当前位置:文档之家› 微分几何

微分几何

微分几何
微分几何

深圳大学数学与计算科学学院

课程教学大纲

(2006年10月重印版)

课程编号

课程名称微分几何

课程类别综合选修

教材名称微分几何

制订人陈冬梅

审核人杨和平

2005年4月修订

- 193 -

一、课程设计的指导思想

- 194 -

二、教学内容

- 195 -

- 196 -

- 197 -

- 198 -

三、课时分配及其它

- 199 -

- 200 -

微分几何习题全解(梅向明高教版第四版)

微分几何主要习题解答 第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × ) ('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ 'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方 向平行;当λ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ +μ'r ①

微分几何课程大纲

《微分几何》课程大纲 一、课程简介 教学目标:经典曲线曲面论、少量的整体微分几何与二维内蕴几何学 主要内容:(见教学内容) 二、教学内容 第一章曲线的局部理论 主要内容:平面曲线与空间曲线的曲率、空间曲线的绕率、Frenet标架、曲线论基本定理、n维空间的推广 重点与难点:空间曲线的绕率、曲线论基本定理 第二章曲线的整体几何 主要内容:旋转数,旋转指标定理、凸曲线 重点与难点:旋转指标定理及其应用 第三章曲面的局部理论(外在形式) 主要内容:第一基本形式、第二基本形式、主曲率、高斯曲率、平均曲率、结构方程重点与难点:结构方程与曲面论基本定理 第四章曲面的局部理论(内在形式) 主要内容:向量场、共变导数、平行移动、测地线 重点与难点:共变导数和平行移动 第五章二维黎曼几何 主要内容:局部黎曼几何、切丛、指数映射、测地极坐标、Jacobi场、流形 重点与难点:指数映射和Jacobi场 第六章曲面的整体几何 主要内容:Gauss-Bonnet定理、完备性、共轭点和曲率、闭测地线和基本群 重点与难点:Gauss-Bonnet定理和共轭点 三、教学进度安排(抱歉这个目前还安排不了) 可以参照以下表格形式 教学内容教学形式作业 第一周 第二周

四、课程考核及说明 平时成绩与口试相结合的方式。平时20%,口试80%。 五、教材与参考书 Wilhelm Klingenberg, A Course in Differential Geometry Manfredo P.Do Carmo,Differential Geometry of Curves and Surfaces 陈维桓,微分几何

第四版 微分几何 第二章课后习题答案

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

4.求椭圆柱面 222 2 1x y a b + =在任意点的切平面方程, 并证明沿每一条直母线,此曲面只有一个切平面 。 解 椭圆柱面 222 2 1x y a b + =的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----?? ??b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面},,{3 uv a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 },0,1{23 v u a r u -= ,},1,0{23 uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V = =是常数。

伟人简介:数学家高斯

高斯 卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss)(1777年4月 30日—1855年2月 23日),生于布伦 瑞克,卒于哥廷根,德国著名数学家、 物理学家、天文学家、大地测量学家。 幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 生平事迹 少年时期 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁、工头、商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。 高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。但是根据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

