当前位置:文档之家› 不锈钢除尘灰再利用技术_张增武

不锈钢除尘灰再利用技术_张增武

不锈钢除尘灰再利用技术_张增武
不锈钢除尘灰再利用技术_张增武

炼钢除尘灰的资源化利用

1.文献综述 1.1 除尘灰概况 1.1.1 除尘灰来源 在钢铁厂生产过程中,生产出来的副产品和粉尘主要是除尘灰,而这些除尘灰会在多个方面产生,比如电炉灰和高炉灰,不仅如此,在烧结冶炼过程中,也会产生大量的除尘灰,这些有害物对环境造成了严重的影响。 除尘灰的来源是多方面的,生活过程中会产生一部分的有害物,这些有害物中含有烟尘[1]等,除了生活中还有交通运输过程中,一些交通工具的尾气排放等产生的有害物也是除尘灰的来源,除尘灰的来源最多的是工艺生产中,这就是除尘灰的主要来源。现在除尘灰每年排放130万吨,造成了严重的环境污染,而电炉炼钢是造成烟尘污染最主要的来源。 在进行的电炉炼钢阶段,通常经过几道工序来完成生产电炉灰,最终在袋式除尘器来捕集电炉烟尘,这样完成了对电炉灰的生产,占产出炉料装入量2%~3%。电炉在冶炼过程中产生大量烟尘,每吨钢发生量大约为12~20 kg/t,烟尘中含FeO的在40 %以上。在钢铁这一行业当中电炉能够生出许多的烟尘,平均一年就可以捕集10万多吨,如果加上重机、电力制造、造船等行业数百台电炉排出的烟尘,数量就更为可观,这么多的烟尘会造成十分恶劣的环境污染,对人的健康造成影响,所以我们要对其进行有效的治理,不仅如此还要加以利用,变废为宝不浪费宝贵的资源[2]。 1.1.2除尘灰的利用 在钢铁企业,近些年越来越多人开始注意怎样再次利用烟尘[3]。对除尘灰的综合利用在国内研究课题中十分重要,目前对除尘灰的利用主要是两个方面,一个是球化后作为建材用料,另一个是作为原料进行回炉再利用,当作建材用料的时候,用作磁性材料的研究现在看来还是十分的少的。除尘灰球化后在回炉中作为炼钢原料还可以作一些像氧化红铁等技术水平低的材料,当作为这些技术水平低的材料时,对于除尘灰的资源是非常大的浪费,所以这些还有待考虑。国外和我国一样,对回收利用除尘灰这一项目也十分看重,他们回收其中的炭来作为墨水等等,或者作为活性炭这种吸附能力强的物质,对于水的合格和吸入的大气都起到了净化的作用[4]。 研究人员已经做了很多有关除尘灰综合利用的工作。目前所利用的方法总体

高炉含锌除尘灰的综合利用---杨春雷详解

高炉含锌除尘灰的综合利 用 杨春雷 岗位职级:助理工程师 专业:矿物加工工程 二〇一四年

摘要 结合钢铁企业节能减排、建立循环经济的发展方向,针对除尘灰的循环利用导致高炉中锌的富集,高锌灰已经成为影响高炉冶炼的重要因素。本文根据酒钢除尘灰的情况,介绍国内外多种高锌除尘灰处理工艺和基本原理,为高锌除尘灰处理提供思路和方式。 关键词:高锌除尘灰酒钢集团处理工艺节能减排 一、除尘灰简介 钢铁企业资源和能源密集、生产规模和物流量大、工序流程长,因而产生大量固体废弃物,成为公认的污染大户。近20年来国外不少发达国家如德、日、英、美、俄等加大了对冶金工业固体废弃物研究开发力度,取得了很好的成绩。例如在冶金废渣利用方面,美国的利用率已经达到80"--85%,日本为70"--80%,德国和西班牙接近100%。,而在国内,随着近年来钢铁产量高速增长,环境问题更为突出。日益增长的钢铁生产能力对周围环境的压力越来越大。如何提高资源和能源的使用效率,减轻环境负荷,走循环经济的道路,实现可持续发展,已成为未来我国钢铁行业发展的必然方向。目前我国的钢铁企业冶金流程主要集中于烧结一高炉一转炉一轧钢长流程生产,占钢铁总生产能力的70%以上。在烧结、高炉炼铁、转炉及电炉炼钢

等工序均可产生的大量粉尘及其副产品,统称为除尘灰。若不加以有效处理,这些堆积和飞扬的除尘灰将对厂区及周围的环境造成严重污染,对农田的生态环境也有很大的危害。如果能对各类除尘灰合理地开发和利用,不但可以防止产生二次污染,有效地改善周边环境,而且还能变废为宝,将除尘灰作为二次资源来利用。近年来随着高炉大型化的发展,高炉粉尘发生量不断增多,高炉布袋除尘灰有以下特征:l、粒径小、比重轻。一般200目过筛率在50"--65%,甚至更细,极易飘散在大气中,严重污染周围环境;2、易反应。含有较多粒径小的低沸点金属,与空气接触时,易于空气中氧反应,产生自燃。3、强烈的腐蚀性。高炉瓦斯泥中存在相当数量的碱金属与碱土金属,如K20、Na20、CaO、MgO等,易与水化合生成氢氧化物而呈碱性。4晶相独特,分离困难。高炉瓦斯泥是高温产物,矿物表面性质与天然矿物相差巨大。细粒矿物在高温作用下熔融在一起,极易包裹脉石矿物,选矿难度大,有价金属回收率较低。如何处理已成为钢铁企业的一大难题。 二、锌在高炉中的循环和危害 铁矿石中的少量锌主要以铁酸盐(ZnOFe2O3)、硅酸盐(2ZnOSiO2)及硫化物(ZnS)的形式存在。锌元素进入高炉后,与炉料一起被加温。但它不能跟随炉料中的几大主要元素一起进入渣铁。其硫化物先转化为复杂的氧化物,然后再在大于1000℃的高温区被CO还原为气态锌。即ZnO+ CO= Zn( 气)+CO2。沸点为907℃的锌蒸汽,随煤气上升,到达温度较低的区域时冷凝(580℃) 而再氧化。再氧化形成的氧

转炉除尘灰的高附加值利用)

