当前位置:文档之家› 桁架有限元理论

桁架有限元理论

桁架有限元理论
桁架有限元理论

桁架有限元理论知识

空间杆系有限元法是计算精度最高的一种方法,适用于各种类型、各种平面形状、不同边界条件的网架,静力荷载、地震作用、温度应力等工况均可计算。

空间钢架结构,有15个未知函数,6个应力分量,分别为xx σ、yy σ、zz σ、xy σ、yz σ、zx σ;6个应变分量,分别为xx ε、yy ε、zz ε、xy ε、yz ε、zx ε;3个位移分量u 、v 、w 。这15个未知函数满足15个基本方程,分别为3个平衡微分方程、6个几何方程和6个物理方程,以及受力边界条件及位移边界条件[6]。

图1为桁架结构水平段一侧局部示意图。其中,①为上弦材,②和④为纵梁,③为下弦材,⑤为斜材。此结构为4个节点和5个单元的钢架结构。对此桁架任意方向上的杆件离散化,选择单元⑤进行分析。

桁架问题一般需要两个坐标系进行描述,即整

图2 自动扶梯桁架结构水平段一侧局部示意图

结构分析中为方便杆端力和位移的叠加,应采用统一坐标系,即结构整体坐标xyz 。这样需对局部坐标系下的单元刚度矩阵进行坐标转换。

体坐标系和局部坐标系,选择固定的整体坐标系XY :1)描述了每个节点的位置,使用角度标记θ记录每个(单元)的方向;2)施加约束及载荷;3)表示问题的解,即在整体方向上的每个节点的位移。同时,还需要一个局部的单元坐标系来描述各个杆件(单元)的受力情况。如图3所示为局部坐标

系与整体坐标系之间的关系[7]。

图3 整体坐标系与局部坐标系关系图

整体位移(在节点i 的U iX ,U iY 和在节点j 的U jX 和U jY )和局部位移(在节点i 的u ix ,u iy 和在节点j 的u jx 和u jy )之间的关系为:

θθθ

θθ

θθ

θcos sin sin cos cos sin sin cos jy jx iY jy jx jX iy ix iY iy ix iX u u U u u U u u U u u U +=-=+=-= (1)

将方程(1)转化为矩阵形式为:

TU U = (2)

其中:

?????

???????=????????????--=????????????=jy jx iy ix jY jX iY iX u u u u u T U U U U U ,cos sin 00sin cos 0000cos sin 00sin cos ,θθθθθθθθ U 和u 分别代表整体坐标系XY 和局部坐标系xy 下节点i 和节点j 的位移。T 是从局部形变转化为整体形变的变换矩阵。与形变推导公式相类似,局部力和整体力的关系如下:

θθθ

θθ

θθ

θcos sin sin cos cos sin sin cos jy jx jY jy jx jX iy ix iY iy ix iX f f F f f F f f F f f F +=-=+=-= (3)

将式(3)写成矩阵形式:

Tf F =

(4)

其中F 是整体坐标系下施加在节点i 和节点j 上的力的分量:

?????

???????=jY jX iY iX F F F F F f 是局部坐标系下施加在节点i 和节点j 上的力的分量:

?????

???????=jy jx iy ix f f f f f 上述步骤推导出了单元在局部坐标系和整体坐标系之间的关系。然而,需要注意的是,在局部坐标系下y 方向上的位移和合力为零。因为在假设的二力杆条件下,杆只能沿着轴向(局部坐标系下x 方向)伸长或者压缩,说明内力总是沿着x 轴方向的,如图4所示。推导开始时不将这些值设置为0,以便于保持对矩阵的一般性描述,这将更加方便于推导单元刚度矩阵。当将y 方向的位移以及力设置为0时,将会使方程变得非常清楚。局部坐标系下内力和位移通过刚度矩阵关系为:

?????

