤油、无水乙醇、2%盐 2、 酸、氢氧化钠溶液、蒸馏水 2.2 酞菁钴粗产品的制备 称取邻苯二甲酸酐3.69g,尿素5.95g和钼酸铵0.25g于研钵中研细后加入0.85g无水氯化钴,混匀后马上移入250ml三颈瓶中,加入60ml煤油,加热(200℃)回流2h左右,在溶液由蓝色变为紫红色后停止加热,冷却至70℃左右,加入10到15ml无水乙醇稀释后趁热抽滤。并用乙醇洗涤2次,丙酮洗涤1次,得粗产品。 2.3 粗产品提纯 将滤饼加入2%盐酸加热煮沸后趁热抽滤,再将滤饼加入去离子水,煮沸后趁热抽滤,滤饼再加入适量氢氧化钠碱液煮沸抽滤,重复上述步骤2次,直至滤液接近无色。 将产品放在表面皿上在70℃真空干燥8h。 2.4 样品的表征与分析 干燥好后取少量样品溶于二甲基亚砜中,做紫外可见光谱分析。 3 结果和讨论 3.1 数据处理

酞菁的制备和纯化

钼酸铵 4邻苯二甲酸酐+4尿素+M2+MPc+H2O+CO 2 2.1.2 金属酞菁的制备和纯化 金属酞菁(MPc)按如下模板反应制备:(M=Mn,Cu,Ni,Co) () 对于不同的中心离子M2+,具体制备方法也不同。 (1)酞菁锰(MnPc)的制备和纯化 苯酐5.92g 尿素9.01g 锰1.69g 钼酸铵2.47*10-3 g 加入量:苯酐5.92 (0.04 mol),尿素9.01(0.15mol),钼酸铵2.47*10-3(2*10-6mol),锰1.69(0.01mol)。 一定量的苯酐和尿素置于250ml三颈烧瓶中,加入千分之二的钼酸铵作催化剂,再加入150ml二甲苯作溶剂。加热至120℃使固体完全溶解,趁热加入硫酸锰。升温至140℃下回流,20min后溶液变混浊,升温至150℃回流1h,溶液变清,底部有浅黄色沉淀。倒出二甲苯,160o C下恒温3h蒸出溶剂。粗产品用6M HCl 浸泡12h,在烧杯中静置后,倒掉上层清液体,反复用蒸馏水洗涤,静置,直至倒出液体为无色且中性。再用丙酮浸泡,静置,洗至倒出的上层清液为无色。再用1mol/L的NaOH溶液浸泡(时间?),静置,倒掉上层清夜,再用蒸馏水洗至倒出液为无色且为中性。在100℃下干燥12h,即得MnPc。 (2)酞菁铜(CuPc)的制备和纯化 在250ml三颈烧瓶中将苯酐、尿素和氯化铜按4:4:1的摩尔比混合,再加入千分之二的钼酸铵作催化剂,加入150ml二甲苯作溶剂。加热,在160℃下回流,20min后溶液变混浊,在此温度下继续回流0.5h,溶液变清,并呈浅蓝色,烧瓶底部有蓝色沉淀。在200℃下继续回流4h,蒸出溶剂。粗产品置于6N HCl 中,浸泡12h,过滤,用蒸馏水将蓝色沉淀洗至滤出液为无色,再用丙酮洗至滤出液为无色。在120℃下干燥12h,即得CuPc。 (3)酞菁镍(NiPc)的制备和纯化 苯酐、尿素和硫酸镍配料的摩尔比为4:4:1,先将苯酐、尿素置于250ml

布洛芬合成路线综述

布洛芬合成路线综述 姓名:XXX 班级:制药XXX班学号:XXX 【摘要】 布洛芬(C12H8Q)又名异丁苯丙酸,芳基丙酸类非甾体抗炎药物,本品为白色晶体性粉末,有异臭,无味。不溶与水,易溶于乙醇、乙醚三氯甲烷基丙酮,易溶于氢氧化钠及碳酸钠溶液中。布洛芬具有抗炎、镇痛、解热作用,适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。布洛芬的基本机构为笨环,苯环上含有异丁基与a-甲基乙酸。作为新一代非甾体消炎镇痛药物,具有比阿司匹林更强的解热、消炎和镇痛作用,副作用则比阿司匹林小得多。 【关键词】 布洛芬抗炎镇痛解热非甾体消炎镇痛药物合成路线 【前言】 1964年英国的Nicholso n 等人最早合成了布洛芬,其他各国也逐渐对布洛芬展开研 究,英国的布茨药厂首先获得专利权并投入生产。在最初的生产过程中,由于生产工艺落 后,导致布洛芬的生产成本高,产量低,企业规模受到很大限制。直到20世纪80年代后期,随着羧基化法和1, 2-转位法等布洛芬新工艺的出现,布洛芬的生产成本大大降低, 企业的规模也越来越大。目前,德国的巴斯夫公司,美国的Albemarle公司和乙基公司都 具有庞大的生产规模。他们分别具有自己的核心技术,选择合适的工艺,从而具有经济效 益和规模优势。近十多年来,由于政府扶持,印度的医药工业发展迅速。印度的Sumitra公司和Chemi nor公司的生产规模也达到上述西方国家大公司的水平,而且由于印度的劳动