核心提示:摘要:随着转炉炼钢生产的发展,炼钢工艺的日趋完善,相应的除尘技术也在不断地发展完善。炼钢烟气的净化回收方法主要有两种,一种是湿法(OG 法),一种是干法(LT 法)。LT 法(干法)为德国Lurgi 公司与Thyssen 钢铁厂研制成功的一种转炉烟气净化及煤气回收干式系统,该除尘方式不用大量浊环水洗涤烟气,而是采用蒸发冷却器+静电除尘器+煤气冷却器系统。它以净化效率高、能耗低、干粉尘可设置压块系统,粉尘经压块后直接供转炉利用等特点,得到广泛应用。 转炉除尘灰的高附加值利用 卜二军耿丽君刘红艳 随着转炉炼钢生产的发展,炼钢工艺的日趋完善,相应的除尘技术也在不断地发展完善。炼钢烟气的净化回收方法主要有两种,一种是湿法(OG 法),一种是干法(LT 法)。LT 法(干法)为德国Lurgi 公司与Thyssen 钢铁厂研制成功的一种转炉烟气净化及煤气回收干式系统,该除尘方式不用大量浊环水洗涤烟气,而是采用蒸发冷却器+静电除尘器+煤气冷却器系统。它以净化效率高、能耗低、干粉尘可设置压块系统,粉尘经压块后直接供转炉利用等特点,得到广泛应用。 邯钢转炉烟气采用干法除尘技术,与湿法相比,分别节电、节水约1/3,减少建设用地1/2,烟尘含量由50mg/Nm3降到10mg/Nm3,同时烟尘可被全部回收再利用,实现节能4.5kgce/t 钢。现一炼钢厂的煤气回收量已稳定达到140Nm3/t 钢,回收煤气热值稳定在1500kcal/Nm3以上。这对我国转炉炼钢节能减排、实现负能炼钢起到了积极的推动作用。但是转炉除尘灰具有温度高、金属化程度高、易自燃、粒度细、扬尘二次污染大等特性,造成其处理及综合利用难度大,亟待开发一种适合干法粉尘特性的新型处理工艺。 1 国内转炉除尘灰的利用现状及合理性 1.1 热压块 热压块工艺是利用粉尘的自燃特性将粉尘加热,利用其在高温下的塑性,经高压压球机压制成块,然后在氮气密封状态下冷却后输送到转炉,代替废钢或矿石。该方法不需要另外添加黏结剂,粉尘团块的强度也很高,可直接用于转炉作冷却材料使用,是现在LT 粉尘处理应用最多的一种方法。但是,热压块生产需在高温和隔绝空气的条件下进行,对设备和工艺控制要求很高,一次性投资大、工艺条件苛刻、设备故障率很高,难以长期顺利生产。 1.2 冷压块 有企业在除尘灰及污泥中加入部分添加剂,通过冷固工艺制成转炉造渣剂压块,用于转炉造渣,强化了造渣,改善了脱磷效果,脱磷率提高;化渣效果好,能够起到防喷溅的作用。 1.3 返回烧结 邯钢西区转炉除尘灰的利用途径是加入烧结混合料中,经烧结后进入炼铁高炉进行循环。虽然该方法不需要增加设备,但粒度过细且能够自燃的干法除尘灰不利于烧结矿质量的

铁素体不锈钢发展与前景

铁素体不锈钢发展与前景 [我的钢铁] 2008-08-13 10:26:37 一.铁素体不锈钢的发展 近年来,全球资源供应紧张,有色金属市场也水涨船高,尤其07年上半年以前是镍价不断攀升,给不锈钢企业带来了很大的成本压力。镍价的大幅波动以及房屋建筑领域需求的减少,使得300系不锈钢的需求受到影响(见下图1)。原材料价格的飞涨,使得一些低镍的奥氏体不锈钢开始在市场盛行,当然这也给铁素体不锈钢带来了一定发展空间。 图 1 二.铁素体的分类与优势 铁素体不锈钢成本低廉,价格稳定,并且具有许多独特的特点和优势,能够在多领域中替代奥氏体不锈钢。铁素体不锈钢与奥氏体不锈钢相比,铁素体不锈钢镍含量少,主要原料是铬和铁,为强化某些特殊性能,一些铁素体不锈钢还含有其他合金元素,如钼。同时铁素体不锈钢不仅拥有昂贵的奥氏体不锈钢大多数力学性能和耐蚀性能,还在一些性能上优于奥氏体,特别在成型性、耐蚀性、抗氧化性上表现出色,被称为“经济型”不锈钢。 1.铁素体不锈钢的化学成分

铁素体不锈钢分为五大类,其中前三类为标准牌号,是迄今为止用量最大且应用范围最广的不锈钢,此外,后两类为特殊牌号,使用于某些有特殊要求的领域(见图2)。 图 2 第一类,由于含铬量最低,因此价格也最便宜,适合在没有腐蚀或轻微腐蚀及允许有局部轻微生锈的环境下使用。其中,409型不锈钢主要使用在汽车排气系统中。而410L型不锈钢常用于容器、公共汽车和长途大轿车,也有用作液晶显示器的外框。λ 第二类,即通常使用最广的430不锈钢,含较高的铬,具有较好的耐蚀性,通常在室内使用,典型的用途包括洗衣机滚筒,室内面板等,其多数性能与304类似,在某些领域可替代304不锈钢如厨房设施,洗碗机,壶和锅等。这类型具有足够的耐蚀性。λ 第三类,这类型较430型具有良好的焊接性和成形性。在多数情况下,其性能甚至优于304。典型用途包括水槽,热交换管(制糖业,能源等),汽车排气系统(比409寿命长)和洗衣机的焊接部位。这类型甚至可替代304用于性能要求更高的场合。λ 第四类,这类型添加了来钼增加耐蚀性,主要应用领域是热水箱,太阳能热水器,汽车排气系统,电加热壶和微波炉部件,汽车装饰条和户外面板等,其中,444钢的耐蚀性能与316相当。λ 第五类,这类型的耐蚀性和抗氧化性优于316,主要是通过添加了更多的铬和含有钼来提高耐蚀性和抗氧化性。主要用于沿海和其它高耐蚀环境。例如JIS447的耐蚀性与金属钛相当。λ 2.铁素体不锈钢的优势