???????????????????--=????????????jy jx iy ix jy jx iy ix u u u u k k k k f f f f 0000000000

00 (5) 上式中,L

AE k k eq ==,转化为矩阵形式为: Ku f = (6)

将f 和u 替换成F 和U ,有:

u f U T K F T 11--= (7)

上式中,T -1为变换矩阵。矩阵T 的逆矩阵为:

?????

???????--=-θθθθθθθθcos sin 00sin cos 0000cos sin 00sin cos 1T (8)

图4 桁架内力图

方程(7)两边都乘以T ,得:

U TKT F 1-= (9)

替换方程(9)中的T ,K ,T -1和U 矩阵的值,相乘后得到:

????????????????????????????--------=??????????????jY jX iY iX jY jX iY iX U U U U F F F F θθθθθθθθθθθθθθθθθθθθθθθθ22222222sin cos sin sin cos sin cos sin cos cos sin cos sin cos sin sin cos sin cos sin cos cos sin cos (10)

方程(10)表示了施加的外力、单元刚度矩阵K (e)和任意单元节点的整体位移之间的关系。桁架任意杆(单元)的刚度矩阵K (e)为:

??????

????????--------=θθθθθθθθθθθθθθθθθθθθθθθθ22222222)(sin cos sin sin cos sin cos sin cos cos sin cos sin cos sin sin cos sin cos sin cos cos sin cos k K e (11) 剩下的步骤就是组合单元的刚度矩阵、应用边界条件和载荷条件、求解位移即得到平均应力等其他相关信息。

上述推导公式仅仅局限于扶梯桁架的某一部分,是基于平面桁架进行相关分析的,而扶梯整体桁架结构为空间钢架结构。空间桁架有限元公式是基于平面桁架公式的扩展和延伸。在空间桁架结构中,桁架单元的位移有6个未知的物理量,分别为U iX 、U iY 、U iZ 、U jX 、U jY 、U jZ ,连接两个单元的节点可以在三个方向上进行移动。角度X θ、Y θ和Z θ表示桁架中的杆件相对于整体坐标系XY 的方向。图5表示了杆件单元与X 、Y 、Z 轴角度的关系图。

图5 杆件单元与X 、Y 、Z 轴角度关系示意图

空间桁架结构推导单元矩阵过程与平面桁架结构相类似。通过变换矩阵将整体位移和力联系在一起,然后应用杆的二力属性。与平面桁架单元的44?的刚度矩阵不同,空间桁架单元的刚度矩阵为66?矩阵。对于空间桁架单元,假设X l θcos =,Y m θcos =,Z n θcos =,则空间桁架的单元刚度矩阵为:

?????????

???????????------------------=222222222222)(n mn ln n mn ln mn m lm mn m lm ln lm l ln lm l n mn ln n mn ln mn m mn mn m lm ln lm l ln lm l k K e (12) 附上命令流语句。注意:以“!”打头的文字为注释内容,其后的文字和符号不起运行作用。关于命令流的调用方式见附录B 。

!%%%%%%%% [典型例题]3.2.5(1) %%%% begin %%%%%%

/ PREP7 !进入前处理

/PLOPTS,DATE,0 !设置不显示日期和时间

!=====设置单元、材料,生成节点及单元

ET,1,LINK1 !选择单元类型

UIMP,1,EX, , ,2.95e11, !给出材料的弹性模量

R,1,1e-4, !给出实常数(横截面积)

N,1,0,0,0, !生成1号节点,坐标(0,0,0)

N,2,0.4,0,0, !生成2号节点,坐标(0.4,0,0)

N,3,0.4,0.3,0, !生成3号节点,坐标(0.4,0.3,0)

N,4,0,0.3,0, !生成4号节点,坐标

(0,0.3,0)

E,1,2 !生成1号单元(连接1号节点和2号节点)

E,2,3 !生成2号单元(连接2号节点和3号节点)

E,1,3 !生成3号单元(连接1号节点和3号节点)

E,4,3 !生成4号单元(连接4号节点和3号节点)