力价格低廉,使得生产成本较低。印度低价格的布洛芬大量出口,大大冲击了全球的布洛分市场。 【研究现状】 对于布洛芬这种医药结晶产品而言,质量的好坏对产品能否在国际市场竞争中占据有 利地位往往起着重要的作用。目前,国内布洛芬同国外同类产品相比存在着晶形不好、颗粒不均匀等质量方面的差距。国内生产企业所使用的落后结晶技术与设备,一方面导致产品质量差,另一方面导致生产成本居高不下,使得国内布洛芬产品难以与国外产品相竞争,导致在国内市场和中国外的布洛芬产品占主导地位,如中美史可公司的布洛芬制剂占据了中国的70%勺市场份额。如今我国已经加入 WTO要改变这种现状,就必须对结晶及装置进行改进,从而生产出高质量的布洛芬结体产品。有关其工艺改进和新工艺、拆分或不对称合成获得其手性体、其衍生物以及各种制剂的研究报道层出不穷。 【布洛芬的合成】 1转位重排法 芳基1,2-转位重排法是目前国内厂家普遍采用的一种合成方法。它以异丁苯为原料, 经与2-氯丙酰氯的傅克酰化,与新戊二醇的催化缩酮化,催化重排,水解等制得布洛芬反应式为: 该工艺的优点为:避免了酰化时以石油醚作溶剂其中所含微量芳烃杂质所带来的副产 物,或使用二氯乙烷作溶剂时所带来的毒性和溶剂残留问题,避免了传统工艺使用冷冻盐 水的要求,降低了能耗和设备腐蚀等。 2醇羰基化法 醇羰基化法即BHC法,以异丁苯为原料,经与乙酰氯的傅克酰化、催化加氢还原和催化羰基化3步反应制得布洛芬,为目前最先进的工艺路线,为国外多数厂家所采用。

酞菁铜有机半导体调研报告

实习(调研)报告 一、课题的来源及意义 1907 年Braun和Tchemiac两人在一次实验中偶然得到了一种蓝色物质,当时他们两人正在研究邻氰基苯甲酰胺的化学性质,当他们将这种无色的物质加热后得到了微量的蓝色物质,这就是现在被人们称为酞菁的化合物。1923 年Diesbach等人发现可以用邻二苄溴与氰化亚铜反应制得邻二苄腈,于是他们想用邻二溴苯与氯化亚铜反应来制备邻苯二腈。可实验结果出乎他们的意料,他们并未得到所期望的邻苯二腈,而是得到一种深蓝色的物质,并且产率达到 23%。这种蓝色物质就是现在被称为酞菁铜的化合物。至此,酞菁和金属酞菁化合物被发现。 二、国内外发展状况及酞菁类物质性质 1929年,在英国的ICI公司的资助下,伦敦大学的Linstead教授和他的合作者开始进行这类新物质的结构测定工作。1933 年他们用综合分析法测定了该类化合物的结构后,便用phthalocyanine一词来描述这类新化合物。1935 年Linstead教授和他的合作者采用 500℃以上的高温和低气压,用CO2作载气制得了酞菁化合物的单晶,Robertson教授用X射线衍射分析法对酞菁及金属酞菁化合物的单晶进行结构分析,至此,酞菁自正式被发现到首个单晶生成共经历了12 年。根据他的报道,酞菁及金属酞菁分子组成的晶体属单斜晶系,空间群为 P2/a。每个晶胞中有两个分子,每个分子都呈现出高度平面的结构。所得分子结构的结果与Linstead教授的结果完全一致,从而酞菁的化学结构得到了进一步的证实。酞菁分子的这种结构使得它具有非常稳定的特性,耐酸、耐碱、耐水浸、耐热、耐光以及耐各种有机溶剂。一般酞菁化合物的热分解温度在 500℃以上,在有机溶剂中的溶解度极小,并且几乎不溶于水。相对而言,铜酞菁在冷的浓硫酸中较稳定,它可以溶解在其中,并且当硫酸浓度降低时又可从中析出来。铜酞菁的这种特性常常被用来提高它的纯度。由于上述代表性的工作,酞菁及金属酞菁化合物的化学结构才为世人所知,从此,酞菁及金属酞菁化合物的研究及应用也进入了一个崭新的阶段。 酞菁铜(CuPc)最早由瑞士化学家Diesbach等[1]制得,其优越的耐光耐辐射、光/暗电导比、热稳定和化学稳定等特性,预期在太阳能电池、电致发光器件、光记录存储、化工染料、静电复印感光鼓、气敏传感器件等方面有广泛的应用潜力。近年来,基于酞菁环面的共轭π-π*电子跃迁而产生的可见光及近红外区域的强