高炉除尘灰处理工艺优化

高炉除尘灰处理工艺优化 发表时间:2018-08-10T16:22:45.753Z 来源:《科技中国》2018年6期作者:杜松燕李伟 [导读] 摘要:本文介绍了高炉除尘灰处理主要工艺情况,探讨通过加强原料管理、螺旋溜槽调整、生产循环水系统调节等措施,进一步提高炉灰利用效率,稳定产品质量,可以给企业创造可观的经济效益。 摘要:本文介绍了高炉除尘灰处理主要工艺情况,探讨通过加强原料管理、螺旋溜槽调整、生产循环水系统调节等措施,进一步提高炉灰利用效率,稳定产品质量,可以给企业创造可观的经济效益。 关键词:高炉除尘灰;工艺调整;技术改造;效益 1、前言 除尘灰处理和深加工技术是利用选矿原理针对高炉除尘灰物性特点而先浮选,再重选的一项技术。本文探讨经过对工艺优化,稳定产品质量、节约能源、降本降耗增效、提高了工作效率,达到经济效益和环境效益同步提高的目的。 2、生产工艺 高炉除尘灰处理与深加工的工艺流程,炉灰进入原料场地,主要采用装载机上料方式组织生产。经给料机连续供料给皮带机至搅拌桶,注入循环清水、浮选药剂,将其配成适当的浓度,加入药剂(起泡剂和捕收剂)后进行充分搅拌,作为矿浆为浮选分选碳粉准备。搅拌后的矿浆进入浮选机,由于浮选机叶轮旋转产生强烈搅拌,使矿浆处于湍流状态,加入浮选药剂,产生选择性黏附,实现矿化。由于富集作用,形成泡沫精矿(焦碳粉),通过浮选机刮板及时刮出进入碳粉池。尾矿成为重选系统备用的浮选尾矿浆。 浮选尾矿浆重选分选后,分选出的铁粉进入铁粉池。中矿尾浆进入磁选机再次分选出铁粉进入铁粉池。大部分泥浆及其它杂质直接进入脱水设备进行浓缩净化处理,形成碳粉尾泥。炉灰处理后得到铁粉可用于配矿,碳粉可作为燃料和高碳尾泥可作为砖厂燃料配煤使用。三种产品收得率相互影响,品质相互影响,此消彼长。 3、生产工艺优化 3.1、原料的精细化管理 高炉除尘灰经贮仓淋水后由汽车运输到料棚场地,原料温度在80℃-90℃之间,水分含量约10%。物料流动性差,时常堵塞出料口,岗位工必须频繁捅料,劳动强度大。如若原料堆放的时间过长也易导致板结,板结造成物料损失、堵料,严重影响了生产的顺行。因此,通过制定原料的堆放管理制度,合理规划料棚,规范原料的堆放。如下图所示。A区、B区、C区分别为原料堆放区域,D区为装载机作业通道。 在原料棚门外加装堆料指示牌,按照原料→A区→B区→C区次序进行堆放,生产上料遵循“先进先出”的原则,提高了原料的流动性,确保上料连续均匀稳定,减少物料损失,同时大大的减轻了岗位工的劳动强度。 3.2原料上料速度的调整 通过多次取样的化验质量分析得出原料上料速度与产品铁粉回收率的关系。原料每小时的上料吨数越小,炉灰选铁工艺中矿浆的浓度相对下降,此时原料就能更精细的分选,使铁回收率提升;但如果上料量过小,则增加了能耗指标。经过数据的分析及对比,发现最佳的上料速度应控制在22.00t/h-25.00t/h,此时在保证产品质量的同时产量也得到进一步提高,实现效益的最大化。 3.3重力螺旋溜槽三分口尺寸的调整 根据炉灰原料品味的变化,结合生产工艺的实际情况,调整优化重力螺旋溜槽三分口出铁矿带的尺寸。通过收集大量的生产和工艺环节的质量化验分析数据统计后得出重力螺旋溜槽三分口最佳尺寸范围:铁矿带控制在8cm—9cm,中矿带控制在15cm—18cm,从而在保证铁粉质量的情况下,大大提高了铁粉的收得率,在降低了高碳尾泥的含铁量的同时,相对的提高了高碳尾泥的固定碳含量,同时相对提高了高碳尾泥的发热值,提高高碳尾泥的市场价值。 3.4生产循环水净化处理系统的调整和改进 通过建立循环水质检测,收集数据分析,悬浮物超过了国家采矿、选矿、选煤工业第二类污染物最高允许排放浓度二级标准,(二级标准规定的悬浮物最高排放浓度为300mg/L,循环水悬浮物浓度为352.5mg/L。)循环水PH值为8,呈碱性,符合国家采矿、选矿、选煤工业第二类污染物最高允许排放浓度一级标准。循环水质过高的浓度,水中含较多的泥量,对生产将产生很大的影响。通过对循环水沉淀池采用坝堰溢流法改造和调整。改造后的循环水池沉淀效果理想,大部分的泥浆都在一号池沉淀下来,较大程度上稳定和改善了循环水的水质,提高生产用循环水的质量,同时大大减轻了人工清理水池泥浆量的劳动强度。生产循环水流程图:

不锈钢除尘灰再利用技术

总第200期2012年第8期 河北冶金 HEBEIMETALLURGY TotalN0200 2012,Number8不锈钢除尘灰再利用技术 张增武 (山西太钢不锈钢股份有限公司炼钢二厂,山西太原030003) 摘要:随着不锈钢产能不断扩大,如何消化不锈钢除尘灰已成为不锈钢生产企业必须面对的一大问题,山西太钢不锈钢股份有限公司炼钢二厂于2007年2月在30t超高功率电炉上自主开发了用不锈钢除尘灰冶炼铬镍铁合金技术,并推广应用到工业化生产中。5年的运行实践表明,该技术在保护环境、解决镍资源和降低生产成本方面发挥了巨大作用,值得同类企业借鉴。 关键词:不锈钢除尘灰;铬镍铁合金;开发与应用 中图分类号:X756文献标识码:A文章编号:1006—5008(2012)08—0070—03 OFREUS矾GTECHNIQUEOF DEDUSTINGASH玳STA玳LESSSTEELPRODUCTIoN ZhangZengwu (No.2Steelworks,StainlessSteelCo.,Ltd.,TaiSteel,Taiyuan,Shanxi,030003) Abstract:Alongwithproductioncapabilityofstainlesssteelgettingcontinuousexpandedbowtodigesttheprecipitatordustofstainlesssteelhasbecomeanimportantquestionforthebusiness.Thetechniquetosmeltinconelwithdedustingashisdevelopedin30tultra—highpowerelectricfurnacebythemselvesinNo.2Steelworks,StainlessSteelCo.,Ltd.,TaiSteelinFeb.of2007.Thenitisspreadtoindustrialproduction.Itisshowedfromthepracticeoffiveyearsthatitplaysanimportantroleinenvironmentprotection,solvingnickelbeingshortandreducingcost. KeyWords:stainlesssteeldedustingash;inconel;developmentandapplication 1前言 不锈钢除尘灰中含有FeO、Cr:O,和NiO等金属氧化物,如不经处理,直接排放,不但污染环境,而且其中所含的贵重金属也得不到利用。 据统计,冶炼1t不锈钢平均产生除尘灰约43蚝。对一个年产300万t不锈钢企业,年除尘灰排放量将达到12.9万t。随着经济的发展,不锈钢产能仍在不断扩大,寻求一个好的不锈钢除尘灰再利用方法已成为生产企业所面临的一大问题。 太钢作为一个有社会责任感的大型企业,为构建持续发展和谐社会,一直重视环境保护,不但对污染物排放实施了严格管理,而且还加强了对排放物的再利用。从2007年2月份开始,在山西太钢不锈钢股份有限公司炼钢二厂30t超高功率电炉上,进 收稿日期:2012—04—05 作者简介:张增武(1963一),男,工程师,2003年毕业于北京科技大学计算机科学与技术专业,现在山西太钢不锈钢股份有限公司炼钢二厂技术质量科,从事不锈钢冶炼、模注和方坯连铸工艺研究及特殊钢品种开发,E—mail:Zhangzwtg@126.com 70行了不锈钢除尘灰再利用技术的开发与应用,月消化不锈钢除尘灰压球2900t,金属收得率53%以上,填补了太钢在该技术领域的空白。 2不锈钢除尘灰再利用技术开发 2.1铁合金冶炼原理的引入 铁合金冶炼是利用还原剂还原金属氧化物,得到所需元素的过程。碳是铁合金冶炼中主要的和广泛使用的还原剂,用固体碳还原金属氧化物时,碳的还原作用是通过CO来实现的。在冶炼中,有固定碳存在时,金属氧化物被还原的反应: MeO+CO=Me+C02(1) C+C02=2CO(2)由反应(1)、(2)得 MeO+C=Me+CO(3)不锈钢除尘灰类同矿石粉,由铁合金冶炼原理可知,利用电炉法直接用不锈钢除尘灰冶炼铬镍铁合金是可行的,但冶炼中粉尘较大,不但增加除尘设备负荷,而且也影响金属收得率。为此,太钢将不锈钢除尘灰压制成具有一定强度的压球后再冶炼铬镍 万方数据

