当前位置:文档之家› 热力学第一定律(导)学案 (15)

热力学第一定律(导)学案 (15)

 热力学第一定律(导)学案 (15)
 热力学第一定律(导)学案 (15)

第3节热力学第一定律能量守恒定律

课堂合作探究

问题导学

一、对热力学第一定律的理解

活动与探究1

1.一个物体,它既没有吸收热量也没有放出热量,那么:(1)如果外界对物体做的功为W,则它的内能如何变化?变化了多少?(2)如果物体对外界做的功为W,则它的内能如何变化?变化了多少?

2.一个物体,如果外界既没有对物体做功,物体也没有对外界做功,那么:(1)如果物体从外界吸收热量Q,它的内能如何变化?变化了多少?(2)如果向外界放出热量Q,它的内能如何变化?变化了多少?

3.如果物体在跟外界同时发生做功和热传递的过程中,内能的变化ΔU与热量Q及做的功W之间又有什么关系呢?

迁移与应用1

一定质量的气体从外界吸收了4.2×105 J的热量,同时气体对外界做了6×105 J的功,问:

(1)物体的内能是增加还是减少?变化量是多少?

(2)分子势能是增加还是减少?

(3)分子的平均动能是增加还是减少?

热力学第一定律的应用应注意的问题

1.在应用过程中应特别分清W、Q的正负号,以便准确地判断ΔU的正、负。

2.符号法则

3.判断是否做功的方法

一般情况下外界对物体做功与否,需看物体的体积是否变化。

(1)若物体体积增大,表明物体对外界做功,W<0;

(2)若物体体积变小,表明外界对物体做功,W>0。

4.应用热力学第一定律解题的一般步骤

(1)根据符号法则写出各已知量(W、Q、ΔU)的正负;

(2)根据方程ΔU=W+Q求出未知量;

(3)再根据未知量结果的正负来确定吸热、放热情况或做功情况。

二、能量守恒定律永动机

活动与探究2

1.能量可以由一种形式转化为另一种形式,也可以从一个物体转移到另一个物体。能量在转化或转移的过程中遵循什么规律呢?

2.什么是第一类永动机?第一类永动机违反了什么规律?

迁移与应用2

如图所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有用形状记忆合金制成的叶片。轻推转轮后,进入热水的叶片因伸展而“划水”,推动转轮转动。离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动。下列说法正确的是()

A.转轮依靠自身惯性转动,不需要消耗外界能量

B.转轮转动所需能量来自形状记忆合金自身

C.转动的叶片不断搅动热水,水温升高

D.叶片在热水中吸收的热量一定大于在空气中释放的热量

1.能量的存在形式及相互转化

各种运动形式都有对应的能:机械运动对应机械能,分子的热运动对应内能,还有诸如电磁能、化学能、原子能等。

2.能量守恒定律的重要意义:能量守恒定律比机械能守恒定律更普遍,它是物理学中解决问题的重要思维方法。能量守恒定律与电子的发现、达尔文的进化论并称19世纪自然科学中的三大发现,其重要意义由此可见。

3.第一类永动机不可能制成

一切与热现象有关的过程,能量一定守恒。第一类永动机本质上都是认为能量能够无中生有地创造出来,这违背了能量守恒定律,因而是不可能实现的。

当堂检测

1.在热力学第一定律的表达式ΔU=W+Q中,关于ΔU、W、Q各个物理量的正、负,下列说法中正确的是()

A.外界对物体做功时W为正,吸热时Q为负,内能增加时ΔU为正

B.物体对外界做功时W为负,吸热时Q为正,内能增加时ΔU为负

C.物体对外界做功时W为负,吸热时Q为正,内能增加时ΔU为正

D.外界对物体做功时W为负,吸热时Q为负,内能增加时ΔU为负

2.下列关于能量转化现象的说法中,正确的是()