【开题报告】水溶性铁酞菁的合成

开题报告 应用化学 水溶性铁酞菁的合成 一、选题的背景和意义 酞菁是由英国的A.Braun和T.C.Tcherniac在1907年研究邻苯二甲酰亚胺和邻氰基苯甲酰胺的性质时,偶然发现的。1927年,德国弗来堡大学的H.de Diesbach和E.von der Weid试图通过邻二溴苯和氰化亚铜反应制备邻苯二腈,但是他们却意外得到了第一个酞菁金属配合物——酞菁铜。1928年苏格兰的Scottish Dyes Co.Ltd.染料工厂在玻璃为内衬的铁制反应器中由邻苯二甲酸酐和氨制备邻苯二甲酰亚胺时,发现了以杂质形式出现在反应体系中的蓝色铁酞菁。 在早期的研究中,酞著和金属酞著主要是被用作颜料和染料,这主要是因为酞著(特别是铜酞著)制成的颜料和染料(蓝色、绿色)不仅色光十分鲜艳,着色力很高,而且十分稳定和无毒,是任何其它己知化合物不能比拟的。为此,酞著颜料(染料)被广泛的应用于印刷油墨、涂料、塑料、橡胶、皮革、纺织品及食品中。近年来,随着纺织品等工业对染料新品种的需求趋向于饱和,染料工业的发展也日益成熟,因此在传统染料等方面的研究也趋向于缓慢,然而在许多特殊的领域,尤其是一些高科技领域,对于所谓的功能性染料的需求一直在增加。 酞菁化合物作为一种优良的功能性染料,具有良好的化学性质、催化活性、热稳定性和光稳定性。酞菁类化合物独特的物理化学性质使它们在催化化学、光化学、电化学、非线性光学、晶体化学、超导物理学、信息材料学和医学等学科的前沿领域有着广泛的应用。 二、研究目标与主要内容(含论文提纲) 目前,对金属酞菁配合物的合成方法研究比较多,通常有两种途径合成:一种是以邻苯二氰和相应的金属盐为起始物的邻苯二氰法;另一种是以苯酐、尿素和金属盐为起始物,在钼酸铵催化下完成的苯酐/ 尿素法。工业上制备酞菁铁主要是用苯酐法,苯酐法又分为固相法和液相法两种。较液相法生产条件苛刻且存在有机溶剂污染和回收问题,固相法原料价廉易得,工艺简单,也是实验室制备酞菁铁经常采用的方法。

全合成综述

阿枯米灵生物碱(?)-Vincorine的全合成分析 阿枯米灵生物碱(?)-Vincorine具有复杂的多环结构以及重要的生物活性一直吸引着众多化学合成工作者的关注。早在2009年,秦勇课题组率先完成了(?)-Vincorine的全合成工作,最近马大为课题组应用分子内氧化偶联的方法成功地以18步,总收率5%的路线合成了(?)-Vincorine。本文将对马课题组合成该化合物的方法进行简单的介绍。 一:(?)-Vincorine的逆合成分析 先将N4-C21键断开得到化合物11,化合物11可由12得到,12可由化合物13经分子内氧化偶联而得,化合物13则由14与15经迈克尔加成得到(Figure1)。 Figure1:(?)-Vincorine的逆合成分析 二:(?)-Vincorine的合成路线 该课题组以市售的5 - 甲氧基色胺为原料(16)经(Boc)2O及Pd(OAc)2的催化作用得到1,2,3,5四取代吲哚17,后烯烃双键氢化加成,酯基还原得到化合物18。18在IBX氧化下得到醛与丙二酸二甲酯反应得到化合物14,后经迈克尔加成得到化合物20.化合物20为一非对映异构体,将其混合物进行反应,氧化消除