微分几何的教学地位与方法

第14卷第1期2011年1月高等数学研究 ST U DIES IN CO LL EGE M A T H EM A T ICS V ol.14,No.1Jan.,2011 Solving Linear Differential Equations by Reduction of Order LIN Wang 1, H ONG Ji ping 2 (1.Scho ol of M athematics and Infor mation Science,Wenzhou U niv ersity ,W enzho u 325035,PRC; (2.City Co llege,Wenzhou U niver sity ,Wenzho u 325035,PRC) Abstract: T his paper presents the method o f reduction of order for linear differential equations.It show s that the appr oach has the potential of shor tening the m athem atical tex tboo ks for engineering students,reducing the teaching time,and m aking lear ning easy.Mor eo ver,using mathematical softw are in solving linear differ ential equations pro motes textbook refo rm to m eet the challenge o f the m odern computing technolog y. Keywords: linear differential equation,reduction of o rder,tex tboo k refo rm 微分几何的教学地位与方法 孙和军1,赵培标1,陈大广2 (1.南京理工大学理学院应用数学系,江苏南京210094; 2.清华大学数学科学系,北京100084)收稿日期:2008-09-24;修改日期:2010-10-19. 基金项目:江苏省研究生教育教学改革研究课题(AD20309);南京理 工大学自主科研专项计划基金项目(2010ZYTS 064). 作者简介:孙和军(1976-),男,江苏连云港人,博士,讲师,主要从事 流形上的几何与分析研究.Email:hejuns un@https://www.doczj.com/doc/46353755.html,;赵培标(1964-),男,安徽怀远人,博士,教授,主要从事微分几何和金融数学研究.Email:pbz hao@nju https://www.doczj.com/doc/46353755.html,. 摘 要 结合教学实践,阐述微分几何在本科教学中的重要作用,提出改进微分几何教学方式的几点想法.指 出数与形应相结合,从而可实现学生逻辑思维能力与直觉思维能力的全面发展. 关键词 微分几何;教学方法;数形结合中图分类号 O186.1;G 642.4 文献标识码 A 文章编号 1008 1399(2011)01 0101 03 从广义相对论的证明,到陈省身给出的Gauss Bonnet 定理的内蕴证明,再到Yang Mills 场论与联络论的奇妙对应,直到最近佩雷尔曼(Pelerm an , 1966-)给出的世纪难题Po incare 猜想的证明,微分几何无不在向人们展示着其巨大的魅力.而作为微分几何学入门的本科 微分几何 课程,充分展示了 数 与 形 的奇妙结合,是学生了解近代数学发展的一个有效途径,是他们学习高级知识的桥梁,其在学生的数学能力的培养、思维品质的提高、后续高级课程的学习等方面都具有重要作用. 但由于种种原因,现在许多学校的相关院系在学生的培养计划中取消了这门课程的教学安排,或者压缩其教学时数.针对这种教学的现状,考虑到 微分几何 在学生能力培养方面的重要作用,我们 认为在以后的教学改革中应该加强而不是削弱其在本科教学中的地位,主要原因有以下几条: 原因1 微分几何 是帮助学生由初等几何 通往现代微分几何的桥梁.为了说明微分几何课程的重要性,我们有必要搞清楚古典微分几何与现代微分几何的关系. 几何学的发展开始于欧几里得(Euclide ,约公元前330-前275)的 几何原本 .在这本发行量仅次于 圣经 的经典著作里,欧几里得研究的是平面上的规则几何图形,如:点、直线、多边形等.在长达二千年的时间里,几何学的研究都是围绕着这些几何对象展开的,这一时期属于初等几何研究阶段.笛卡尔(Descarts ,1596-1650)引入的直角坐标系,使得代数的方法应用于几何研究,开创了空间解析几何研究的新阶段.微分几何是伴随着微积分的创立而发展起来的.十七世纪初,牛顿和莱布尼兹创立的微积分给数学带来了巨大的变革,也给几何带来了新的思想和工具来处理新的对象.几何学家开始把关注的目光投向曲线、曲面,开始了古典微分几何的研究,高斯(Gauss ,1777-1855)等数学家做出了重要贡献.

微分几何 陈维桓 习题答案

习题答案2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2 221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=v . 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-u u u v u u v u u u v . (1) 由于21Op ON =='u u u v u u u v ,222 u v Op =+u u v ,0Op ON '?=u u u v u u u v ,0t ≠,取上式两边的模长平方, 得222/(1)t u v =++. 从而 22222221 (,,)(,,0)(0,0,1)11u v x y z Op u v u v u v +-'==+++++u u u v 22222222 221,,111u v u v u v u v u v ??+-= ?++++++?? ,2 (,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-u u u v u u u v u u u v v , 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+v ,2(,,1)(0,1,0)v r t v u v t =--+v ,

最新微分几何答案

微分几何答案

第二章曲面论 §1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解 = ,= 任意点的切平面方程为 即 xcoscos + ycossin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。 解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin - a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 , ∴ I = 2。 2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。 解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。 3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

(整理)《微分几何》陈维桓第六章习题及答案.

