当前位置:文档之家› 2004年加拿大数学奥林匹克

2004年加拿大数学奥林匹克

2004年加拿大数学奥林匹克
2004年加拿大数学奥林匹克

第38届全俄数学奥林匹克竞赛

第38届全俄数学奥林匹克竞赛 九年级 9.1 a1,a2,?,a11是不小于2的互异正整数,满足:a1+a2+?+ a11=407。是否存在正整数n,使得当n分别除以a1,a2,?,a11,4a1,4a2,?,4a11这22个数时所得到的余数的和等于2012? 9.2 已知:在正2012边形的顶点中,存在k个顶点,使得以这k个顶点为顶点的凸k多边形的任意两条边不平行。求k的最大值。 9.3 ABCD是一个平行四边形,∠A为钝角。H是点A向直线BC的垂直投影。△ABC过顶点C的中线的延长线交其外接圆于K。求证:K,H,C,D四点共圆。 9.4 正实数a1,a2,?,a n,k满足:a1+a2+?+a11=3k,a12+a22+?+a n2=3k2,a13+a23+?+a n3>3k3+k。求证:在a1,a2,?,a n中存在两个数使得它们的差的绝对值大于1。 9.5 101个智者围坐一圈开圆桌会议讨论地球和木星谁绕谁转的问题。开始及随后的每个时刻每个智者持有地球绕木星转或木星绕地球转这两种观点之一。各智者按一下规则每分钟一次同时宣布自己的观点:除了第一次以外,如果在上一分钟时一个智者的相邻两人(左右各一人)与其观点都不相同,则智者改变自己的观点,否则不改变自己的观点。求证:若干分钟后,所有的人都不再改变自己的观点。 9.6 A1,B1,C1分别是△ABC的边BC,CA,AB上的点,满足AA1?AA1=AA1?AA1=AA1?AA1。I A,I B和I C分别是△AB1C1,

A1BC1和A1B1C的内心。求证△I A I B I C的外心和△ABC的内心重合。9.7 开始时黑板上写着10个连续正整数。对黑板上的数进行如下操作:任取黑板上的两个数a和b,将他们用数a2?2011b2和ab替换。经过若干次上述操作后,黑板上开始时的10个数已全部被替换掉,问此时在黑板上是否可能还是10个连续的正整数? 9.8 城市里有若干路公共汽车线。已知任两路公共汽车线恰有一个公共的车站;任一路公共汽车线至少有4站。求证:可以将所有的车站分成不交的两组,使得任意一路公共汽车线含每组中至少一站。

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

第40届俄罗斯数学奥林匹克九年级试题(无答案)

第40届俄罗斯数学奥林匹克(九年级) 1. 放置了99个正整数. 已知任意两个相邻的数相差1或相差2或一个为另一个的2倍. 证明:这99个数中,有3的倍数. 2. 已知a b ,为两个不同的正整数. 问: ()()()()()()222222a a ab a b a b a b b b ++++++,,,,, 这六个数中,至多有多少个完全平方数? 3. 令A 是由一个凸n 边形的若干对角线组成的集合. 若集合A 中的一条对角线恰有另外一条对角线与其相交在凸n 边形内部,则称该对角线为“好的”. 求好对角线条数的最大可能值. 4. 在锐角ABC △中,已知AB BC >,M 为边AC 的中点,圆Γ为ABC △的外接圆,圆Γ在点A C ,处的切线交于点P ,线段BP 与AC 交于点S ,AD 为ABP △的高,CSD △的外接圆与圆Γ交于点K (异于点C ). 证明:90CKM ∠=?. 5. 设正整数1N >,m 表示N 的小于N 的最大因数. 若N m +为10的幂,求N .

6. 已知内接于圆Γ的梯形ABCD 两底分别为AB CD ,,过点C D ,的一个圆1Γ与线段 CA CB ,分别交于点1A (异于点C ),1B (异于点D ). 若22A B ,为11A B ,分别关于CA CB ,中点的对称点,证明:22A B A B ,,,四点共圆. 7. 麦斯国中央银行决定发行面值为()01k k α=,,的硬币. 央行行长希望能够找到一个正 实数α,使得对任意1k k α, ≥为大于2的无理数,且对于任意正整数n ,理论上均存在若干枚面值之和等于n 的硬币,其中每种面值的硬币均不超过六枚. 问:行长的愿望能够实现吗? 8. 某国有n 座城市,任意两座城市之间有双向直达航班. 已知对任意两座城市,它们之间 的两个方向的机票价格相同,不同城市对之间的航班机票价格互不相同. 证明:存在由1n -段依次相连的航班,使得各段航班机票的价格依次严格单调下降.