得烯烃化合物21,该化合物为E式和Z混合物。选择性还原醛基,加上TBS保护,移除Boc即得化合物13。(Figure2) Figure2 得到关键化合物13后便可尝试分子内氧化偶联反应,经反复实验确定在LiHMDS, I2, THF, ?40 °C to r.t.条件可以成功得到只有一种构型的目标产物23且

产率为67%。后经Krapcho的反应条件成功去除一个酯基,再通过氯化,环合,甲基化成功合成得到(?)-Vincorin。(Figure3) Figure3 三:关键反应的应用 在全合成的路线中,用到了一些关键反应,正是这些反应的精妙使用,使这个复杂的分子的合成得以实现。 1:钯催化的C-H功能化反应 反应广泛应用于吲哚等的芳基化和烯烃化反应中,它不需要以往所需的卤素等离去集团的参与,直接在C-H键上交叉耦合。其普遍形式如Figure4。

四氨基锌酞菁的固相合成【开题报告】

毕业论文开题报告 高分子材料与工程 四氨基锌酞菁的固相合成 一、选题的背景和意义 酞菁类化合物是具有四氮杂四苯并卟啉结构的化合物。自1907年最初发现以来,其发展相当迅速, 在短短几十年时间里已有5000多种酞菁类化合物问世,用途也由最初的有机颜料和染料扩展到其他许多重要领域。酞菁颜料以其优良的耐热、耐晒、耐酸碱性能及鲜艳的蓝绿色泽在工业上广泛用于汽车、服装、食品、印刷、橡胶、纺织、皮革等的着色工艺;尤其80年代以来,酞菁类化合物在光电复印等现代高技术领域得到新的应用,掀起了酞菁类化合物的研究热潮。 近些年来,随着纺织等行业对染料新品种的需求趋于饱和、染料工业的发展日益趋于成熟,对应于传统行业的染料品种的开发缓慢。功能材料的研究拓展了研究范围。酞菁化合物以其独特的物理性质、化学特性最早受到研究者的关注。目前酞菁已涉及太阳能电池、电子照相、光盘存储和非线性光学等领域的研究,同时,一些金属酞菁化合物由于具有较强的光催化、光敏化和荧光特性,在新型功能材料中起着举足轻重的地位。 影响金属酞菁合成产率的因素有反应温度、反应物的比例、催化剂和反应时间等,本论文主要采用固相法,根据不同反应物的比例和温度来研究合成四氨基锌酞菁的最佳条件。本实验主要研究:在不同的实验条件下,先合成硝基为取代基的四硝基锌酞菁,再将硝基还原为氨基为取代基的四氨基锌酞菁,通过比较实验数据,(产率、红外和紫外光谱测定,),研究金属酞菁的结构,并测定其各种物理化学性能,并进一步探索出最优条件。合成的四氨基锌酞菁与四硝基锌酞菁相比,具有更加优良的物理化学性能,对扩大酞菁化合物在各领域中的应用有非常重要的意义。 二、研究目标与主要内容(含论文提纲) 在相同的实验条件下,通过多组对比实验,用固相法探索出合成硝基为取代基的四硝基锌酞菁的最优条件,然后,研究出将硝基取代基还原为氨基为取代基的四氨基锌酞菁所需的最佳反应条件。最后,在最佳条件下合成产物,并对每步生成的物质进行红外光谱和紫外光谱检测,确定其成分。

金属酞菁

实验六金属酞菁配合物的合成及光谱性质研究 一实验目的 (1)通过合成酞菁金属配合物,掌握这类大环配合物的一般合成方法,了解金属模板反应在无机合成中应用。 (2)进一步熟练掌握配合物合成中的常规操作方法和技能。 二实验原理 金属酞菁的合成 自由酞菁(H2Pc)的分子结构见图1(a)。它是四氮大环配体的重要种类,具有高度共轭π体系。它能与金属离子形成金属酞菁配合物(MPc),其分子结构式如图1(b)。这类配合物具有半导体、光电导、光化学反应活性、荧光、光存储等特性。金属酞菁是近年来广泛研究的经典金属大环配合物中的一类,其基本结构和天然金属卟啉相似,且具有良好的热稳定性和化学稳定性,因此金属酞菁在光电转换、催化活化小分子、信息储存、气敏传感器、生物模拟及工业染料等方面有重要的应用。 N N H N N N H N N N N N N N N N N N M M = Cu,Co,Ni,Zn,Pb,Pd a b 图1 酞菁配合物的结构示意图 金属酞菁的合成一般有以下两种方法:①通过金属模板反应来合成,即通过简单配体单元与中心金属离子的配位作用,然后再结合形成金属大环配合物。这里的金属离子起着一种模板作用;②与配合物的经典合成方法相似,即先采用有机合成的方法制得并分离出自由的有机大环配体,然后再与金属离子配位,合成得到金属大环配合物。其中模板反应是主要的合成方法。金属酞菁配合物的合成的方法主要有以下几种途径(以2价金属M为例)。