FINISH !前处理结束

!=====在求解模块中,施加位移约束、外力,进行求解

/SOLU !进入求解状态(在该状态可以施加约束及外力)

D,1,ALL !将1号节点的位移全部固定

D,2,UY, !将2号节点的Y方向位移固定

D,4,ALL !将4号节点的位移全部固定

F,2,FX,20000, !在2号节点处施加X方向的力(20000)

F,3,FY,-25000, !在3号节点处施加Y方向的力(-25000) SOLVE !进行求解

FINISH !结束求解状态

!=====进入一般的后处理模块

/POST1 !进入后处理

PLDISP,1 !显示变形状况

FINISH !结束后处理

!%%%%%%%% [典型例题]3.2.5(1) %%%% end %%%%%%

ansys桁架和梁的有限元分析

ansys桁架和梁的有限元分析

————————————————————————————————作者:————————————————————————————————日期:

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

c语言计算平面桁架内力计算程序

#include #include #include #define M 5 int n,nc,nn,m,e,f;//节点总数,固定节点数,自由度数,杆件数int io,jo;//单根杆对号指示数 int ihl[M],ihr[M];//杆件左右节点号 double a[M];//各杆截面积 double mm[M];//杆件质量 double ea[M];//杆件EA的值 double x[M],y[M];//节点坐标 double dp[M];//总体系下的节点载荷 double t[2];//0,1分别为坐标转换矩阵的cos(),sin() double c[2][2];//总体系下的单刚 double clxy[3];//0,1,2分别为杆长,正弦,余弦 double h[M];//杆件轴力 double r[M][M];//总刚度阵 double rd;//桁架轴力杆局部系单刚 double u[M];//桁架节点位移 double v[2];//存放节点位移差 double d[M];//LDLT分解时的D矩阵的对角线元素 double l[M][M];////LDLT分解时的D矩阵的对角线元素double fdp[M];//总体系下支座反力 void iojo(int k)//计算对号指示数io,jo { int i,j; i=ihl[k-1];//k号杆左节点号进入i j=ihr[k-1];//k号杆节点右号进入i io=2*(i-nc-1);//uxi前未知位移的个数 jo=2*(j-nc-1);//uyi前未知位移的个数 } void ch(int k)//计算杆长与方向余弦函数 { int i,j; i=ihl[k-1];//k号杆左节点进入i j=ihr[k-1];//k号杆右节点进入j clxy[1]=x[j-1]-x[i-1];//k号杆x坐标差 clxy[2]=y[j-1]-y[i-1];//k号杆y坐标差 clxy[0]=sqrt(clxy[1]*clxy[1]+clxy[2]*clxy[2]);//k号杆长 clxy[1]=clxy[1]/clxy[0];//k号杆件x轴余弦 clxy[2]=clxy[2]/clxy[0];//k号杆件y轴余弦

有限元分析报告

《有限元基础理论》报告 学院: 班级: 姓名: 学号: 任课老师: 二〇一一年十二月

题目一:三维托架实体受力分析 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析:先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>V olumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选0.1,然后点Meshing,Pick all进行网格划分,所得结果如图1.1。划分网格后,就可以对模型施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry B.C>On Areas命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图1.2。

图1.1、托架网格图 图1.2输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,从图1.2可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们 在应用托架的时候应当注意的。