§ 6.1 测地曲率 1. 证明:旋转面上纬线的测地曲率是常数。 证明: 设旋转面方程为{()cos ,()sin ,()} r f v u f v u g v =, 22222 ()()(()())()f v du f v g v dv ''I =++, 222(),()() E f v G f v g v ''==+ 纬线即u —曲线:0 v v =(常数), 其测地曲率为2 u g k == =为常数。 2、 证明:在球面S (cos cos ,cos sin ,sin )r a u v a u v a u =, ,0222 u v ππ π- <<<< 上,曲线 C 的测地曲率可表示成 ()()sin(())g d s dv s k u s ds ds θ=- , 其中((),())u s v s 是球面S 上曲线C 的参数方程, s 是曲线C 的弧长参数, ()s θ是曲线C 与球面上经线(即u -曲

线)之间的夹角。 证明 易求出2 E a =, 0 F =,2 2 cos G a u =, 因此 g d k ds θθθ= 221ln(cos )sin 2d a u ds a u θθ?=+? sin sin cos d u ds a u θθ= -, 而1sin cos dv ds a u θθ ==, 故 sin g d dv k u ds ds θ= -。 3、证明:在曲面S 的一般参数系(,)u v 下,曲线:(),()C u u s v v s ==的测地曲率是 ()()()()()())g k Bu s Av s u s v s v s u s ''''''''=-+-, 其中s 是曲线C 的弧长参数,2 g EG F =-, 并且 12 112 11 12 22 (())2()()(())A u s u s v s v s ''''=Γ+Γ+Γ, 2222 2111222(())2()()(())B u s u s v s v s ''''=Γ+Γ+Γ 特别是,参数曲线的测地曲率分别为 2 3 11(())u g k u s ',1322(()) v g k v s '= 。 证明 设曲面S 参数方程为12(,)r r u u =,1122:(),()C u u s u u s ==

《微分几何》教学大纲

《微分几何》课程教学大纲 课程名称:《微分几何》 课程编码:074112303 适用专业及层次:数学与应用数学(本科) 课程总学时:72学时 课程总学分:4 一、课程的性质、目的与任务等。 1、微分几何简介及性质 微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间----流形。微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。 2、教学目的: 通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。 3、教学内容与任务: 本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(Gauss-Bonnet)公式。重点让学生把握理解本教材的前二章。 二、教学内容、讲授大纲与各章的基本要求 第一章曲线论 教学要点: 本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对

空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题 教学时数:22学时。 教学内容: 第一节向量函数 1.1 向量函数的极限 1.2 向量函数的连续性 1.3 向量函数的微商 1.4 向量函数的泰勒(TayLor)公式 1.5 向量函数的积分 第二节曲线的概念 2.1 曲线的概念 2.2 光滑曲线、曲线的正常点 2.3 曲线的切线和法面 2.4 曲线的弧长、自然参数 第三节空间曲线 3.1 空间曲线的密切平面 3.2 空间曲线的基本三棱形 3.3 空间曲线的曲率、挠率和伏雷内(Frenet)公式 3.4 空间曲线在一点邻近的结构 3.5 空间曲线论的基本定理 3.6 一般螺线 考核要求: 1、理解向量函数的极限、连续性、微商、泰勒(TayLor)公式和积分等概念,能

微分几何期终试题

《微分几何》 期终考试题(A) 班级:____ 学号:______ 姓名:_______ 成绩:_____ 一、 填空题(每空1分, 共20分) 1. 半径为R 的球面的高斯曲率为 ;平面的平均曲率为 . 2. 若的曲率为,挠率为)(t r )(t k )(t τ,则关于原点的对称曲线的曲率为 )(t r ;挠率为 . 3. 法曲率的最大值和最小值正好是曲面的 曲率, 使法曲率达到最大值和最小值的方向是曲面的 方向. 4. 距离单位球面球心距离为)10(<