铁素体不锈钢的发展与应用

铁素体不锈钢的发展与应用 摘要: 铁素体不锈钢作为一种不含镍的铬系不锈钢,具有含镍不锈钢所具有的成形性、经济性、耐蚀性、抗氧化性等性能,具有成本低、耐应力腐蚀性能优异等显著特点,被称为经济型不锈钢。本文主要分析了铁素体不锈钢的发展以及其合金化,同时介绍了基于铁素体不锈钢特性的各种应用。 关键字:铁素体不锈钢发展应用 不锈钢在如今已得到广泛应用,这是因为它具有许多优越特性,如可成形性、强度及耐腐蚀性。不锈钢开始商业化生产并作为材料用于各种用途大约只有短短50年的历史。304型及430型不锈钢因其最常用而为大家所熟知,其产量占到不锈钢总产量的一半以上。但是,近十年来对不锈钢的需求显著增长,因此,人们一直在开发适用于各种用途的不同种类的不锈钢。以430型不锈钢为代表的铁素体不锈钢的生产成本比奥氏体不锈钢要低。因而,用铁素体不锈钢制造的产品现在发展很快,例如,铁素体不锈钢的用途之一是制作汽车尾气排放控制系统[1,2,3]。为了这种用途,现在已经开发了许多种铁素体不锈钢。在宝钢不锈钢事业部总经理楼定波看来,铁素体不锈钢不含镍,可以回避镍价的波动带来的风险;它同样可以防腐、防锈,但价格比含镍的不锈钢具有竞争力,并且,比含镍不锈钢制造更有门槛。 1 铁素体不锈钢的发展优势及劣势 1.1 铁素体不锈钢的发展优势 铁素体不锈钢具有体心立方晶体结构。除个别牌号外,一般不含稀缺的贵重元素镍。低铬铁素体不锈钢又称为经济不锈钢;中、高铬铁素体不锈钢与所能代用的铬镍奥氏体不锈钢相比,成本和价格也较低。铁素体不锈钢屈服强度较铬镍奥氏体钢高,伸长率稍低,但加工硬化倾向小,易于冷镦,也易切削。 众所周知,铬镍奥氏体不锈钢对应力腐蚀非常敏感,在奥氏体不锈钢制设备、构件等的失效事例中,应力腐蚀破坏事故占有很大比例,而铁素体不锈钢耐应力腐蚀性能优异,虽然在试验室内一些条件下人们也曾发现铁素体不锈钢也产生应力腐蚀的某些现象,但在实际工程应用中,国内外都很少见到铁素体不锈钢产生应力腐蚀破坏的实例。 铁素体不锈钢具有铁磁性,导热系数高,约为铬镍奥氏体不锈钢的130%~150%,非常适用于有热交换的用途;线膨胀系数小,仅为铬镍奥氏体不锈钢的60%~70%,非常适用于热胀、冷缩,有热循环的使用条件。 1.2 铁素体不锈钢的发展劣势 铁素体不锈钢是一种节镍钢,强度高,冷加工硬化倾向较低,导热系数为奥氏体不锈钢的130%~150%,线膨胀系数仅为Cr—Ni奥氏体不锈钢的60%~70%。虽然有上述优点,但与奥氏体不锈钢相比,其用途有限,这主要是因为铁素体不锈钢,特别是Cr>16%的铁素

除尘灰利用价值

除尘灰利用价值 除尘灰利用价值 西钢开发出用除尘灰制造泡沫渣新工艺日前,该厂在生产实践中,用废弃除尘灰制造泡沫渣一举获得了成功。该工艺既使废弃物得以充分利用,也为公司降低了生产成本。西钢二炼钢了解到公司炼铁厂除尘灰因含铁量较低,除烧结工艺可少量配用外,大量的除尘灰处于堆积状态。他们决定由此入手,开辟除尘灰的新用途。经过深入分析,他们发现该除尘灰含碳量很高,达到 40% ,含铁量达 30% ,其余的为氧化钙、二氧化硅等,用于电炉氧化期冶炼造泡沫渣比较合适。于是,他们根据分析成分进行了冶炼配比试验,试验效果良好。该除尘灰加入渣面后,碳和氧迅速发生化学反应,生成一氧化碳气泡,并穿越渣层形成良好的泡沫渣,可有效包裹住弧光,提高电弧热效率,同传统的焦粉造泡沫渣工艺相比,泡沫渣层厚,持续时间长,可完全替代焦粉,同时降低了生产成本,为电炉降本增效工作开辟了新的途径。 利用铁厂除尘灰作原料优化配料生产水泥熟料我厂粘土中铝含量较低,校正原料炉渣也是硅高铝低,熟料铝氧率一直上不去,为1.0 左右。生料中粘土的配比也只有 7%左右,影响了生料的成球,我们曾试图用高炉矿渣配料,但由于土少使成球质量差。 1999 年 3 月份,我们发现铁厂原料烧结电除尘灰 (简称原料除尘灰 )和高炉布袋除尘灰 (简称高炉除尘灰 )往外大量排放,经化验,原料除尘灰含