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

平面桁架结构的有限元分析

运用ANSYS进行平面刚架模拟建模及误差分析 摘要 有限单元法(或称有限元法)是在当今工程分析中获得最广泛应用的数值计算方法。由于它的通用性和有效性,受到工程技术界的高度重视。伴随着计算机科学和技术的快速发展,现已成为计算机辅助设计和计算机辅助制造的重要组成部分。ANSYS软件是目前世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计软件接口,实现数据的共享和交换。本文主要分析平面刚架在均布荷载作用下模拟的有限元模型计算与手工计算之间的误差。 关键字:ANSYS软件有限元平面刚架 PIANE STEEL FRAME WITH ANSYS SIMULATION MODELING AND ERROR ANALYSIS ABSTRACT Finite element method (or finite element method) is the most widely used in modern engineering analysis of numerical calculation method. Because of its versatility and effectiveness, attaches great importance to by the engineering and technology. Along with the rapid development of computer science and technology, has now become a computer aided design and computer aided manufacturing is an important part .At present,the software of ANSY is the fastest growing computer aided engineering (CAE) software on the world, interfacing with the majority of computer aided design software, realizing the sharing and exchange of data. This paper mainly analyzes the model of planar frame software of ANSYS. KEYWARDS:software of ANSYS,finite element,planar frame

有限元分析报告

有限元仿真分析实验 一、实验目的 通过刚性球与薄板的碰撞仿真实验,学习有限元方法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使用方法。本实验使用HyperMesh 软件进行建模、网格划分和建立约束及载荷条件,然后使用LS-DYNA软件进行求解计算和结果后处理,计算出钢球与金属板相撞时的运动和受力情况,并对结果进行可视化。 二、实验软件 HyperMesh、LS-DYNA 三、实验基本原理 本实验模拟刚性球撞击薄板的运动和受力情况。仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。前处理阶段任务包括:建立分析结构的几何模型,划分网格、建立计算模型,确定并施加边界条件。 四、实验步骤 1、按照点-线-面的顺序创建球和板的几何模型 (1)建立球的模型:在坐标(0,0,0)建立临时节点,以临时节点为圆心,画半径为5mm的球体。 (2)建立板的模型:在tool-translate面板下node选择临时节点,选择Y-axis,magnitude输入5.5,然后点击translate+,return;再在2D-planes-square 面板上选择Y-axis,B选择上一步移下来的那个节点,surface only ,size=30。 2、画网格

(1)画球的网格:以球模型为当前part,在2D-atuomesh面板下,surfs 选择前面建好的球面,element size设为0.5mm,mesh type选择quads,选择elems to current comp,first order,interactive。 (2)画板的网格:做法和设置同上。 3、对球和板赋材料和截面属性 (1)给球赋材料属性:在materials面板内选择20号刚体,设置Rho为2.000e-08,E为200000,NU为0.30。 (2)给球赋截面属性:属性选择SectShll,thickness设置为0.1,QR设为0。 (3)给板赋材料属性:材料选择MATL1,其他参数:Rho为2.000e-08,E 为100000,Nu为0.30,选择Do Not Export。 (4)给板赋截面属性:截面选择SectShll,thickness设为0.2。其他参数:SHRE为8.333-01,QR为0,T1为0.2。 (5)给板设置沙漏控制:在Properties-Create面板下Card image选择HourGlass,IHQ为4,QM为0.100。更新平板。 4、加载边界条件 (1)将板上最外面的四行节点分别建成4个set。 (2)建立一个load collector。 (3)Analysis-constraints面板中,设置SIZE为1,nodes通过by sets 选择set_1、set_2、set_3、set_4,然后点击creat即可,边界条件加载完毕。 5、建立载荷条件(给球一个3mm的位移) (1)建立一个plot: post-xy plots-plots-creat plot,然后点击return;

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

ANSYS实体建模有限元分析-课程设计报告

南京理工大学 课程设计说明书(论文) 作者:学号: 学院(系):理学院 专业:工程力学 题目:ANSYS实体建模有限元分析 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 20 年月日