(1) 中心金属的置换 MX + LiPc MPc + 2LiX (2) 以邻苯二甲腈为原料 MX n +CN CN 4 MPc ℃300溶 剂 (3) 以邻苯二甲酸酐、尿素为原料Δ MX n +Co Co 4 MPc ℃ 300O + CO(NH 2)2 200 ~424 (4) 以2-氰基苯甲酸胺为原料 M + CN CONH 2 4 MPc + H 2O ℃250Δ 本实验按反应(2)制备金属酞菁,原料为金属盐、邻苯二甲腈,催化剂为1,8-二氮杂双环[5,4,0]十一-7-烯(DBU)。利用溶液法进行制备。 酞菁大环中的空穴可容纳铁、铜、铝、镍、钴等许多金属元素而形成金属酞菁配合物,在周期表中从IA 到VB 的元素都可与酞菁生成金属酞菁配合物,至今已知有70多种金属元素可以与萘酞菁形成配合物。萘酞菁周边共有24个氢原子,可被多种原子和基团取代,形成具有特定功能的酞菁衍生物。 对于半径较小的二价离子的金属萘酞菁和无金属萘酞菁为平面大环结构,分子对称性为D 4h (H 2Pc 为D 2h )。而对于半径较大的二价金属离子,由于酞菁环中心空间的限制,金属将位于酞菁环平面之上,则形成非平面四角锥金属酞菁配合物, 如Pb(Ⅱ)Pc [20]。对于三价或三价以上的中心金属(铝、钒、硅、锗等)可通过轴向配位形成六配位的四角双锥和五配位的四方锥酞菁配合物(图2)。 N N N N M N N N N M N N N N M L L L a b c 图2 不同配位的萘酞菁配合物的几何图示 a. 四配位平面正方形结构 b.五配位四方锥结构 c.六配位四角双锥结构 金属酞菁配合物的热稳定性与金属离子的电荷及半径比有关。由电荷半径比较大的金属

仑伐替尼磺酸盐项目立项报告

[键入公司名称] 乐伐替尼磺酸盐立项报告*****部 2018/12/1

目录 1品种概况简述 (1) 1.1 乐伐替尼产品相关信息 (2) 1.2上市品图样及结构 (3) 1.3 作用机制及药代 (4) 1.3.1作用机制 (4) 1.3.2药代动力学 (4) 1.4临床研究 (5) 1.4.1晚期放射性-碘难治性分化型甲状腺癌 (5) 1.4.2晚期或转移性肾细胞癌 (5) 1.4.3不良反应 (5) 2市场概述 (6) 2.1患病率和人群分布 (6) 2.1.1甲状腺癌 (6) 2.1.2肾细胞癌 (6) 2.1.3肝细胞癌 (7) 2.2 临床试验/实践情况 (7) 2.2.1新颖的作用机制 (7) 2.2.2与现有一线用药相比,有效性明显提高,不良反应类似 (7) 2.2.3新适应症的临床实验正在开展 (8) 3市场分析 (9) 3.1 国外市场情况 (9) 3.2 国内市场情况预估 (9) 3.3 国外(内)已上市的竞品药 (11) 3.2.1分化型甲状腺癌 (11) 3.2.2 肾细胞癌 (12) 3.4乐伐替尼的市场机会与风险分析 (12) 3.4.1乐伐替尼市场优势 (12) 3.4.2乐伐替尼横空出世,为中国患者量身打造 (13) 3.4.3 乐伐替尼REFLECT研究的中国结果 (14) 附件1:乐伐替尼合成路线 (15) 附件2:相关杂质 (18) 附件3:FDA溶出数据 (20)