有较高的铁,可作为铁质校正原料;高炉除尘灰含有较高的 Al2O3,且 SiO2含量低,满足铝质校正原料要求。我们以这两种除尘灰分别代替镍渣和炉渣,在Φ2.2m×8.5m机立窑上进行了 3个月的试生产,取得了较好的效果。 1 除尘灰的来源及性能 原料除尘灰是铁精矿粉、萤石、石灰石、白云石、焦粉按一定比例配合后入烧结炉烧结,在出炉过程中通过电除尘器所收集的粉尘,其外观呈细颗粒状, 0.08mm 方孔筛筛余为25.8%,为暗红色。高炉除尘灰是高炉在炼铁过程中由布袋除尘器所收集的粉尘,其外观呈粉状,刚清理出来时为深灰色,待放置一二天后变为白色,我们最终所利用的是白色粉尘,0.08mm 方孔筛筛余为 13.6%。两种除尘灰中均含有微量氟、硫、锰及碱金属等成分,其化学成分见表 1。 2 试验配料方案设计 设计率值为 :KH=0.92 ±0.02,n=1.85 ±0.1,P=1.3 ±0.1。我厂为铁厂下属的水泥分厂,使用高炉矿渣比较便宜,为降低生料成本,在使用除尘灰的基础上,生料中又掺入 4%的矿渣。由于矿渣中SiO2和 CaO 含量较高,可代替部分石灰石和粘土,调整配料后粘土用量可保证在 10%左右。熟料标准煤耗由原来的 125kg/t 降到120kg/t 。试验时所用原材料的化学成分及配比见表 2,原煤工业分析见表 3。 注:1.序号 7 中配比为煤配比。 2.原料除尘灰中铁含量为 Fe2O3与 FeO 之和。

铁素体不锈钢发展及展望

铁素体不锈钢的发展及展望 摘要:根据国内外不锈钢市场的状况,对比分析了铁素体不锈钢相对于奥氏体不锈钢的优缺点,阐述了提高铁素体不锈钢质量的措施,展望了铁素体不锈钢的良好发展前景。 关键词:不锈钢铁素体奥氏体应用情况提高质量 1 前言 2 004年北京国际现代铁素体不锈钢大会上通过广泛的交流,使大家更加清楚地看到了国内在生产和使用铁素体不锈钢方面与国际发达国家相比使用比例低,使用领域窄的差距。国际平均使用比例是25%,法国65%、日本35%、美国34%、而我国是10%左右。发达国家已经广泛使用在汽车、电子产品、屋顶材料、集装箱、家电产品、水箱、蓄水池等领域,在许多方面替代300系列。而在我国使用面还很有限,主要集中在制品方面;在生产工艺技术水平方面,中国也有差距,特别是超低碳、超低氮铁素体不锈钢的冶炼、表面质量和成本控制等方面。最后是新品种的研究开发方面也有一定的差距。 中国的不锈钢消费中奥氏体钢占90%,铁素体和其他的钢类所占比例还不到10%,这种现状也引发了不锈钢的迅速发展与镍资源供应紧张之间的矛盾。为此,作为中国的不锈钢行业组织中国特钢协不锈钢分会特别提出:要大力推广铁素体不锈钢。 2 铁素体不锈钢较奥氏体不锈钢的优缺点 铁素体不锈钢一般不含稀缺的贵重元素镍。低铬铁素体不锈钢又称为经济不锈钢;中、高铬铁素体不锈钢与所能代用的铬镍奥氏体不锈钢相比,成本和价格也较低。铁素体不锈钢屈服强度较铬镍奥氏体钢高,伸长率稍低,但加工硬化倾向小,易于冷镦,也易切削。众所周知,铬镍奥氏体不锈钢对应力腐蚀非常敏感,在奥氏体不锈钢制设备、构件等的失效事例中,应力腐蚀破坏事故占有很大比例,而铁素体不锈钢耐应力腐蚀性能优异,虽然在试验室内一些条件下人们也曾发现铁素体不锈钢也产生应力腐蚀的某些现象,但在实际工程应用中,国内外都很少见到铁素体不锈钢产生应力腐蚀破坏的实例。铁素体不锈钢具有铁磁性,导热系数高,约为铬镍奥氏体不锈钢的130%~150%,非常适用于有热交换的用途;线膨胀系数小,仅为铬镍奥氏体不锈钢的60%~70%,非常适用于热胀、冷缩,有热循环的使用条件。 但是,铁素体不锈钢为什么没有得到很快的发展呢?这是因为铁素体不锈钢本身存在三个主要问题:第一,在热轧或退火后必须严格控制冷却速度。如果缓慢地冷却通过37O~550C温度区,或者像耐热钢使用中那样在该温度区长期停留,这种钢就会变脆。第二.铁素体型不锈钢焊接性能差。在焊缝热影响区,铁素体晶粒长大或粗化。此外.在高温区,部分铁素体转变成奥氏体,并在随后的冷却过程中转变成脆性的马氏体。这两种影响方式的共同作用.使得焊缝非常脆。虽然二次退火可以把马氏体转变成铁素体.但是,这并不能把已经粗化的铁素体晶粒再细化。第三,当其承受的温差太大时,这一点在夏氏冲击试验或悬臂式冲击试验中记录的所吸收能量显著下降而得到证实。这种钢在实际应用中,表现为不能抗冲击,容易产生裂纹。 3 铁素体不锈钢应用情况 一、家电行业广泛使用铁素体不锈钢 在家电行业中首先是洗衣机。当前最流行的是对衣服摩损最小的滚筒式洗衣机,由于

高炉除尘灰气力输送

气力输送在高炉煤气全干法除尘灰输送中的应用 1、前言 高炉煤气全干法除尘灰主要成分为Tfe,FeO,SiO?,Al2O3,MgO等。布袋除尘器集灰斗的灰温度高度160℃,粒度在200~300目的占60%以上。1000m3容积下的高炉,灰的比重0.18-0.9t/m3,含铁量10%~30%;1000 m3容积以上的高炉,灰比重0.9~1.5t/ m3,含铁量30%~40%。 传统高炉煤气全干法除尘灰的输送一般采用机械输灰工艺,即采用刮板输送机后加湿外运,或刮板输送机、斗提机进入集灰仓后加湿外运。机械输灰工艺有诸多缺点,一是流程长,环节多,机械故障率高,设备常出现转不动、卡死现象,影响正常生产;二是设备密封性能差,飞灰较多,操作环境差;三是设备多,占地面积大,能耗及运行费用高;四是无法实现灰的长距离输送。 除尘灰采用气力输送,可解决机械输灰上述缺点。 2、气力输送应用 气力输送系统是以压缩气力输送介质和动力,将集灰斗内的干灰输送到指定地点的一种输送装置。根据输送系统压力的不同,气力输送系统分为负压式和正压式两大类。负压式系统是靠系统内的负压将气体和灰一起吸入管道内,物料的整个输送过程是在低于大气压力下进行的。正压式系统则是用高于大气压力的