A.用太阳灶烧水是太阳能转化为电能

B.电灯发光是电能转化为光能

C.核电站发电是电能转化为内能

D.生石灰放入盛有凉水的烧杯里,水温升高是动能转化为内能

3.断定第一类永动机不可能制成的依据是()

A.牛顿第二定律B.动量守恒定律

C.机械能守恒定律D.能量守恒定律

4.气体膨胀对外做功100 J,同时从外界吸收了120 J的热量,它的内能的变化是()A.减小20 J B.增大20 J

C.减小220 J D.增大220 J

5.一定量的气体吸收热量,体积膨胀并对外做功,则此过程的末态与初态相比()A.气体内能一定增加B.气体内能一定减小

C.气体内能一定不变D.气体内能的增减不能确定

答案:

课堂·合作探究

【问题导学】

活动与探究1:

1.答案:一个物体,如果它既没有吸收热量也没有放出热量,那么,外界对它做功为

W,它的内能就增加W;物体对外界做功为W,它的内能就减少W。

2.答案:如果外界既没有对物体做功,物体也没有对外界做功,那么物体从外界吸收热量Q,它的内能就增加Q;物体向外界放出热量Q,它的内能就减少Q。

3.答案:ΔU=Q+W。该式表示的是功、热量跟内能改变之间的定量关系,在物理学中叫做热力学第一定律。

迁移与应用1:答案:见解析

解析:(1)气体从外界吸热为:Q=4.2×105 J

气体对外界做功为:W=-6×105 J

由热力学第一定律知:

ΔU=W+Q=(-6×105 J)+(4.2×105 J)=-1.8×105 J

ΔU取负值,说明气体的内能减少,减少了1.8×105 J。

(2)因为气体对外界做功,所以气体的体积增大,分子间距离增大,气体分子间的作用力表现为引力,所以此过程要克服分子力做功,分子势能增加。

(3)因为气体内能减少,同时气体的分子势能增加,说明气体分子的平均动能一定减少了。

活动与探究2:

1.答案:能量在转化或转移的过程中遵循能量守恒定律。

2.答案:不消耗任何能量,却可以源源不断地对外做功,人们把这种不消耗能量的机器叫做第一类永动机。第一类永动机违反了能量守恒定律。

迁移与应用2:D解析:转轮转动,机械能增加,必须从外界吸收能量,A、B错误;转动叶片从水中吸收能量,水温降低,C错误;叶片吸收的热量一部分转化为机械能,选项D正确。

【当堂检测】

1.C解析:根据公式ΔU=W+Q中的符号法则知选项C正确。

2.B解析:A选项中是光能转化为内能,C选项中是核能转化为电能,D选项中是化学能转化为内能,故B选项正确。

3.D解析:能量守恒定律的确立,给予了第一类永动机不能制成的科学解释。

4.B解析:研究对象为气体,依符号规则,对外做的功W=-100 J,吸收热量Q=+120 J。由热力学第一定律有:ΔU=W+Q=-100 J+120 J=20 J。ΔU>0,说明气体的内能增加。故正确选项为B。

5.D解析:由热力学第一定律ΔU=Q+W,气体吸收热量Q>0,体积膨胀对外做功W<0,但不能确定Q与W值的大小,所以不能判断ΔU的正负,则气体内能的增减也就不能确定,选项D正确。

热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)

三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1) Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β Δ H 1 ΔH 3 Δ H m (T 0) α β 可逆相变 ΔH = Q p = n Δ H m α β ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