二、 单项选择题(每题2分,共20分) 1. 等距等价的两曲面上,对应曲线在对应点具有相同的 【 】 A. 曲率 B. 挠率 C. 法曲率 D. 测地曲率 2. 下面各对曲面中,能建立局部等距对应的是 【 】 A. 球面与柱面 B. 柱面与平面 C. 平面与伪球面 D. 伪球面与可展曲面 3. 过空间曲线C 上点P (非逗留点)的切线和P 点的邻近点Q 的平面π,当Q 沿曲线趋于点C P 时,平面π的极限位置称为曲线C 在P 点的 【 】 A. 法平面 B. 密切平面 C. 从切平面 D. 不存在 4. 曲率和挠率均为非零常数的曲线是 【 】 A. 直线 B. 圆 C. 圆柱螺线 D. 平面曲线 5. 下列关于测地线,不正确的说法是 【 】 A. 测地线一定是连接其上两点的最短曲线 B. 测地线具有等距不变性 C. 通过曲面上一点,且具有相同切线的一切曲线中,测地线的曲率最小 D. 平面上测地线必是直线 6. 设曲面的第一、第二基本型分别是,则曲面的两个主曲率分别是 【 】 2222,Ndv Ldu II Gdv Edu I +=+= A.G N k E L k ==21, B. N G k L E k ==21, C. v E G k k ???==ln 21 21 D. u G E k k ??==ln 2121 7. 曲面上曲线的曲率,测地曲率,法曲率之间的关系是 【 】 k g k n k

微分几何练习题库及参考答案(已修改)

> 《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 212 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 【 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . \ 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则 dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+.

[论文]微分几何简介

[论文]微分几何简介 微分几何学历史简介 清华大学周坚 我们借用杨振宁先生的以下诗句来开始对几何学的一个简介: 天衣岂无缝,匠心剪接成。浑然归一体,广邃妙绝伦。造化爱几何,四力纤维能。千古寸心事,欧高黎嘉陈。最后一句诗提到了五位伟大的几何学家: Euclid, Gauss, Riemann, Cartan, 和陈省身。其中,Euclid为古希腊人,Gauss和Riemann为十九世纪德国人,Cartan为二十世纪法国人。陈省身先生二十世纪三十年代在清华大学数学系读硕士,抗日战争中在西南联大任教授,现定居于南开大学。下文参考了他写的“九十初度说数学”。 几何是geometry的音译。其词头geo是“土地”的意思,词尾metry是“测量学”的意思, 合起来是“土地测量学”的意思。这反映了几何学起源于实际问题。 Euclid写了一本书“Elements”,中文译名为“几何原本”,内容包含平面几何学、空间几何学和数论,总结了古希腊的很多数学知识,可能是从古至今影响最大的科学著作。 中学课本中的平面几何学内容大都来源于“Elements”, 从中可以学到古希腊人用以逻辑为基础的理性思维进行科学研究的方法。Einstein认为一个人如果在年轻时对平面几何从没产生过兴趣的话,恐怕很难在科学上做出重要发现。几何学的下一个进展由哲学家 Descarte取得,据说他身体不好,经常需要卧床休息,有一次看到在墙角织网的蜘蛛,受启发引进了坐标的概念。由此产生了解析几何学,使得代数方法可以在几何问题中应用。例如,圆周、椭圆、双曲线、抛物线等古希腊人即开始研究的几何对象有很简单的代数描述。

解析几何学促进了微积分的诞生。由Newton和Leibnitz创立的这门学问在现代科学中的重要性是不用赘述的。将微积分应用于几何问题的研究就是所谓微分几何。最初研究的是三维空间中的曲线、曲面。Gauss于1827年写了一本50页左右的小书,研究曲面的微分几何,包括大学学的微分几何的主要内容。这本书标志着微分几何学的诞生。Gauss当时主持一项土地测量的的项目,他写这本是为了给这项工作一个理论基础。Gauss也是非欧几何学(non-Euclidean geometry) 的创始人之一。需要指出的是Gauss工作的主要领域是数论。 同Gauss一样,Riemann工作的主要领域也不是几何学,而是单复变函数,但他是现代微分几何与解析数论的创始人。在他为取得大学教授资格的公开讲演中,Riemann提出了微分几何学发展的新思想,其 中包括流形、Riemann度量、Riemann曲率等重要概念。简单的说,就是用局部坐标和坐标变换来描述一个空间,用Riemann度量做最基本的几何量,空间的几何性质如弯曲程度由度量用特定方式决定。 Riemann的工作由Christoffel、Ricci、Levi-Civita等人发展,后来成为Einstein创立的广义相对论的数学基础。简单的说,广义相对论将物理量解释为几何量。具体的说,空间和时间结合在一起由一个流形描述:不同的参照系给出不同的局部坐标;不同参照系之间的关系即是坐标变换。时空流形的度量由所谓Lorentz度量给出,象Riemann几何一样计算出曲率等几何量。Einstein方程说:时空的物理量(能量动量张量)等于时空的几何量(Ricci曲率张量)。 Einstein的工作激发了数学家对微分几何的兴趣,从而极大地促进了这门学科的发展。数学家和物理学家当时关心的自然的问题是Maxwell的电磁理论的几何化和引力理论与电磁理论的统一。Einstein后期致力于大统一理论的研究没有取得有意义的进展,一个重要的原因可能是他没有利用广义相对论出现以后发展的几何学。数学家Hilbert、Weyl和Cartan都对以上问题做过研究。他们的工作突出了流形上联络