练习题一 要求: 照图利用ANSYS软件建立实体模型和有限元离散模型,说明所用单元种类、单元总数和节点数。 操作步骤: 拟采用自底向上建模方式建模。 1.定义工作文件名和工作标题 1)选择Utility Menu>File>Change Jobname命令,出现Change Jobname对话框,在[/FILNAM ] Enter new jobname文本框中输入工作文件名learning1,单击OK按钮关闭该对话框。 2)选择Utility Menu>File>Change Title命令,出现Change Title对话框,在[/TITLE] Enter new title文本框中输入08dp,单击OK按钮关闭该对话框。 2.定义单元类型 1)选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现 Library of Element Types 对话框。在Library of Element Types 列表框中选择 Structural Solid, Tet 10node 92,在Element type reference number文本框中输入1,单击OK按钮关闭该对话框。 2)单击Element Types对话框上的Close按钮,关闭该对话框。 3.创建几何模型 1)选择Utility Menu>P1otCtrls>Style>Colors>Reverse Video命令,设置显示颜色。 2)选择Utility Menu>P1otCtrls>View Settings>Viewing Direction命令,出现Viewing Direction对话框,在XV,YV,ZV Coords of view point文本框中分别输入1, 1, 1,其余选项采用默认设置,单击OK按钮关闭该对话框。 3)建立支座底块 选择Main Menu>Preprocessor> Modeling>Create>volumes>Block>By Demensios 命令,出现Create Block by Demensios对话框,在X1,X2 X-coor dinates文本框

大跨度预应力张弦网架结构主桁架

说明书摘要 本实用新型公开了一种大跨度预应力张弦网架结构主桁架高空组对与微调装置,包括两套分别设置在所述主桁架端部上弦杆两端节点下方的组对微调机构;每套组对微调机构包括设置在所述主桁架端部上弦杆一端节点下方的稳定、限位机构,所述稳定、限位机构的下方设有千斤顶,所述千斤顶固接在钢架上,所述钢架固接在钢平台上,所述钢平台固接在与承重脚手架固接的木方上;所述两套组对微调机构的钢架之间通过交叉布置的斜拉筋连接。本实用新型造价低廉;加工制作工艺简单,可以直接现场制作,又便于安装就位和拆卸;拆卸后的材料、设备可以进行回收多次重复用于类似钢结构,适用性强,浪费相对较少,节约成本,具有良好的经济性。

摘要附图

权利要求书 1.一种大跨度预应力张弦网架结构主桁架高空组对与微调装置,其特征在于,包括两套分别设置在所述主桁架端部上弦杆两端节点下方的组对微调机构;每套组对微调机构包括设置在所述主桁架端部上弦杆一端节点下方的稳定、限位机构,所述稳定、限位机构的下方设有千斤顶,所述千斤顶固接在钢架上,所述钢架固接在钢平台上,所述钢平台固接在与承重脚手架固接的木方上;所述两套组对微调机构的钢架之间通过交叉布置的斜拉筋连接。 2.根据权利要求1所述的大跨度预应力张弦网架结构主桁架高空组对与微调装置,其特征在于,所述每套组对微调机构的稳定、限位机构包括钢管,所述钢管的上端固接有与其对应千斤顶接触的钢盖板,所述钢管的外表面上固接有与其对应节点下表面接触的至少三个弧形钢板,所述至少三个弧形钢板的上表面形状与其对应节点的下表面形状适配。 3.根据权利要求1所述的大跨度预应力张弦网架结构主桁架高空组对与微调装置,其特征在于,所述千斤顶为螺旋式千斤顶。 4.根据权利要求1所述的大跨度预应力张弦网架结构主桁架高空组对与微调装置,其特征在于,所述钢架由角钢和钢板焊接而成。 5.根据权利要求1所述的大跨度预应力张弦网架结构主桁架高空组对与微调装置,其特征在于,所述钢平台由工字钢和钢板焊接而成。 6.根据权利要求1所述的大跨度预应力张弦网架结构主桁架高空组对与微调装置,其特征在于,所述斜拉筋采用角钢。