第一章热力学第一定律练习题

第一章 热力学第一定律练习题 一、判断题(说法对否): 1.道尔顿分压定律,对理想气体和实际混合气体来说关系式PB=Nb(RT/V)都成立。 2.在两个封闭的容器中,装有同一种理想气体,压力、体积相同,那么温度也相同。 3.物质的温度越高,则热量越多;天气预报:今天很热。其热的概念与热力学相同。 4.恒压过程也就是恒外压过程,恒外压过程也就是恒过程。 5.实际气体在恒温膨胀时所做的功等于所吸收的热。 6.凡是温度升高的过程体系一定吸热;而恒温过程体系不吸热也不放热。 7.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生变化时, 所有的状态函数的数值也随之发生变化。 8.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力 一定时;系统的体积与系统中水和NaCl 的总量成正比。 9.在101.325kPa 、100℃下有lmol 的水和水蒸气共存的系统,该系统的状态完全确定。 10.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。 11.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 12.从同一始态经不同的过程到达同一终态,则Q 和W 的值一般不同,Q + W 的值一般也 不相同。 13.因Q P = ΔH ,Q V = ΔU ,所以Q P 与Q V 都是状态函数。 14.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 15.对于一定量的理想气体,当温度一定时热力学能与焓的值一定,其差值也一定。 16.在101.325kPa 下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想 气体,那么由于过程等温,所以该过程ΔU = 0。 17.1mol ,80.1℃、101.325kPa 的液态苯向真空蒸发为80.1℃、101.325kPa 的气态苯。已 知该过程的焓变为30.87kJ ,所以此过程的Q = 30.87kJ 。 18.1mol 水在l01.325kPa 下由25℃升温至120℃,其ΔH = ∑C P ,m d T 。 19.因焓是温度、压力的函数,即H = f (T ,p ),所以在恒温、恒压下发生相变时,由于 d T = 0,d p = 0,故可得ΔH = 0。 20.因Q p = ΔH ,Q V = ΔU ,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W 。 21.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 22.一个系统经历了一个无限小的过程,则此过程是可逆过程。 23.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。 24.若一个过程是可逆过程,则该过程中的每一步都是可逆的。 25.1mol 理想气体经绝热不可逆过程由p 1、V 1变到p 2、V 2, 则系统所做的功为 V p C C V p V p W =--=γγ,11122。 26.气体经绝热自由膨胀后,因Q = 0,W = 0,所以ΔU = 0,气体温度不变。 27.(?U /?V )T = 0 的气体一定是理想气体。 28.因理想气体的热力学能与体积压力无关,所以(?U /?p )V = 0,(?U /?V )p = 0。 29.若规定温度T 时,处于标准态的稳定态单质的标准摩尔生成焓为零,那么该温度下

热力学第一定律

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ? ??? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

热力学第一定律

热力学第一定律 一.选择题 1. 将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是 (a) 绝热箱中所有物质 (b) 两个铜电极; (c) 蓄电池和铜电极(d) CuSO4水溶液。 2.选择系统的原则是 (a)符合能量转换和守恒的规律 (b)使研究的问题得到合理的、简明的解答 (c)便于计算过程中的功和热及热力学函数的变化值 (d)便于考察环境对系统的影响 3. x为状态函数,下列表述中不正确的是 (a) d x为全微分 (b) 当状态确定,x的值确定 (c) ?x= ∫d x的积分与路经无关,只与始终态有关 (d) 当体系状态变化,x值一定变化 4. 状态函数的性质 (a)绝对值不知(b)相互独立 (c)都有偏摩尔量(d)变化值仅取决于始末态 5. 体系的状态改变了,其内能值 (a)必定改变(b)必定不变 (c)不一定改变(d)状态与内能无关 6. 封闭体系从A态膨胀为B态,可以沿两条等温途径:甲)可逆途径;乙)不可逆途径,则下列关系式 ⑴ΔU可逆> ΔU不可逆⑵∣W可逆∣> ∣W不可逆∣ ⑶Q可逆> Q不可逆⑷( Q可逆- W可逆) > ( Q不可逆- W不可逆) 正确的是 (a) (1),(2) (b) (2),(3) (c) (3),(4) (d) (1),(4) 7. 当理想气体冲入一真空绝热容器后,其温度将 (a) 升高(b) 降低 (c) 不变(d) 难以确定 8. 当热力学第一定律写成d U = δQ–p d V时,它适用于 (a).理想气体的可逆过程(b). 封闭体系的任一过程 (c). 封闭体系只做体积功过程(d). 封闭体系的定压过程 9. 对于孤立体系中发生的实际过程,下列关系中不正确的是 (a) W = 0 (b) Q = 0 (c) ΔU= 0 (d) ΔH = 0 10. 关于热平衡, 下列说法中正确的是 (a)系统处于热平衡时, 系统的温度一定等于环境的温度 (b)并不是所有热力学平衡系统都必须满足热平衡的条件 (c)若系统A与B成热平衡, B与C成热平衡, 则A与C直接接触时也一定成热平衡 (d)在等温过程中系统始终处于热平衡 11. 理想气体自由膨胀过程中 (a). W = 0,Q>0,?U>0,?H=0 (b). W>0,Q=0,?U>0,?H>0