最新第36届国际数学奥林匹克试题合集

第36届国际数学奥林匹克试题 1.(保加利亚) 设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。试证:AM 、DN 和XY 三线共点。 证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。须证:Q 与Q ′重合。 由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90° 进而,Q ,M ,Z ,B 四点共圆。 同理Q ′,N ,Z ,B 四点共圆。 这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。 所以,QP= Q ′P 。而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。命题获证。 分析二* 如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。 证法二:设X (0,m ),P (0,y 0), ∠PCA=α, m 、y 0是定值。有2 0.yx x x ctg y x C A c =?-=但α, 则.0 2 αtg y m x A -= 因此,AM 的方程为 ).(0 2 ααtg y m x ctg y ?+=

令0 2,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。 2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。试证: .2 3)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a , 有.0=++γβα于是, ) (4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c a b c a c b a b c c b a a b c +++++= 112 111121111211)()()(------------+++++++++++=b a b a c c b c b c b γαβα 21112 1112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a .6132)111(23=?≥++≥abc c b a ∴原不等式成立。 背景资料:陕西省永寿县中学安振平老师在《证明不等式的若干代换技巧》一文中运用“增量代换”给出证法一,还用增量代换法给出第 6届IMO 试题的证明。什么是增量代换法?—— 由α≤+=≥0,,其中令a b a b a 称为增量。运用这种方法来论证问题,我们称为增量代换法。 题1 设c b a ,,是某一三角形三边长。求证: .3)()()(222abc c b a c b a c b a c b a ≤-++-++-+ (第6届IMO 试题) 证明 不失一般性,设.,0,0,0,,,y x z y x z y x c y x b x a >≥≥>++=+==且 abc c b a c b a c b a c b a 3)()()(222--++-++-+则 + ++++-+++++-++++=x z y x y x x z y x y x x z y x y x x [)()]()[()(])()[(222

加拿大国家中小学数学竞赛( kangaroo math 袋鼠竞赛)2017年五六年级(含答案)

I N T ER N A T I ON A L CO N T E S T-GA M E M A TH KA N GA RO O C A N A DA, 2017 INSTRUCTIONS GRADE 5-6 1.You have 75 minutes to solve 30 multiple choice problems. For each problem, circle only one of the proposed five choices. If you circle more than one choice, your response will be marked as wrong. 2.Record your answers in the response form. Remember that this is the only sheet that is marked, so make sure you have all your answers transferred here by the end of the contest. 3.The problems are arranged in three groups. A correct answer of the first 10 problems is worth 3 points. A correct answer of problems 11-20 is worth 4 points. A correct answer of problems 21-30 is worth 5 points. For each incorrect answer, one point is deducted from your score. Each unanswered question is worth 0 points. To avoid negative scores, you start from 30 points. The maximum score possible is 150. 4.Calculators and graph paper are not permitted. You are allowed to use rough paper for draft work. 5.The figures are not drawn to scale. They should be used only for illustration. 6.Remember, you have about 2-3 minutes for each problem; hence, if a problem appears to be too difficult, save it for later and move on to the other problems. 7.At the end of the allotted time, please submit the response form to the contest supervisor. Please do not forget to pick up your Certificate of Participation! Good luck! Canadian Math Kangaroo Contest team 2017 CMKC locations: Algoma University; Bishop's University; Brandon University; Brock University; Carlton University; Concordia University; Concordia University of Edmonton; Coquitlam City Library; Dalhousie University; Evergreen Park School; F.H. Sherman Recreation & Learning Centre; GAD Elementary School; Grande Prairie Regional College; Humber College; Lakehead University (Orillia and Thunder Bay); Laurentian University; MacEwan University; Memorial University of Newfoundland; Mount Allison University; Mount Royal University; Nipissing University; St. Mary’s University (Calgary); St. Peter’s College; The Renert School at Royal Vista; Trent University; University of Alberta-Augustana Campus; University of British Columbia (Okanagan); University of Guelph; University of Lethbridge; University of New Brunswick; University of Prince Edward Island; University of Quebec at Chicoutimi; University of Quebec at Rimouski; University of Regina; University of Toronto Mississauga; University of Toronto Scarborough; University of Toronto St. George; University of Windsor; The University of Western Ontario; University of Winnipeg; Vancouver Island University; Walter Murray Collegiate, Wilfrid Laurier University; YES Education Centre; York University; Yukon College. 2017 CMKC supporters: Laurentian University; Canadian Mathematical Society; IEEE; PIMS.