桁架有限元理论

桁架有限元理论知识 空间杆系有限元法是计算精度最高的一种方法,适用于各种类型、各种平面形状、不同边界条件的网架,静力荷载、地震作用、温度应力等工况均可计算。 空间钢架结构,有15个未知函数,6个应力分量,分别为xx σ、yy σ、zz σ、xy σ、yz σ、zx σ;6个应变分量,分别为xx ε、yy ε、zz ε、xy ε、yz ε、zx ε;3个位移分量u 、v 、w 。这15个未知函数满足15个基本方程,分别为3个平衡微分方程、6个几何方程和6个物理方程,以及受力边界条件及位移边界条件[6]。 图1为桁架结构水平段一侧局部示意图。其中,①为上弦材,②和④为纵梁,③为下弦材,⑤为斜材。此结构为4个节点和5个单元的钢架结构。对此桁架任意方向上的杆件离散化,选择单元⑤进行分析。 桁架问题一般需要两个坐标系进行描述,即整 图2 自动扶梯桁架结构水平段一侧局部示意图 结构分析中为方便杆端力和位移的叠加,应采用统一坐标系,即结构整体坐标xyz 。这样需对局部坐标系下的单元刚度矩阵进行坐标转换。 体坐标系和局部坐标系,选择固定的整体坐标系XY :1)描述了每个节点的位置,使用角度标记θ记录每个(单元)的方向;2)施加约束及载荷;3)表示问题的解,即在整体方向上的每个节点的位移。同时,还需要一个局部的单元坐标系来描述各个杆件(单元)的受力情况。如图3所示为局部坐标 系与整体坐标系之间的关系[7]。

图3 整体坐标系与局部坐标系关系图 整体位移(在节点i 的U iX ,U iY 和在节点j 的U jX 和U jY )和局部位移(在节点i 的u ix ,u iy 和在节点j 的u jx 和u jy )之间的关系为: θθθ θθ θθ θcos sin sin cos cos sin sin cos jy jx iY jy jx jX iy ix iY iy ix iX u u U u u U u u U u u U +=-=+=-= (1) 将方程(1)转化为矩阵形式为: TU U = (2) 其中: ????? ???????=????????????--=????????????=jy jx iy ix jY jX iY iX u u u u u T U U U U U ,cos sin 00sin cos 0000cos sin 00sin cos ,θθθθθθθθ U 和u 分别代表整体坐标系XY 和局部坐标系xy 下节点i 和节点j 的位移。T 是从局部形变转化为整体形变的变换矩阵。与形变推导公式相类似,局部力和整体力的关系如下: θθθ θθ θθ θcos sin sin cos cos sin sin cos jy jx jY jy jx jX iy ix iY iy ix iX f f F f f F f f F f f F +=-=+=-= (3) 将式(3)写成矩阵形式: Tf F = (4)

厚壁圆筒有限元分析报告

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 实习时间: 年月日

平面问题的厚壁圆筒问题 一、问题提出 如图所示为一厚壁圆筒,其内半径为r1=50mm,外半径为r2=100mm,作用在内孔上的压力p=10 Mpa,无轴向压力,轴向长度很长可视为无穷,要求对其进行结构静力分析,并计算厚壁圆筒径向应力和切向应力沿半径r方向的分布。弹性模量E=200 Gpa,泊松比μ=0.3。 图1 厚壁圆筒 二、建模步骤 1 定义工作文件名 依次单击Utility Menu>File>Change Jobname,在文本框中输入:1245523229,在“New Log and error files”处选中“yes”,单击“OK”。 2 定义工作标题 依次单击Utility Menu>File>Change Title ,在文本框中输入:1245523229,单击“OK”。依次单击Plot>Replot, 3 定义单元类型 1)依次单击Main Menu>Prefrences,选中“Structural”,单击“OK”。

2)依次单击Main Menu>Preprocessor>Element type>Add/Edit/Delete,出现对话框,单击“Add”,出现一个“Library of Element Type”对话框,。在“Library of Element Type”左面的列表栏中选择“Structural Solid”,在右面的列表栏中选择“Quard 4node 182”,单击“OK”。 2) 单击对话框中的“Options”,在弹出的单元属性对话框中,选择K3关键字element behavior为“Plane strain”,再单击“Close”,完成单元的设置。