第一章 热力学第一定律

第一章热力学第一定律 一、单选题 1) 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有:( ) A.W =0,Q <0,?U <0 B.W <0,Q<0,?U >0 C.W<0,Q<0,?U >0 D.W<0,Q=0,?U>0 2) 如图,用隔板将刚性绝热壁容器分成两半,两边充入压力不等的空气(视为理想气体),已 知p 右> p 左, 将隔板抽去后: ( ) A.Q=0, W=0, ?U=0 B.Q=0, W <0, ?U >0 C.Q >0, W <0, ?U >0 D.?U=0, Q=W≠0 3)对于理想气体,下列关系中哪个是不正确的:( ) A. (?U/?T)V=0 B. (?U/?V)T=0 C. (?H/?p)T=0 D. (?U/?p)T=0 4)凡是在孤立孤体系中进行的变化,其?U和?H的值一定是:( ) A.?U >0, ?H >0 B.?U=0, ?H=0 C.?U <0, ?H <0 D.?U=0,?H大于、小于或等于零不能确定。 5)在实际气体的节流膨胀过程中,哪一组描述是正确的: ( ) A.Q >0, ?H=0, ?p < 0 B.Q=0, ?H <0, ?p >0 C.Q=0, ?H=0, ?p <0 D.Q <0, ?H=0, ?p <0 6)如图,叙述不正确的是:( ) A.曲线上任一点均表示对应浓度时积分溶解热大小 B.?H1表示无限稀释积分溶解热 C.?H2表示两浓度n1和n2之间的积分稀释热 D.曲线上任一点的斜率均表示对应浓度时HCl的微分溶解热 7)?H=Q p此式适用于哪一个过程: ( ) A.理想气体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPa B.在0℃、101325Pa下,冰融化成水 C.电解CuSO4的水溶液 D.气体从(298K,101325Pa)可逆变化到(373K,10132.5Pa ) 8) 一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1、V2。( ) A.V1 < V2 B.V1 = V2 C.V1> V2 D.无法确定 9) 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由T1升高到T2,则此过程的焓变?H:( )