中国数学奥林匹克(CMO)试题和详细解答word版

2009中国数学奥林匹克解答 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N . (1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; (2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,则 11 ,22 EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,所以 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,所以 ABD ACD ∠=∠, 于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 所以 E Q M E Q O O Q M F R O O R M ∠=∠+∠=∠+∠=∠, 故 E Q M M R F ???, 所以 EM =FM , 同理可得 EN =FN , 所以 E M F N E N F M ?=?. (2)答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则 11 ,22 NS OD EQ OB ==, 所以 N S O D E Q O B =. ① C B

又 11 , 22 ES OA MQ OC ==,所以 ES OA MQ OC =.② 而AD∥BC,所以 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 所以NSE ?~EQM ?, 故 EN SE OA EM QM OC ==(由②).同理可得, FN OA FM OC =, 所以EN FN EM FM =, 从而EM FN EN FM ?=?. C B

第32届中国数学奥林匹克获奖名单及2017年集训队名单

第32届中国数学奥林匹克获奖名单 一等奖(116人,按省市自治区排列) 编号姓名地区学校 M16001 吴蔚琰安徽合肥一六八 M16002 考图南安徽安师大附中 M16003 徐名宇安徽合肥一中 M16004 吴作凡安徽安师大附中 M16005 周行健北京人大附中 M16006 王阳昇北京北京四中 M16007 陈远洲北京北师大附属实验中学M16008 杨向谦北京人大附中 M16009 夏晨曦北京北师大二附 M16010 谢卓凡北京清华附中 M16011 薛彦钊北京人大附中 M16012 胡宇征北京北京四中 M16013 徐天杨北京北京101中学 M16014 董昕妍北京人大附中 M16015 冯韫禛北京人大附中 M16016 林挺福建福建师范大学附属中学M16017 任秋宇广东华南师大附中 M16018 何天成广东华南师大附中 M16019 戴悦浩广东华南师大附中 M16020 谭健翔广东华南师大附中 M16021 王迩东广东华南师大附中 M16022 程佳文广东深圳中学 M16023 李振广东深圳外国语学校 M16024 张坤隆广东深圳中学 M16025 齐文轩广东深圳中学 M16026 卜辰璟贵州贵阳一中 M16027 顾树锴河北衡水第一中学 M16028 袁铭泽河北衡水第一中学 M16029 卢梓潼河北石家庄二中 M16030 赵振华河南郑州外国语学校 M16031 陈泰杰河南郑州外国语学校

M16032 迟舒乘黑龙江哈尔滨市第三中学 M16033 黄桢黑龙江哈尔滨市第三中学 M16034 姚睿湖北华中师范大学第一附属中学M16035 魏昕湖北武汉二中 M16036 黄楚昊湖北武钢三中 M16037 刘鹏飞湖北武汉二中 M16038 赵子源湖北华中师范大学第一附属中学M16039 徐行知湖北武钢三中 M16040 吴金泽湖北武汉二中 M16041 李弘梓湖北武汉二中 M16042 施奕成湖北华中师范大学第一附属中学M16043 袁睦苏湖北武汉二中 M16044 王子迎湖北武汉二中 M16045 袁昕湖北华中师范大学第一附属中学M16046 陈子瞻湖北湖北省黄冈中学 M16047 詹立宸湖北华中师范大学第一附属中学M16048 严子恒湖北武钢三中 M16049 陈贵显湖北华中师范大学第一附属中学M16050 张騄湖南长沙市长郡中学 M16051 刘哲成湖南长沙市雅礼中学 M16052 仝方舟湖南长沙市长郡中学 M16053 谢添乐湖南长沙市雅礼中学 M16054 尹龙晖湖南长沙市雅礼中学 M16055 黄磊湖南长沙市雅礼中学 M16056 肖煜湖南长沙市长郡中学 M16057 吴雨澄湖南湖南师范大学附属中学M16058 方浩湖南长沙市第一中学 M16059 郭鹏吉林东北师大附中 M16060 丁力煌江苏南京外国语学校 M16061 朱心一江苏南京外国语学校 M16062 高轶寒江苏南京外国语学校 M16063 彭展翔江西高安二中 M16064 刘鸿骏江西江西省吉安市第一中学M16065 孔繁淏辽宁大连二十四中 M16066 孔繁浩辽宁东北育才学校 M16067 孟响辽宁大连24中 M16068 毕梦达辽宁辽宁省实验中学