微分几何习题全解(梅向明高教版第四版)

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2 'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ+μ'r ①

整体微分几何 - 浙江大学数学系

整体微分几何简介 课程号:06191440 课程名称:整体微分几何英文名称:Global Differential Geometry 周学时:3-0 学分:3 预修要求:微分几何(局部理论) 内容简介: 《整体微分几何》主要介绍曲线与曲面的大范围整体几何性质,包括某些拓扑性质。内容分四章:第一章介绍活动标架法,它是研究整体微分几何和几何分析的有力工具。第二章介绍3维欧氏空间中闭曲线的整体微分几何性质。第三章介绍3维欧氏空间中曲面的整体微分几何性质。第四章介绍曲面的内蕴几何。通过本课程学习,使学生掌握整体微分几何的基本概念和重要思想方法,了解数学各方向之间相互交织、相互渗透的现代数学概貌。 选用教材或参考书: 《整体微分几何初步》沈一兵编着浙江大学(原杭州大学)出版社 1998

《整体微分几何》教学大纲 一、课程的教学目的和基本要求 随着现代数学的发展,整体微分几何已成为核心数学的一个重要组成部分。为了使数学专业的大学生具备较高的数学素质,有必要让他们了解这方面的基本内容和思想方法。 通过对《整体微分几何》的学习,使学生初步掌握整体微分几何的基本概念和重要思想方法,学会简单的外微分计算和活动标架法,了解有关整体曲线和整体曲面的著名定理和重要公式,以及它们的证明主要思路。要求学生通过本课程学习,了解数学各方向之间相互交织、相互渗透的现代数学概貌,为今后进一步深造打下扎实基础。 二、相关教学环节安排 1.采用课堂讲授和课外作业,强调启发式教学。 2.每周讲课3学时。每周布置作业,作业量1-2学时。主要针对基本概念和解问题的思路。 三、课程主要内容及学时分配(打▲号为重点讲授部分) 每周3学时,共17周。 主要内容: (一)外微分与活动标架法10学时1.幺正标架3学时 2.外微分形式▲3学时 3.可积系统2学时 4.曲面论的活动标架法2学时(二)曲线的整体微分几何 14 学时1.平面曲线的某些整体性质▲ 7学时 2.空间曲线的某些整体性质▲ 7学时

微分几何陈维桓新编习题答案

习 题答案 2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=. 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-. (1) 由于21Op ON ==',2 22u v Op =+,0Op ON '?=,0t ≠,取上式两边的模长平方,得222/(1)t u v =++. 从而 22222222221,,111u v u v u v u v u v ??+-= ?++++++??,2(,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-, 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+,2(,,1)(0,1,0)v r t v u v t =--+, 22222(,,()1)(,,1)0t tu tv t u v t tu tv t t r =-+-=--=-≠. (3) 因此(,)r r u v =给出了2\{}S N 的正则参数表示. (2)令(,,0)q u v =是,S p '两点连线与赤道平面的交点. 同理,有 (1)(,,1)Op t Oq t OS t u t v t '=+-=-,222/(1)t u v =++, 22222222221(,,),,111u v u v r x y z Op u v u v u v ??--'=== ?++++++?? ,2(,)u v ∈R . (4) 2(,,1)(1,0,0)u r t u u v t =-+,2(,,1)(0,1,0)v r t v u v t =-+, 22222(,,1())(,,1)0t t u t v t u v t t u t v t t r =-+=-=≠. (5) 因此(4)给出了2\{}S S 的正则参数表示. (3) 由(2)和(4)式可得2222()()1u v u v ++=,从而上面两种正则参数表示在公共部分2\{,}S N S 上的参数变换公式为 22u u u v =+,22 v v u v =+. (6) 由(3)和(5)可知