乐伐替尼磺酸盐原料及其制剂 缩略语 新药注册申请(New Drug Application,NDA) 中国国家食品药品监督管理局(CFDA) 美国食品药品管理局(FDA) 日本医药品医疗器械综合机构(PMDA) 欧洲药物管理局(EMA) 甲磺酸乐伐替尼(Lenvatinib mesylate),也称甲磺酸乐伐替尼,本文简称乐伐替尼

坦西莫司研究进展

坦西莫司研究进展 摘要】坦西莫司是用于治疗晚期肾细胞癌(RCC)的首个哺乳动物雷帕霉素靶蛋 白(mTOR)抑制剂。治疗晚期RCC的Ⅱ/Ⅲ期临床研究显示,坦西莫司对RCC有 显著疗效。具有较高的开发价值。本文就坦西莫司的研究取得的主要进展进行了 综述,为原料合成、制剂开发及质量研究等提供有价值的参考。 【关键词】坦西莫司肾癌靶向 【中图分类号】R943 【文献标识码】A 【文章编号】2095-1752(2012)09-0381-02 2007年5月美国FDA批准惠氏公司惠氏制药子公司的坦西莫司注射剂(商品名:Torise|),用于治疗晚期肾细胞癌。是首个雷帕霉素哺乳动物靶(mammalian target of rapamycin,mTOR)蛋白抑制剂靶向治疗肾癌的药品,是已上市唯一可特 异性抑制mTOR激酶(细胞内调节细胞增生、细胞生长和细胞存活的关键蛋白质) 的药品。其III临床试验结果显示,与α-干扰素(目前治疗肾细胞癌的常规物,temsirolimus可将中位生存期延长3.6个月(增加50%)。[1] 坦西莫司Temsirolimus为白色或类白色粉末,无吸湿性。难溶于水;易溶乙醇。别名:CCI-779;中文名:雷帕霉素 42-[3-羟基-2-(羟甲基)-2-甲基丙酸酯;英 文名:rapamycin 42 [3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate];分子 式:C56H87NO16;相对分子质量:1030.30,CAS登记号: 162635-04-3。 1 结构研究 近年的研究表明,西罗莫司在预防同种异体肾移植术后排斥反应、各种支架 管置入导致的血管再狭窄及抗肿瘤等方面具有重要作用。由惠氏公司开发的西罗 莫司作为抗癌药现已进入临床试验阶段,大量的试验已经证实,西罗莫司可抑制 多种癌细胞的生长。虽然西罗莫司的生物活性很强,但由于起生物利用度低和水 溶性差、结构不稳定等,使得该药物一直是通过非肠道给药系统使用,为了在临 床上更好地发挥疗效,人们对西罗莫司的结构和功能进行了大量的研究,并获得 了一系列具有临床价值的西罗莫司衍生物。 坦西莫司是惠氏公司在依维莫司的基础上研发的西罗莫司C42位丙酸酯类衍 生物,亲水性明显强于西罗莫司,是一种代表性的细胞增殖抑制药,在体外抑制 平滑肌细胞增殖方面与西罗莫司具有相似的趋势,但在相同药物浓度下,抑制作 用是西罗莫司的3倍;同时该衍生物具有与西罗莫司相当的抗肿瘤活性和细胞毒性,可单独或与其他化学药物联合给药,能够有效地抑制人类早期神经外胚层及 成神经细胞瘤的生长。更为重要的是,该药物对在体外耐西罗莫司的U251恶性 胶质瘤细胞也具有抑制作用。目前该药物已经上市,商品名为Torisel,主要治疗 肾细胞癌;同时基于该药物的洗脱支架目前正在处于动物模型实验阶段。[3] 2 合成工艺研究 坦西莫司是雷帕霉素(rapamycin)的衍生物,其专利报道的合成方法有三种。 合成方法一[4]:都是以2,2-二羟甲基丙酸为原料,经过羟基保护、成混合酸酐通 固定化酶催化对雷帕霉素进行酰化和脱保护基生成目标产物。 合成方法二[5]:首先是雷帕霉素的31位经四甲基硅烷的甲硅烷化,再以2,2-二 羟甲基丙酸为原料,经过羟基保护、成混合酸酐对雷帕霉素进行酰化和脱保护基 生成目标产物。 合成方法三[6]:区域选择性合成方法,首先是雷帕霉素的31和42位经氯化三甲 基甲硅烷的甲硅烷化,随后经过硫酸区域选择性在42位脱甲硅烷化,然后再进