空间桁架结构程序设计(Fortran)

空间桁架静力分析程序及算例1、变量及数组说明

2、空间桁架结构有限元分析程序源代码 !主程序(读入文件,调用总计算程序,输出结果) CHARACTER IDFUT*20,OUTFUT*20 WRITE(*,*) 'Input Data File name:' READ (*,*)IDFUT OPEN (11,FILE=IDFUT,STATUS='OLD') WRITE(*,*) 'Output File name:' READ (*,*)OUTFUT OPEN(12,FILE=OUTFUT,STATUS='UNKNOWN') WRITE(12,*)'*****************************************' WRITE(12,*)'* Program for Analysis of Space Trusses *' WRITE(12,*)'* School of Civil Engineering CSU *' WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *' WRITE(12,*)'*****************************************' WRITE(12,*)' ' WRITE(12,*)'*****************************************' WRITE(12,*)'*************The Input Data****************' WRITE(12,*)'*****************************************' WRITE(12,100) READ(11,*)NF,NP,NE,NM,NR,NCF,ND WRITE(12,110)NF,NP,NE,NM,NR,NCF,ND 100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND') 110 FORMAT(2X,I2,6I7) NPF=NF*NP NDF=ND*NF CALL ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF) END !******************************************************************** !总计算程序 SUBROUTINE ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)

有限元分析报告

创新实习报告 题目名称基于Solidworks simulation的潜孔冲击器前接头有限元分析学院(系)机械工程学院 专业班级材料成型及控制工程0801班 学生姓名(10) 指导教师杨雄教授 日期2012.2.27 至2012.3.23

基于Solidworks simulation的潜孔冲击器前接头有限元分析 目录 1.有限元分析软件简介 (2) 2.潜孔冲击器前接头实物及断口相片 (5) 3.潜孔冲击器前接头的基本属性,工作情况,受力情况的分析 (6) 4.利用三维画图软件建模 (7) 5. 利用solidworkd sinulation对零件进行有限元分析 (14) 5.1 分析原理及步骤…………………………………………………………… 5.2 算例属性…………………………………………………………………… 5.3 单位………………………………………………………………………… 5.4 材料属性…………………………………………………………………… 5.5 载荷和约束………………………………………………………………… 5.6 载荷………………………………………………………………………… 5.7 接触………………………………………………………………………… 5.8 网格信息…………………………………………………………………… 5.9 反作用力,自由实体力,自由体力矩…………………………………… 5.10 算例结果………………………………………………………………… 6.分析结论 (15) 6.1失效分析…………………………………………………………………… 6.2提出优化方案………………………………………………………………… 6.3对优化方案进行有限元分析………………………………………………… 6.4分析比较并得出结论………………………………………………………… 7.小结 (18) 8.参考文献 (18)

有限元分析报告

班级:土木1204 学号:19 姓名:廖枭冰

班级:土木1204 学号:23 姓名:梅雨辰

混凝土上承式空腹式拱桥研究 一引言 本文通过SAP2000软件,对混凝土上承式空腹式拱桥在上部车辆荷载作用下,各个部位的内力和应力的分布进行分析,对强度和刚度进行校核,提出存在的问题,最后进行改进。 工程实例图 模型三维图

二 模型尺寸及构件截面 该拱桥总跨度L=80m,高H=20m,宽度10m ,分为五个构件 1拱肋:一段圆弧线,水平投影长度80m,采用箱型截面,高1.6m,宽2m ,翼缘厚度0.22m,腹板厚度0.15m 2主梁:长80m,采用箱型截面,高6m,宽2m,翼缘厚度1.1m,腹板厚度0.55m 3立柱:拱桥与主梁的之间的竖向构件,采用矩形截面,长宽均为1.2m ,分别在桥的每隔10m 布置1根 4横系梁:拱肋之间的横向构件,采用矩形截面,高0.6m,宽0.4m 5桥面:长80m,宽10m,厚度为0.6m,保护层厚度30mm 三 材料定义 所有构件均采用C50混凝土,配置钢筋,抗压强度,50cu k f MPa =,弹性模量43.4510E MPa =? 四 计算模型假设与简化 ⑴由于拱肋,主梁,立柱,横系梁长度远大于宽度及高度,将其定义为杆件单元。 ⑵由于桥面的厚度远小于其长度和宽度,将其定义为平面厚壳单元。 ⑶圆弧拱肋采用在圆弧线上取点,用折线杆件进行逼近。 ⑷由于拱肋伸入桥台或桥墩,位移和转角均被束缚,两端采用固定端