第一章热力学第一定律答案

第一章 热力学练习题参考答案 一、判断题解答: 1.错。对实际气体不适应。 2.错。数量不同,温度可能不同。 3.错。没有与环境交换能量,无热可言;天气预报的“热”不是热力学概念,它是指温度,天气很热,指气温很高。 4.错。恒压(等压)过程是体系压力不变并与外压相等,恒外压过程是指外压不变化,体系压力并不一定与外压相等。 5.错。一般吸收的热大于功的绝对值,多出部分增加分子势能(内能)。 6.错。例如理想气体绝热压缩,升温但不吸热;理想气体恒温膨胀,温度不变但吸热。 7.第一句话对,第二句话错,如理想气体的等温过程ΔU = 0,ΔH = 0,U 、H 不变。 8.错,两个独立变数可确定系统的状态只对组成一定的均相组成不变系统才成立。 9.错,理想气体U = f (T ),U 与T 不是独立的。描述一定量理想气体要两个独立变量。 10.第一个结论正确,第二个结论错,因Q+W =ΔU ,与途径无关。 11.错,Q V 、Q p 是过程变化的量、不是由状态决定的量,该式仅是数值相关而已。在一定条件下,可以利用ΔU ,ΔH 来计算Q V 、Q p ,但不能改变其本性。 12.错,(1)未说明该过程的非体积功W '是否为零; (2)若W ' = 0,该过程的热也只等于系统的焓变,而不是体系的焓。 13.对。因为理想气体热力学能、焓是温度的单值函数。 14.错,这是水的相变过程,不是理想气体的单纯状态变化,ΔU > 0。 15.错,该过程的p 环 = 0,不是恒压过程,也不是可逆相变,吸的热,增加体系的热力学能。吸的热少于30.87 kJ 。 16.错,在25℃到120℃中间,水发生相变,不能直接计算。 17.错,H = f (T ,p )只对组成不变的均相封闭系统成立,该题有相变。 18.错,Δ(pV )是状态函数的增量,与途径无关,不一定等于功。 19.错,环境并没有复原,卡诺循环不是原途径逆向返回的。 20.错,无限小过程不是可逆过程的充分条件。如有摩擦的谆静态过程。 21.错,若有摩擦力(广义)存在,有能量消耗则不可逆过程,只是准静态过程。 22.对。只有每一步都是可逆的才组成可逆过程。 23.对。() ()()12m ,121122n n 1T T C C C C T T R V p V p W V V V p -=--=--= γ。该公式对理想气体可逆、 不可逆过程都适用。 24.错,若是非理想气体的温度会变化的,如范德华气体。 25.错,该条件对服从pV m = RT + bp 的气体(钢球模型气体)也成立。 26.错,(?U /?V )p ≠(?U/?V )T ;(?U /?P )V ≠(?U/?V )T ,因此不等于零。 27.错,U = H -pV 。PV 不可能为零的。 28.错。CO 2在1000K 的标准摩尔生成焓可以由298K 标准摩尔生成焓计算出:由基尔霍夫定律得出的计算公式:

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律

一.热力学第一定律 热力学第一定律是能量转化和守恒定律在热现象过程中,内能和其他形式的能相互转化的数量关系。它的内容是:系统的内能增量等于系统从外界吸收的热量和外界对系统做功的和。设系统的内能变化量为E ?,外界对系统做功为W ,系统吸收外界的热量为Q ,则有: E ?=W +Q 在使用这个定律时要注意三个量的符号处理:外界对系统做功,W 取正值,系统对外做功W 取负值,如果系统的体积不变,则W =0;系统从外界吸热,Q 取正值,系统对外界放热,Q 取负值;系统的内能增加,E ?取正值,系统的内能减小,E ?取负值。 二.二.理想气体的状态方程 (一)理想气体的状态方程 一定质量的理想气体,不论P 、V 、T 怎样变化,任一平衡态的T PV 是恒量;即有 111T V P =22 2T V P =恒量 设气体状态方程中气体的压强P 0=1标准大气压,1摩尔气体在温度T 0=273.15K ,其 体积是V 0=22.4升,则000T V P =开摩尔米帕15.273104.2210013.11 335--????=8.31帕?米3/开?摩尔。00 0T V P 的比值是与气体的性质无关的恒量,通常用R 表示,称为普适气体恒量,其值为 R =00 0T V P =8.31帕?米3/开?摩尔=8.31焦/开?摩尔=8.2×10- 2大气压?升/开?摩尔 1摩尔气体的状态方程可写成T V P =00 0T V P =R 或PV=RT ,n 摩尔的气体在标准状态 下的体积为V = n V 0,气体的状态方程为T V P =000T nV P = n R ,由此可得理想气体的状态 方程(即克拉珀龙方程): P V = n R T =M m R T