压缩气来推动物料进行输送的。 以1000 m3高炉为例,简要介绍气力输送在高炉煤气全干法除尘灰输送中的应用。布袋除尘器箱体按12个计算,两排布置,每排6个,灰比重0.9t/m3,最大灰量约40t/d. 鉴于高炉煤气干法除尘灰的物料特性,采用正压流态化气力输送工艺。正压流态化气力输送是一种浓相气力输送系统,主要由输送泵系统、控制系统、灰仓系统、气源系统、管路系统五个子系统组成。其工作原理是:压缩气通过进气组件,渗透到输送泵内部与除尘灰混合,并使除尘灰流态化,从而具备流体性质,经密封式管道将灰从甲地输送到乙地。 2.1输送泵直接输送 布袋除尘器下不需设中间灰斗,每个除尘器箱体下直接配置1台输送泵(输送泵容积不需太大,小于1 m3即可),每排6个输送泵形成1个输送单元,共两个输送单元,两个支管汇入母管进入目标灰仓。可输送距离为200~500m。 工艺系统图见图1,主要技术参数见表1,输送运行时间见表2。 min/h表1 输送泵直接输送主要技术参数

除尘灰利用价值

西钢开发出用除尘灰制造泡沫渣新工艺2008-10-29 16:27:11 钢企网 本网讯西林钢铁集团有限公司第二炼钢厂多年来一直在实践中探索降本增效的新途径。日前,该厂在生产实践中,用废弃除尘灰制造泡沫渣一举获得了成功。该工艺既使废弃物得以充分利用,也为公司降低了生产成本。 西钢二炼钢了解到公司炼铁厂除尘灰因含铁量较低,除烧结工艺可少量配用外,大量的除尘灰处于堆积状态。他们决定由此入手,开辟除尘灰的新用途。经过深入分析,他们发现该除尘灰含碳量很高,达到40%,含铁量达30%,其余的为氧化钙、二氧化硅等,用于电炉氧化期冶炼造泡沫渣比较合适。于是,他们根据分析成分进行了冶炼配比试验,试验效果良好。该除尘灰加入渣面后,碳和氧迅速发生化学反应,生成一氧化碳气泡,并穿越渣层形成良好的泡沫渣,可有效包裹住弧光,提高电弧热效率,同传统的焦粉造泡沫渣工艺相比,泡沫渣层厚,持续时间长,可完全替代焦粉,同时降低了生产成本,为电炉降本增效工作开辟了新的途径。 利用铁厂除尘灰作原料优化配料生产水泥熟料 我厂粘土中铝含量较低,校正原料炉渣也是硅高铝低,熟料铝氧率一直上不去,为1.0左右。生料中粘土的配比也只有7%左右,影响了生料的成球,我们曾试图用高炉矿渣配料,但由于土少使成球质量差。1999年3月份,我们发现铁厂原料烧结电除尘灰(简称原料除尘灰)和高炉布袋除尘灰(简称高炉除尘灰)往外大量排放,经化验,原料除尘灰含有较高的铁,可作为铁质校正原料;高炉除尘灰含有较高的Al2O3,且SiO2含量低,满足铝质校正原料要求。我们以这两种除尘灰分别代替镍渣和炉渣,在Φ2.2m×8.5m机立窑上进行了3个月的试生产,取得了较好的效果。 1除尘灰的来源及性能 原料除尘灰是铁精矿粉、萤石、石灰石、白云石、焦粉按一定比例配合后入烧结炉烧结,在出炉过程中通过电除尘器所收集的粉尘,其外观呈细颗粒状,0.08mm方孔筛筛余为25.8%,为暗红色。高炉除尘灰是高炉在炼铁过程中由布袋除尘器所收集的粉尘,其外观呈粉状,刚清理出来时为深灰色,待放置一二天后变为白色,我们最终所利用的是白色粉尘,0.08mm方孔筛筛余为13.6%。两种除尘灰中均含有微量氟、硫、锰及碱金属等成分,其化学成分见表1。 表1原料除尘灰、高炉除尘灰化学成分%

烧结厂关于除尘灰综合利用的报告

烧结厂关于除尘灰综合利用的报告 一、编制原因 随着高炉项目顺利投产,烧结高炉除尘灰在原料场进一步聚集,机械化料场不具备使用除尘灰的条件。目前,原料场储存烧结、高炉、转炉除尘灰进2000吨。由于除尘灰粒度较细、密度较轻,在存放过程中遇风造成二次扬尘,造成环境污染;另一方面,高炉干法除尘及烧结机机头电除尘碱性金属ZnO、K2O、Na2O等含量较高,不利于烧结生产配加。 二、除尘灰烧结配加对高炉生产的负面影响 钢铁炼铁除尘灰的氧化锌源自于铁矿石。烧结矿中主要为铁酸锌[-ZnO·Fez03(ZnFe)0·Fez03],人炉后很快还原成Zn。还原的锌很快挥发,也会在炉内产生循环,Zn挥发到上部又重新氧化成ZnO,它部分被煤气带走,最后到除尘灰中;部分随炉料下降循环,渗人炉衬的Zn蒸气在炉衬中冷却下来,并氧化成ZnO,体积膨胀破坏炉墙。聚集在内壁和上升管的ZnO还能生成炉瘤,给高炉生产带来不利影响;在烧结生产过程中,因为含ZnO,量较高,除尘灰参与烧结配料后烧结机糊篦条严重,影响烧结料层的透气性,降低烧结生产率,在多家烧结生产过程中已经证实,同时,因烧结过程不容易脱出ZnO,烧结长期使用,将造成ZnO不断富集,所以要严格控制人炉Zn。否则对高炉和烧结的影响将进一步加剧。 三、除尘灰主要成分及压球后成分预计:

四、除尘灰利用初步设想: 为了有效利用烧结、高炉、转炉除尘灰及炼钢污泥,回收铁成份。回收企业生产过程中的废弃物,降低生产成本。结合国内先进的处理技术,将除尘灰配加氧化铁皮、生石灰、煤粉等压实成球,作为转炉冶炼的渣剂,进一步对铁元素进行提炼。炼铁事业部烧结厂做出以下考虑。 1、生产工艺为: 混料搅拌压球干燥炼钢 将各种除尘灰、铁泥、煤粉等原料进行混合,加入粘结剂进行搅拌,再用压球机成球,最后通过光照和风等自然干燥过程,形成干燥的铁泥球。 2、投入物料包括: a主料:烧结除尘灰、高炉除尘灰、电炉转炉除尘灰、转炉湿式除尘污泥、轧钢旋流井污泥、氧化铁皮; b配料:焦炭或煤粉; c粘结剂:玻璃水、水、生石灰。 d物料投入比例为:主料:煤粉:其他=