铜酞菁的生产工艺设计

一目标化合物的概述 1. 产品名称、化学结构及理化性质 铜酞菁的分子式为C32H16CuN8,相对分子质量为574。铜酞菁的热稳定性 分解温度高达400℃[3],其化学结构: 铜酞菁又名粗酞菁蓝,是生产酞菁蓝B、酞菁蓝BGs、酞菁绿、直接耐晒翠蓝等多种颜料、染料产品的基本原料,是重要的有机颜料中间体.酞菁蓝具有鲜艳的蓝色,高度的着色力和优良的牢度,耐光、耐热、耐酸碱、耐有机溶剂等稳定性极好的特点,广泛用于涂料、油墨、油漆、橡胶、塑料等方面,此外,在半导体、原子能、激光等工业中也有特殊的用途[1]。 二、目标化合物已有合成线路简介 目前生产铜酞菁的方法主要有三种:邻苯二腈法[6]和苯酐尿素法.前者是用邻苯二腈和铜盐,在触媒作用与饱和氨气的环境中加热得到;后者是以苯酐、尿素、氯化亚铜、钼酸铵等为原料加热制得,苯酐尿素法又有固相法[1]和液相法[7、9].液相法是将原料溶解在三氯化苯等有机溶剂中进行反应;固相法是将原料加热至140℃熔化后再装入金属盘内在240~260℃下反应4-5h制得。 现在在原有的方法上通过改进有几个不同的方法。料浆法即采用加入少量溶剂和固体垫底物生产铜酞菁的生产工艺,结合了固相法和溶剂法的优点[6]。溶剂油法是以溶剂油和煤油代替溶剂法中三氯苯[8]。其中,溶剂油无毒、无异味,化学性质稳定,其最大的优点就是对大气、地表不会造成污染,极微量的残留物质中不存在致癌物质,而且资源丰富,成本低;因此溶剂油完全可以代替现在生产所用的三氯苯或硝基苯,它是一种物美价廉的好溶剂。干法合成铜酞菁工艺是继烘焙法、固相法、溶剂法之后的又一合成铜酞菁的新型生产方法[17]。通过选用快速紊流混合及素流反应等专用设备和装置,提高传热传质效率,增加反应质点接触和碰撞机率,达到提高反应效率和铜酞菁合成品纯度之效果。 一.邻苯二腈法 铜酞菁的制备:称量计算量的邻苯二腈、氢氧化铜和酞菁在一定量的乙二醇中混和,先在100。C反应2 h,然后在160℃反应5 h。得到的固体产物与溶剂分离后,再在稀盐酸中于90℃处理l h,过滤,水洗涤后干燥得铜酞菁。

纤维素共价固定功能化酞菁【任务+翻译+开题+综述+正文】

一、题目
任务书 纤维素共价固定功能化酞菁
二、主要内容和基本要求(指明本课题要解决的主要问题和大体上可从哪几
个方面去研究和论述该主要问题的具体要求)
主要目标和任务:金属酞菁衍生物由于其特殊的结构而具有优良的催化氧化性 能,广泛运用于各行各业。本实验首先合成酞菁化合物,再制备纤维素薄膜,然后 采用直接将金属酞菁衍生物负载到纤维素上的方法,制备得到一种金属酞菁负载纤 维催化剂。本文采用微波消解-火焰原子吸收光谱法测定酞菁衍生物中的金属元素的 含量,从而根据金属元素的含量换算出金属酞菁在纤维素纤维上的负载量。
主要内容包括: (1)合成外环有氨基官能团的金属酞菁化合物 (2)以乙酸纤维素原料制备薄膜,通过水解得到纤维素薄膜,并对其进行氧化 处理使其表面形成功能化基团。 (3)通过共价键的方式将酞菁固定于纤维素纤维表面,制备得到一种负载型的 催化剂。 (4)考察各反应条件对负载量的影响。