国际数学奥林匹克IMO试题(官方版)2000_eng

41st IMO2000 Problem1.AB is tangent to the circles CAMN and NMBD.M lies between C and D on the line CD,and CD is parallel to AB.The chords NA and CM meet at P;the chords NB and MD meet at Q.The rays CA and DB meet at E.Prove that P E=QE. Problem2.A,B,C are positive reals with product1.Prove that(A?1+ 1 B )(B?1+1 C )(C?1+1 A )≤1. Problem3.k is a positive real.N is an integer greater than1.N points are placed on a line,not all coincident.A move is carried out as follows. Pick any two points A and B which are not coincident.Suppose that A lies to the right of B.Replace B by another point B to the right of A such that AB =kBA.For what values of k can we move the points arbitrarily far to the right by repeated moves? Problem4.100cards are numbered1to100(each card di?erent)and placed in3boxes(at least one card in each box).How many ways can this be done so that if two boxes are selected and a card is taken from each,then the knowledge of their sum alone is always su?cient to identify the third box? Problem5.Can we?nd N divisible by just2000di?erent primes,so that N divides2N+1?[N may be divisible by a prime power.] Problem6.A1A2A3is an acute-angled triangle.The foot of the altitude from A i is K i and the incircle touches the side opposite A i at L i.The line K1K2is re?ected in the line L1L2.Similarly,the line K2K3is re?ected in L2L3and K3K1is re?ected in L3L1.Show that the three new lines form a triangle with vertices on the incircle. 1

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧 BC 上两点D 、E 分别为弧 ABC 、 ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤= 、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。求好矩阵A 的个数。 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈- 使得 1122m m n b a b a b a =+++ .

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x +++= 的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤= ∑ 的最大值。

参考答案 第一天 1. 如图2,联结EP 、BE 、BP 、CD 。 分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。 由已知条件易得,AD DC AE EB ==。结合A 、B 、D 、 12p x x x <<< ,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也 不改变结论。同样,不妨设12p y y y <<< 。于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。 由上面的讨论知11121,2a a ==或212a =,不妨设122a =。否则,将整个数表关于主对

第41届国际数学奥林匹克解答

第41届国际数学奥林匹克解答 问题 1.圆Γ1和圆Γ2 相交于点M和N.设L是圆Γ 1 和圆Γ2的两条公切线中距离 M较近的那条公切线.L与圆 Γ1相切于点A,与圆Γ2相切 于点 B.设经过点M且与L平 行的直线与圆Γ1还相交于点 C,与圆Γ2还相交于点 D.直 线C A和D B相交于点E;直线 A N和C D相交于点P;直线 B N 和C D相交于点Q. 证明:E P=E Q. 解答:令K为M N和A B的交点.根据圆幂定理,,换言之K是A B的中点.因为P Q∥A B,所以M是P Q的中点.故只需证明E M⊥P Q.因为C D∥A B,所以点A是Γ1的弧C M的中点,点B是Γ2的弧D M的中点.于是三角形A C M与B D M都是等腰三角形.从而有 , . 这意味着E M⊥A B.再由P Q∥A B即证E M⊥P Q. 问题 2.设a,b,c是正实数,且满足a b c=1.证明: . 解答:令,,,其中x,y,z为正实数,则原不等式变为(x-y+z)(y-z+x)(z-x+y)≤x y z.记u=x-y+z,v=y-z+x,w=z-x+y.因为这三个数中的任意两个之和都是正数,所以它们中间最多只有一个是负数.如果恰有一个是负数,则u v w≤0