热力学第一定律

1.热力学第一定律 热力学第一定律的主要内容,就是能量守恒原理。能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。而不同形式的能量在相互转化时永远是数量相当的。这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。设计方案之多,但是成千上万份的设计中,没有一个能实现的。人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。第一类永动机是不可能制成的,这就是能量守恒原理。到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。1cal = 4.1840J 热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。2.热力学第二定律 能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。 也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。 人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。 这种机器就是“第二类永动机”。然而这种机器屡遭失败,不能成功,这就需要从理论上进一步探索。 前面说过,卡诺已经接近发现了热力学第一定律和热力学第二定律,但他受热质说的影响,不能把它们表述出来。 1850年,德国物理学家克劳胥斯在研究卡诺理论的基础上,提出“一个自行动作的机器,不可能把热从低温物体传到高温物体中去”。这就是热力学第二定律的“克劳胥斯表述”。1851年,英国物理学家威廉·汤姆生,即凯尔文勋爵也独立地从卡诺的工作中发现了热力学第二定律。 汤姆生,1824年生于英国贝尔发斯特城。父亲是皇家学院的数学教授,治学勤奋,对子女要求也很严格,1832年被聘到母校格拉斯哥大学任教,全家也迁往该城。 当这位新来的教授开始上第一堂课时,同学们发现教室多了两个漂亮的小男孩,也在津津有味地听着,他们就是8岁的汤姆生和他10岁的哥哥。 汤姆生10岁时,和哥哥正式进格拉斯哥大学预科学习,这可能是当时最小的大学生。汤姆生天资聪明,学习勤奋,表现出杰出的才能。15岁,他获得学校的物理学奖,第二年获天文学奖。17岁时,他在剑桥大学的数学杂志上发表了一篇论文,名震全校。 此后几年中,汤姆生发表了一连串的研究论文,内容包括数学、热力学和电学。 1846年,年仅22岁的汤姆生击败30多位教师候选人,获得了格拉斯哥大学的教授职位。1847年6月,焦耳在牛津大学举行的学术会议上,阐明机械能可以定量地转化为热能,各种形式的能都可以相互转化。 汤姆生出席了这次会议,他也是传统的热质说的拥护者,认为能量不可能转化,准备反驳焦

第一章热力学第一定律

第一章 热力学第一定律 一、选择题 1.下述说法中,哪一种正确( ) (A)热容C 不是状态函数; (B)热容C 与途径无关; (C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。 2.对于内能是体系状态的单值函数概念,错误理解是( ) (A) 体系处于一定的状态,具有一定的内能; (B) 对应于某一状态,内能只能有一数值不能有两个以上的数值; (C) 状态发生变化,内能也一定跟着变化; (D) 对应于一个内能值,可以有多个状态。 3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( ) (A) O 2 (B) Ar (C) CO 2 (D) NH 3 4.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( ) (A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -1 5.已知反应)()(2 1)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ ?,下列说法中不正确的是( )。 (A). )(T H m r θ?是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ ?是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ?是负值 (D). )(T H m r θ?与反应的θ m r U ?数值相等 6.在指定的条件下与物质数量无关的一组物理量是( ) (A) T , P, n (B) U m , C p, C V (C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B) 7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( ) (A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0 (C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠0 8.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( ) (A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热 (C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等 9.为判断某气体能否液化,需考察在该条件下的( ) (A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值

第一章热力学第一定律及其应用

华中科技大学博士研究生入学考试《物理化学(二)》考试大纲 第一章热力学第一定律及其应用 1.1 热力学概论 1.2 热力学第一定律 1.3准静态过程与可逆过程 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用 1.7 实际气体 1.8 热化学 1.9 赫斯定律 1.10 几种热效应 1.11 反应热与温度的关系 1.12 绝热反应——非等温反应 1.13 热力学第一定律的微观说明 第二章热力学第二定律 2.1 自发变化的共同特征一不可逆性性 2.2 热力学第二定律 2.3 卡诺定律 2.4 熵的概念.