约束,形成无铰拱模型。 ⑸由于主梁支撑在刚度较其大的多的桥台或桥墩上,又考虑到主梁长度方向的热胀冷缩,将其一端定义为固定铰支座,另一端定义为辊轴支座。 ⑹由于工程实际多采用混凝土现浇工艺,所有构件的连接处视为刚接 ⑺由于拱顶与主梁之间的混凝土的厚度较小,可忽略这部分混凝土,让拱顶与主梁直接接触。 ⑻由于桥面的重量较其它杆件大得多,故只考虑桥面的重量。 ⑼计算车辆对桥面的荷载时,不考虑车辆的具体尺寸,将其定义为均布荷载加在桥面上。 五模型受力分析 在桥面上施加规范规定的2 kN m的公路一级荷载,来模拟车辆对 10.5/ 桥的压力。 六结果展示(分析与校核) 1 强度分析 桥面单元 桥 面 弯 矩

有限元分析(桁架结构)

有限元上机分析报告 学院:机械工程 专业及班级:机械设计及其自动化08级7班姓名:王浩煜 学号:20082798 题目编号: 2

1.题目概况 1.1 结构组成和基本数据 结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。 材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。 载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。 结构的整体状况如下图所示: 1.2 分析任务 该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。 2.模型建立 2.1 物理模型简化及其分析 由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发

生弯曲和扭转等变形。结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。 2.2单元选择及其分析 由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。就像铰接结构一样,不承受弯矩。输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。输出有:单元节点位移、节点的应力应变等等。由此可见,LINK180单元适用于该结构的分析。 3.3 模型建立及网格划分 (1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。 (2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”

桁架结构的有限元分析MATLAB

力09创新实践 桁架结构有限元分析 学号 20092715 班级力0901-2 姓名魏强 指导教师房学谦 完成日期 2012/6/26 桁架结构有限元分析 摘要

从系统物理概念和力学原理推导有限元计算格式的方法叫做直接刚度法。本文利用推导出得有限元计算格式,通过MATLAB软件进行矩阵运算,对5杆桁架结构进行了内力分析。利用对比的方法,对照多组荷载,分析其受力的情况,为实际问题提供参考。 关键词:有限元法、MATLAB、桁架结构、内力分析 一、引言 1.工程背景及重要性 桁架结构(Truss structure)中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 在建筑结构中,桁架结构是一种应用比较普遍的结构形式,在桥梁工程、大型建筑、船舶工程、港口机械等工程领域均有广泛应用。在我国桁架结构发展迅速且应用最为广泛,如屋架、网架结构等。为了增加建筑的表现力,近些年来管桁架结构得到了许多业主的青睐,在大量的屋面结构中采用。 2.目前问题的研究现状 目前在普遍刚桁架的结构设计中,工程中普遍采用的发放时按理想铰接模型进行计算,并很据计算出的杆件界面应力选择合适的杆件型号。计算桁架结构内力时,一般采用如下基本假定:(1)接单均为铰接;(2)杆件轴线平直相交于节点中心;(3)荷载作用线通过桁架的节点。对于平面桁架还要求所有杆件轴线及荷载作用线在同一平面内。 对于桁架结构的应力分析,在方法上,结构力学中有结点法和截面法,另外

相关主题
文本预览
相关文档 最新文档