不锈钢粉尘处理工艺

不锈钢除尘灰还原回收处理技术 摘要: 关键词: 1 前言 不锈钢粉尘是指在不锈钢冶炼过程中由电弧炉、AOD/VOD炉或转炉中的高温液体在强搅动下,进入烟道并被布袋除尘器或电除尘器收集的金属、渣等成分的混合物。据估计每生产1t不锈钢可以产生40~60 kg粉尘[22],其中电炉的粉尘量约为装炉量的1%~2%,AOD 炉的粉尘量约为装炉量的0.7%~1%[23]。我国是不锈钢生产大国,每年将产生大量的不锈钢除尘灰。据中国特钢企业协会不锈钢分会统计,中国2011年不锈钢粗钢产量达到1260万吨,占世界不锈钢粗钢总产量39%,2012年不锈钢粗钢产量达到了1450万吨[24-25], 且总产量还有上升的趋势。按产尘量4 % 计算,我国每年将有50万吨以上的不锈钢除尘灰产出。不锈钢除尘灰中含有大量的有价金属,如Fe、Ni、Mo和Cr等,它们大多以氧化物的形式存在。其中可浸出的有毒物质如Cr6+、Pb和Zn等重金属元素和可溶性盐类会造成地下水的污染[26-27]。美国环境保护局经过毒性浸出实验(TCLP)[28]将EAF 烟尘列为代号为K061的有毒的废弃物,禁止随意堆放或填埋。近些年来,还原回收法成为除尘灰处置领域科研人员的主攻方向。还原回收法重在回收除尘灰中有价值的金属元素,最大限度实现除尘灰可利用的价值,可谓既能实现无害化又能利用其价值。 不锈钢除尘灰的还原回收是粉尘直接或间接(制粒造块)地加入到高温炉中,有价金属元素被还原剂还原生成合金海绵铁或直接还原铁DIR(Direct Reduction Iron)或直接进入钢水中。目前,不锈钢粉红进行还原回收处理主要是针对其中的Cr、Ni和Fe三种元素,而Zn等元素尚未见报道。 目前不锈钢除尘灰的还原回收处理方式没有明确的分类,有按回收装置进行分类的,如环形转底炉技术、等离子炉技术、竖炉法以及电炉法[1]; 可分为两类:一是除尘灰不经过造球直接进行还原利用,如STAR工艺、ScanDustAB等离子工艺;二是先将除尘灰球团造球处理,再回收利用,如Inmetco

铁素体不锈钢新工艺技术

铁素体不锈钢新工艺技术 一.铁素体不锈钢的超纯化 铁素体不锈钢不含Ni或仅含少量Ni,与奥氏体不锈钢相比较,生产成本较低。铁素体不锈钢冷加工硬化倾向较低;导热系数高,为奥氏体不锈钢的130%~150%;线膨胀系数低,仅为CrNi不锈钢的60%~70%;其耐氯化物应力腐蚀、耐点蚀、耐缝隙腐蚀性能优良。虽然有上述优点,但铁素体不锈钢存在的一些严重缺点限制了它的使用。其最大缺点是韧性不足、晶间腐蚀敏感、焊接性能差。 研究表明,这个问题主要是由间隙元素碳、氮所致。由于碳、氮在铁素体中的溶解度很低且在体心立方晶格中的扩散速度快,故在铁素体钢中极易生成碳化物和氮化物,造成晶界贫铬和晶间腐蚀。实验表明,通过降低铁素体不锈钢中C+N含量,就能够显著改善其腐蚀性能,力学性能和焊接性能。以26Cr1Mo钢为例,当C+N<(100~130)×10-6时,焊接后就不会产生晶间腐蚀;当C+N<(60~80)×10-6时,可在恶劣的点蚀环境中使用;当C+N<65×10-6时就能够不产生低温脆性。因此,超纯铁素体不锈钢是现代铁素体不锈钢的发展方向,一般要求C+N<150×10-6这样的低间隙元素含量,而且需要添加钛、铌、铜、铝、钒等微量元素,以改善其性能。近年来,通过降低铁素体不锈钢中碳、氮含量和优化钼、钛、铌的质量分数,发展了一系列性能优越的超纯铁素体不锈钢。 铁素体不锈钢在冶炼过程中需要采用真空冶金手段,尽可能降低钢液中的碳和氮,这是超纯铁素体不锈钢冶炼时的核心问题。现有的不锈钢精炼方法,如AOD,VOD,VCR,等等,将碳降到50ppm以下在技术上已不存在困难,但要将氮降到50ppm以下,却很困难。因此,超高纯铁素体不锈钢生产的关键是要解决脱氮问题。 研究工作表明:不锈钢精炼过程中的脱氮是与脱碳过程同时进行的,脱碳速度越高,脱碳量越大,脱氮量也就越大。在[C]<0.1的低碳范围内进行真空脱碳时,脱氮速度主要决定于底吹氩气的搅拌强度。常规VOD法吹氩强度小,因漏入空气而有增氮倾向;SS-VOD吹氩强度是常规VOD的2~4倍,真空吹氩搅拌时仍能脱氮;VOD-PB法的脱碳机制不同于常规VOD的顶吹氧,其脱氮条件优于SS-VOD。VCR法低碳区精炼阶段的底吹氩搅拌强度是SS-VOD的13~17倍,强烈的搅拌大大增加了钢液比表面积,减少了气钢界面上[N]的传质阻力,气相中氮分压可降至0.38torr,对冶炼超低碳、氮不锈钢十分有利。 日本各大钢铁公司自上世纪70年代中期以来采用大型AOD和VOD精炼设备,在工业规模上以很低的成本大批量生产一系列低〔C+N〕含量超纯铁素体不锈钢。经过十多年的历史,工艺流程日趋完善,精炼技术日益成熟,所生产的各种牌号超纯铁素体不锈钢在许多方面的应用领域里已逐步取代了奥氏体不锈钢。我国在超纯铁素体不锈钢的生产和应用方面与日本尚有很大的差距,必须努力缩短这种差距。 二.铁素体不锈钢晶粒细化新方法 目前,我国汽车工业飞速发展,汽车用不锈钢使用量增长很快,尤其在汽车排气系统中的