三、起止日期及进度安排
起止日期: 2010 年 11 月 8 日 至 2011 年 4 月 18 日
进度安排: 序号
时间
1 2010.11.08 至 2010.11.18
2 2010.11.21 至 2010.12.23
3 2011.12.26 至 2011.01.10
4 2011.01.10 至 2011.01.24
5 2011.02.19 至 2011.03.10
6 2011.03.15 至 2011.3.31
7 2011.04.15 至 2011.04.18
内容 文献的查阅与实验方案制定 完成开题报告、英文翻译和文献综述
合成四氨基金属酞菁 完成纤维素薄膜的制备与固定 完成反应温度和时间对固定量的影响 根据实验结果,完成论文初稿 修改毕业论文,最终完稿
四、推荐参考文献(理工科专业应在 5 篇以上,文科类专业应在 8 篇以上,其中外文文
献至少 2 篇。) 3. 沈永佳,酞菁的合成及应用[M],北京:化学工业出版社,2000,2 第一版. 4. 姚玉元,陈文兴,吕素芳.催化纤维的制备及催化性能[J] .纺织学报,2007,28(4):5-7 5. 陈文兴,陈世良,吕慎水,等.负载型酞菁催化剂的制备及其光催化氧化苯酚[J].中国科学, 2007,50(3):379-384. 6. 殷焕顺.易溶性金属酞菁衍生物的合成及其性质研究:学位论文.湖南:湘潭大学,2004 [5] B. Kippelen, S. Yoo, J. A. Haddock, B. Domercq, S. Barlow,B. A. Minch, W. Xia, S. R. Marder and N. R. Armstrong,in Organic Photovoltaics: Mechanisms, Materials, and Devices,ed. S. sariciftic and S. Sun, CRC Press, Boca Raton, FL,2005. [6]F. Armand, H. Perez, S. Fouriaux, O. Araspin, J.-P. pradeau,C. G. Claessens, E. M. Maya, P. Va′quez and T. Torres, synth.Met., 1999, 102, 1476; Z. Wang, A.-M. Nygrd, M. J. Cook andD. A. Russell, Langmuir, 2004, 20, 5850.

依维莫司的临床应用

依维莫司的临床应用 目的综述依维莫司药物的临床应用。方法检索国内、外医药数据库,下载依维莫司临床应用的相关文献,进行文献综述。结果国内外有大量关于依维莫司在肾、心脏器官移植使用报道;亦有依维莫司用于晚期乳腺癌、肾细胞癌、肾血管平滑肌脂肪瘤的肿瘤治疗和用作新一代洗脱支架用于经皮冠状动脉介入的早期治疗的病例报道。结论依维莫司针对器官移植后的抗排斥反应、肿瘤细胞的抑制增长的临床应用较多。近几年依维莫司作为洗脱支架应用于经皮冠状动脉介入治疗成为新的研发热点。 标签:依维莫司;器官移植;肿瘤;洗脱支架 依维莫司(everolimus)是新型的口服哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)抑制剂,化学结构为42-O-(2-羟乙基)-雷帕霉素,比雷帕霉素水溶性更好,在进入人体内后能迅速水解。同时,依维莫司的药代动力学和生物利用度也在西罗莫司的基础上进行了改良。作为免疫抑制剂依维莫司在临床上与霉酚酸酯相似,与环孢霉素A二联用药预防器官移植的排异反应。作为一种新的靶向治疗药物依维莫司在治疗肿瘤方面的应用也越来越多如乳腺癌、肾细胞癌、肾血管平滑肌脂肪瘤的治疗。作为新一代的洗脱支架依维莫司用于经皮冠状动脉介入的早期治疗也得到了好评。本文将对依维莫司的临床应用做一概述。 1 作为免疫抑制剂用于抗器官移植的急性排斥反应 依维莫司是西罗莫司类似物,临床证实它能有效地用于预防器官移植排斥反应。在欧洲已批准依维莫司作为免疫抑制剂用于实体器官的移植和与环孢霉素A联合用于预防肾脏、心脏移植后的急性排斥反应。依维莫司的抗增殖和免疫抑制作用是通过与雷帕霉素相关蛋白(FKBP12)形成复合物,通过磷酸化激酶p70S6和4E-BP1 基因干扰控制细胞代谢和增殖的调节蛋白FRAP而形成的。因而,控制细胞代谢和增殖的调节蛋白FRAP抑制剂作用于细胞周期的G1后期。依维莫司在局部组织吸收迅速,在细胞内保留时间较长且细胞内活性维持时间亦长因而能显著减少新生内膜的增生[1]。 依维莫司用于预防同种异体的肾脏、心脏移植后的排斥反应已有大量临床资料报道。Vítko [2]报道的Ⅲ期药物临床试验中显示肾移植患者服用环孢霉素A联合依维莫司跟服用环孢霉素A联合霉酚酸酯相比,环孢霉素A联合依维莫司组的显示更高的血清肌酐,可降低环孢霉素A的用量改善肾功能。 Bilbao[3]等通过总结在1988年~2008年的759例肝移植手术患者的情况发现依维莫司可有效用作移植手术后早期的抗排斥反应的预防用药。同时,依维莫司对任何时期特别是晚期钙神经素抑制剂严重不良反应者、肿瘤复发者治疗效果较好。

相关主题
文本预览
相关文档 最新文档