2.5 克劳修斯不等式与熵增加原理 2.6熵的计算 2.7热力学第二定律的本质和熵的统计意义 2.8亥姆霍兹自由能和古布斯自由能 2.9变化的方向和平衡条件 2.10ΔG的计算示例 2.11几个热力学函数间的关系 2.12单组分体系的两相平衡 2.13多组分体系中物质的偏摩尔量和化学势 2.14不可逆过程热力学简介 第三章统计热力学基础 3.1 概论 3.2玻尔兹曼统计 3.3玻色—爱因期坦统计和费米—狄拉克统计 3.4配分函数 3.5各配分函数的求法及其对热力学因数的贡献3.6晶体的热容问题 3.7分子的全配分函数 第四章溶液——多组分体系热力学在溶液中的应用4.1 引言 4.2 溶液组成的表示法 4.3 稀溶液的两个经验定律

4.4混合气体中各组分的化学势 4.5理想溶液的定义、通性及各组分的化学势4.6稀溶液中各组份的化学势 4.7理想溶液和稀溶液的微观说明 4.8稀溶液的依数性 4.9吉朽斯—杜亥姆公式和杜亥姆—马居耳公式4.10非理想溶液 4.11分配定律――溶质在两互不相溶液中的分配第五章相平衡 5.1引言 5.2多相体系的一般平衡条件 5.3相律 5.4单组份体系的相图 5.5二组份体系的相图及应用 5.6三组份体系的相图和应用 5.7二级相变 第六章化学平衡 6.1化学反应的平衡条件和化学反应的亲和势6.2化学反应的平衡常数和等温方程式 6.3平衡常数的表示式 6.4复相化学平衡 6.5平衡常数的测定和平衡转化率的计算

热力学第一定律基本概念和重点总结

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学第一定律的应用

大连理工大学 化工热力学论文(大作业) 题目:热力学第一定律的应用 姓名: 专业:化学工程 学号:31307022 指导教师:张乃文

摘要 热现象是人类最早接触到的自然现象之一。人类从远古时期开始就已经开始知道了如何利用摩擦、燃烧、爆炸等热现象来达到生产和生活的目的。 在过去的一个多世纪里面,经典热力学的发展取得了巨大的进步,从最初的模糊的热的概念逐步演变发展成为一门科学、严谨、庞大的学科。经典热力学的发展历史是人类对热的本质及能量转换规律的认识、掌握和运用的历史。经典热力学是一实验为基础的宏观理论,具有高度的可靠性和普遍性。它研究的内容决定了物理、化学反应进行的方向和限度,对于化工生产的发展意义重大。它决定设计分离过程、化学反应器所需要的化学反应平衡和平衡的数据、参数和状态。能够判断化工生产中一些新的合成工艺是否可行,以及在什么条件下可行,节省了化工开发过程中的人力、物力和研发时间;同时在化工设计、生产过程中的多元平衡数据都需要通过热力学的方法来确定。它在冷凝、汽化、闪蒸、液相节流、蒸馏、吸收、萃取和吸附等单元操作中应用也十分普遍。可以说经典热力学是化工设计、化工生产的基础。 热力学第一定律即能量守恒及转换定律,它是自然界的一条普遍定律,是19世纪的三大发现(进化论、细胞学说和能量守恒及转化定律)之一,在学科的各个领域均得到广泛的应用。热力学第一定律的文字表述是:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另外一种形式,从一个物体传递到另外一个物体,在传递与转化中能量的数量不变。从中可知,能量既不会消失也不会无中生有,转化的过程中具有不灭性,而做功必须由能量转化而来,所以,永动机是不可能实现的。 能量守恒和转化定律的发现是人类认识自然的一个伟大进步,它揭示自然界是一个互相联系、互相转化的统一体,第一次在空前广阔的领域里把自然界各种运动形式联系起来。在理论上,这个定律的发现对自然科学的发展和建立辩证唯物主义自然观提供了坚实的基础。在实践上,它对于永动机之不可能实现,给予了科学上的最后判决,使人们走出幻想的境界,从而致力于研究各种能量形式相互转化的具体条件,以求最有效地利用自然界提供的各种各样的能源。热力学第一定律的建立,为自然科学领域增添了崭新的内容,同时也大大推动了哲学理论的前进。现在,随着自然科学的不断发展,能量守恒和转化定律经受了一次又一次的考验,并且在新的科学事实面前不断得到新的充实与发展。特别是相对论中质能关系式的总结,使人们对这一定律的认识又大大地深化了一步,即在能量和质量之间也能发生转换。 化工热力学也是应用在生活的各个角落,与我们的生活息息相关。并且化工热力学第一定律的发现极大促进了社会的发展。