高炉煤气干法除尘灰提锌工艺技术探讨

高炉煤气干法除尘灰提氧化锌工艺技术探讨 阮积海 (广西柳州钢铁(集团)公司技术中心,) 摘要介绍了涟源某氧化锌冶炼厂的生产工艺及生产过程中产生的环境污染及治理技术,同时就以高炉煤气干法除尘灰为原料提取氧化锌的生产工艺进行技术(环保)探讨。 1 前言 柳钢共有8座高炉,其中最大高炉炉容为1250m3,冶炼过程中产生的高炉煤气均采用干法进行净化除尘,每年由此产生的干法除尘灰达4万多吨(布袋除尘灰),目前该除尘灰的处理方式是直接销售给柳州附近的砖厂代替粉煤灰烧砖,或者是销售给氧化锌冶炼厂配料提锌。柳钢非钢环保公司经过调研后,打算以高炉煤气干法除尘灰为原料进行深加工提取氧化锌。 经过对涟源某有色金属冶炼厂进行实地考察后,现对以高炉煤气干法除尘灰为原料提取氧化锌的工艺进行技术(环保)探讨。 2 考察介绍 2.1 考察对象 考察的对象是涟源某有色金属冶炼厂,是一家私营企业。该厂采用火法工艺提炼氧化锌,共有二条回转窑生产线,原料来源为含锌矿、工业锌渣、煤粉以及部分涟钢高炉除尘灰,每天所耗原料40吨,年产氧化锌1200~1500吨。 2.2生产工艺 该厂采用火法工艺提炼氧化锌,首先含锌矿、工业锌渣、煤粉经加水湿润后用抓斗机抓取均匀并成块状,然后通过皮带输送机将块状原料运至回转窑窑头点火燃烧,在高温作用下(回转窑内温度可达1100℃),原料中的锌经过氧化还原反应,以气熔胶、颗粒物等状态进入废气中,在引风机的作用下,经多组管槽冷却系统冷却(槽中装有冷却水)、最后进入布袋收尘器回收产品。燃烧后的炉渣经窑尾排渣口进入冲渣池冷却,少量废气通过窑尾顶部的风管引入一个简陋的沉降室回收粉尘后排放。回转窑中燃料燃烧所需的氧通过回转窑尾部的鼓风机鼓风供应。其工艺流程如下图

铁素体不锈钢

铁素体不锈钢 铁素体不锈钢在机械设备上应用的广泛性仅次于奥氏体不锈钢。这类钢的特点是:在室温下其显微组织为铁素体,它具有强烈的磁性,不能用淬火方法使之硬化; 与奥氏体钢相比,铁素体不锈钢的导热系数较大,比电阻小、膨胀系数也较小; 对氯化物应力腐蚀开裂不敏感,另外,由于含有较高的铬和钼,故耐点蚀、耐缝隙腐蚀性能良好; 在成分上不含贵重元素镍,故价格较为低廉。 铁素体不锈钢的一个共性问题是:焊接接头的冲击韧性低、脆性倾向大等缺点,从而大大限制了它的应用。为了克服这些缺点,近些年来已研制并生产出了一系列碳氮含量极低 (C+N<0.015%) 的高纯高铬铁素体不锈钢。它们具有较好的塑性与焊接性能,并且有很好的抗应力腐蚀开裂性能及良好的抗晶间腐蚀性能。 1. 铁素体不锈钢的耐腐蚀性能 铁素体不锈钢对晶间腐蚀的敏感性较高。普通的铁素体不锈钢的抗点腐蚀性能和抗缝隙腐蚀性能也并不好。但加钼后,其耐蚀性能有所改善。 铁素体不锈钢对硝酸等氧化性介质有良好的耐蚀性,与同等铬含量的Cr-Ni 奥氏体不锈钢相当,随着铬含量的增加,其耐氧化性介质腐蚀的能力增强。但对还原性介质,铁素体不锈钢的耐蚀性则不如Cr-Ni奥氏体不锈钢。 铁素体不锈钢的最突出优点是在氯化物介质中具有良好的抗应力腐蚀开裂性能,比Cr-Ni奥氏体不锈钢优越得多。另外,在含微量氯离子和氧的热水和高温水介质中以及在苛性钠水溶液中,铁素体不锈钢也有优良的抗应力腐蚀开裂性能。 2.铁素体不锈钢的热处理 铁素体不锈钢热处理的目的,主要是消除因冷变形加工及焊接所导致的内应力而使之软化。对于铸件,主要是通过热处理消除偏析,使组织趋于均匀以及消除475℃脆性。热处理温度的选择应注意两点:不应低于540℃和高于900℃。通常多控制在700~850℃之间。 3. 应用铁素体不锈钢时应注意的几个问题 (1) 475℃脆性问题。若将含铬量12%以上的铁素体不锈钢加热到340℃以上特别是在400~500℃范围内等时间加热,钢的韧性要明显降低而变脆。这种脆

高炉除尘灰的综合处理方法

高炉除尘灰的综合处理方法 当今世界,节能减排,保护环境,保护地球是全人类共同的话题。炉灰是从高炉冶炼过程中产生,经除尘器收集的粉尘。每年钢铁行业都会产生大量的炉灰,这些炉灰需要一个巨大的场地堆放,如管理不善或不充分利用,不仅白白浪费资源,还将会造成严重污染。处理好工业废渣\保护好资源是建设人与自然和谐社会的需要。 高炉除尘灰先后经过球磨、磁选、浮选、压滤,以及最后的废水回收,处理分离出铁精粉、炭精粉、尾泥,下面红星机器的技术人员张工为大家介绍具体的工艺流程。 球磨工艺 1、高炉除尘灰从受料仓中经摆式给料机落入皮带运输机的皮带上,在皮带机的终端设有加水给料斗,高炉除尘灰经加水后,以水为载体并以螺旋方式进入湿式球磨机中进行球磨。 2、高炉除尘灰在球磨机中充分调浆并细磨后溢出球磨机,进入出料溜槽。 磁选工艺 1、球磨后的高炉除尘灰浆料从球磨机出料溜槽自然流入一级磁选机中,其中的分选出的铁磁性物质进入二级磁选机中进行精选。 2、精选后得到的铁精矿经精铁矿溜槽自然流入铁精矿沉淀池。磁选尾矿流入非铁矿溜槽。 浮选工艺 1、磁选铁矿后的高炉除尘灰浆料从非铁矿溜槽自然流入搅拌桶中,经充分搅拌后流入浮选机。 2、矿浆加入浮选药剂后经三组浮选,得到炭精矿进入炭精矿溜槽并自然落入炭精矿池,尾矿流入尾矿溜槽进入尾矿池。 压滤工艺 1、炭精矿池中的炭精矿经泥浆泵打入板框式压滤机中进行脱水。脱水后的炭精矿落入皮带输送机上传出,并运至炭精矿货场。 2、尾矿池中的尾矿经泥浆泵打入板框式压滤机中进行脱水。脱水后的尾矿落入皮带输送机上传出,并运至尾矿货场。 废水回收工艺 1、铁精矿沉淀水流入尾矿溜槽进入尾矿池与尾矿同时进行脱水处理,产生尾矿压滤水。 2、尾矿压滤水与炭精矿压滤水经管道可直接流入集中水池,实现了系统水的闭路循环,没有废水排放。 本工艺流程技术工艺成熟可靠,高炉除尘灰处理后有效利用率可达100%。高炉除尘灰有效分离利用后,杜绝了除尘灰堆积如山的现象,避免了环境污染。同时,由于除尘灰的及时处理,避免了占用更多的土地,且避免了二次能源的浪费,具有良好的社会效益。红星机器相信,高炉除尘灰工艺将为钢铁行业的未来发展揭开节能环保新篇章。

相关主题
文本预览
相关文档 最新文档