微分几何发展简介.doc

几何学的未来发展 丘成桐 校长、院长、及各位同学: 今天很荣幸能够在这里演讲,尤其今年是交通大学一百年校庆纪念,能到一个比较注重工程的学校来讲数学,表示交通大学也注重理科方面的工作,这是很有意义的。因为基本科学对于工程学有很重要的启发性。今天我讲的题目是林松山教授给我的。但是学术的未来很难猜测,很多布?学问的人都曾经得出错误的结论。所以我不作任何猜测,我只能够根据以前的历史来做一些建议。 今天要讲的历史主要是从个人的体验来看。我不是一个历史学家,我讲的很可能是错误的。E是这不重要,因为我想讲的是我从做学问得出来的观念,希望能够以我自己的经验来做一些建议。清华大学跟交通大学都曾赠予杨振宁先生荣誉博士,我看过杨先生写的一篇文章,杨先生讲做物理好像画图画一样。我想做几何也跟画图画差不多,不过我们画的图画更广泛一点。物理学家要I而的基木上只有一张图冏i,就是自然界的现象。但是儿何学家可以随意去画,我们司.以画广告画,画工程学需要的画,也町以画印象派的画和写实的画。广告画可以在商业上有很大的用处,过儿年后可能成为收藏的对象。但是由于商业气氛浓厚,一般画家不大愿意认同它们的价值。广告画或工程画却时能对写实派的画和印象派的画产生相当的影响。不过I而印象派的wi或山水偷,一定要有很深的技术、功力和想法才能偷得好。出名的画家往往花很多时间在磨练、在猜测,将他的工具不停地推进,在好的气质修养下,才能够州出好的印象派的偷或山水时一般数学家和儿何学家也有同样的经验,有意义的工作即使是个很小的观察(observation),往往花了数学家很大的精力去找寻。找寻的方法不单是从大自然吸取,也从美学和工程学来吸取。怎样去寻找有意义的工作,跟我们气质的培养有密切的关系。 现在我想谈几何的历史,看看从前,再预测未来。因为我没有想到林松山教授给我这么长的时间,所以会讲长一点。从前我们念中学的时候,念国文、念文学批评,总会说一个时代有…?个时代的感慨。数学基本上也是一样,文学上有古文学、有诗经、有汉书、有唐诗、有宋词,从一个时代去学习一个时代,很少能够学得刚好一样。我们现在看诗经写得好得不得了,可是我们学不到诗经里面的情怀意念。时代不同,感慨也不同了。 随着时代的变迁,因为时代不同的需要,我们培养出不同的感情,取舍自然不一样。我们可以很羡慕从前大数学家做的工作,可是我们不可能也不一定要跟他们一模一样。就好像我们现在学苏东坡的诗和词,我们不可能也不需要学得一样,但是我们可以从他的诗词里得到想法,帮助我们去理解大自然,找寻表达白己感情的方法。从儿何来说,我们所要寻找的跟物理学一样,就是真和美这两个观念。还有一个很重要而容易忽略的动力,是由工程学对数学需求所产生的。这三个想法推动了几何学的发展。 美的观点在不停地改变,改变的方式跟我们当时认识的自然界有很大的关系。一、二千年前我们认识的自然界跟现在我们理解的自然界完全不同,所以数学或者几何学不停地受到这个变动的影响。在儿何学来说,美可分为两方面:静态的美和动态的美。静态的美,譬如一朵花或雅致的山水,我们大致知道怎样准确地去描述他们,甚至将我们的感受表达出来。如何描述动态的美对我们来说是一个很困难的问题,例如水在流或天在下雪,在不同的时间、空间,事物会产生激变,这是一个相*美的图画。町是到目前为止,激变的研究对理论物理学家、数学家跟几何学家都是-个很大的挑战。为了对时空作深入的描述,几何学家有不同的研究的路径:育人从物理学的角度去了解,有人从微分方程的角度去了解,这都成为几何学的重要课

相关主题
文本预览
相关文档 最新文档