第一章热力学第一定律

第一章热力学第一定律 本章主要内容 1.1热力学概论 1.2热力学第一定律 1.3 可逆过程和最大功 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用1.7实际气体 1.8热化学 1.9化学反应热效应的求算方法 1.10反应热与温度的关系——基尔霍夫定律

§1.1热力学概论 1.1.1热力学的研究对象 (1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律; (2)研究各种物理变化和化学变化过程中所发生的能量效应; (3)研究化学变化的方向和限度。 1.1.2 热力学的方法和局限性 热力学方法: 热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。 优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。 局限性: (1)对所得的结论只知其然而不知所以然; (2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。 (3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。 1.1.3 几个基本概念: 1、系统与环境 系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。 环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。 (1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。 (2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

热力学第一定律及其应用

热力学第一定律及其应用 §2. 1热力学概论 热力学的基本内容 热力学是研究热功转换过程所遵循的规律的科学。它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。 热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。 热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。如一个系统的变化的方向和变化所能达的限度等。热力学研究方法和局限性 研究方法: 热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。 特点: 首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。 局限性: 不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。 §2. 2热平衡和热力学第零定律-温度的概念为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。 温度概念的建立以及温度的测定都是以热平衡现象为基础。一个不受外界影

响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。这个状态参量就称为温度。 那么如何确定一个系统的温度呢?热力学第零定律指出:如果两个系统分别和处于平衡的第三个系统达成热平衡,则这两个系统也彼此也处于热平衡。热力学第零定律是是确定系统温度和测定系统温度的基础,虽然它发现迟于热力学第一、二定律,但由于逻辑的关系,应排在它们的前边,所以称为热力学第零定律。 温度的科学定义是由热力学第零定律导出的,当两个系统接触时,描写系统的性质的状态函数将自动调节变化,直到两个系统都达到平衡,这就意味着两个系统有一个共同的物理性质,这个性质就是“温度”。 热力学第零定律的实质是指出了温度这个状态函数的存在,它非但给出了温度的概念,而且还为系统的温度的测定提供了依据。 §2. 3热力学的一些基本概念 系统与环境 系统:物理化学中把所研究的对象称为系统 环境:和系统有关的以外的部分称为环境。 根据系统与环境的关系,可以将系统分为三类: (1)孤立系统:系统和环境之间无物质和能量交换者。 (2)封闭系统:系统和环境之间无物质交换,但有能量交换者。 (3)敞开系统:系统和环境之间既有物质交换,又有能量交换 系统的性质 系统的状态可以用它的可观测的宏观性质来描述。这些性质称为系统的性质,系统的性质可以分为两类: (1)广度性质(或容量性质)其数值与系统的量成正比,具有加和性,整个体系的广度性质是系统中各部分这种性质的总和。如体积, 质量,热力学能等。 (2)强度性质其数值决定于体系自身的特性,不具有加和性。如温度,压力,密度等。 通常系统的一个广度性质除以系统中总的物质的量或质量之后得到一个强度性质。 热力学平衡态 当系统的各种性质不随时间变化时,则系统就处于热力学的平衡态,所谓热力学的平衡,应包括如下的平衡。

相关主题
文本预览
相关文档 最新文档