加拿大的数学竞赛

加拿大的數學競賽 (1)加拿大公開數學挑戰賽 加拿大公開數學挑戰賽Canadian Open Mathematics Challenge (COMC):一般在每年的11月份舉行。學生在這個競賽裏獲得高分可以得到邀請去參加一些更高級別的競賽,比如加拿大數學奧林匹克(CMO),亞太數學奧林匹克(APMO),美國數學奧林匹克(USAMO)和國際數學奧林匹克(IMO)。 11月COMC活動可以提高學生的學習興趣,激發他們的”鬥志”。一旦他們能主動地學習,那就什麼困難都不在話下。其次,競賽對學生沒有壓力;因為考不好沒關係,而考好了就有關係:它對你進入好的大學,好的高中都有幫助。第三,有的競賽(如COMC, IMC等)還直接發獎金給優勝者。也會有單位邀請你去參加夏令營。 此項競賽有兩個目的:(1) 為秋季學期提供一項數學課外活動,對那些想豐富自己數學知識的學生大有幫助。(2) 為加拿大數學奧林匹克(CMO)選拔人才。此外,有的問題是對十年級數學課程的檢驗。 誰能參加這個競賽?(1)19歲以下;(2)加拿大公民或永久居民,並在公/私立中學註冊;(3)未在大學註冊;(4)未參加過PUTNAM數學競賽。 評獎:(1)大約50名優勝者會被邀請參加CMO;(2)每個省或地區的第一名會獲得一塊匾,他/她所在的學校也會獲得一塊匾;(3)每個省或地區的前九名獲得金牌,(4)前25%獲得證書。 考試時間為2.5小時,滿分40分。A部分8道題,每題5分;解答過程部分正確也可得一些分。B部分4道題,每題10分;即使答案正確但表述不清,也會被扣分。考試中不得使用計算器。考試內容大致如下:(1)EUCLID幾何,(2)解析幾何,(3)三角學,(4)函數,(5)方程組,(6)多項式,(7)數列與求和,(8)計數,(9)初等數論。 如何準備競賽?你可以去WWW.CEMC.UWATERLOO.CA找以前的考題做.有的較難,比如遊戲題, 它要求你會把遊戲問題數學化,知道如何找序列的規律,如何把特例推廣到一般情況。如果沒有接觸過這種問題,是很難在兩個小時內給出必勝的策略來。另外還要明白已考過的題近期內是不會重複的;再次,問題是永遠做不完的,關鍵在於掌握解題方法與技巧;而任何解題方法與技巧又代替不了INGENUITY(獨創性)和INSIGHT(洞察力)。事實上,競賽的目的也正是為了培養這兩種能力。 相關網站-》http://cemc.math.uwaterloo.ca/

加拿大国际袋鼠数学竞赛试题 及答案-2016年 Parents Questions

Canadian Math Kangaroo Contest Part A: Each correct answer is worth 3 points 1.Which letter on the board is not in the word "KOALA"? (A) R (B) L (C) K (D) N (E) O 2.In a cave, there were only two seahorses, one starfish and three turtles. Later, five seahorses, three starfish and four turtles joined them. How many sea animals gathered in the cave? (A) 6 (B) 9 (C) 12 (D) 15 (E) 18 3.Matt had to deliver flyers about recycling to all houses numbered from 25 to 57. How many houses got the flyers? (A) 31 (B) 32 (C) 33 (D) 34 (E) 35 4.Kanga is 1 year and 3 months old now. In how many months will Kanga be 2 years old? (A) 3 (B) 5 (C) 7 (D) 8 (E) 9 5. (A) 24 (B) 28 (C) 36 (D) 56 (E) 80 6. A thread of length 10 cm is folded into equal parts as shown in the figure. The thread is cut at the two marked places. What are the lengths of the three parts? (A) 2 cm, 3 cm, 5 cm (B) 2 cm, 2 cm, 6 cm (C) 1 cm, 4 cm, 5 cm (D) 1 cm, 3 cm, 6 cm (E) 3 cm, 3 cm, 4 cm 7.Which of the following traffic signs has the largest number of lines of symmetry? (A) (B) (C) (D) (E) 8.Kanga combines 555 groups of 9 stones into a single pile. She then splits the resulting pile into groups of 5 stones. How many groups does she get? (A) 999 (B) 900 (C) 555 (D) 111 (E) 45

第50届国际数学奥林匹克竞赛试题(中文版)与参考答案

2009年第50届IMO 解答 2009年7月15日 1、是一个正整数,是n 12,,...,(2)k a a a k ≥{}1,2,...,n 中的不同整数,并且1(1i i n a a +?)?)对于所有都成立,证明:1,2,...,1i k =1(1k a a ?不能被n 整除。 证明1:由于12(1n a a ?),令1(,)n a p =,n q p = 也是整数,则n pq =,并且1p a ,21q a ?。因此,由于2(,)1q a =23(1n pq a a )=?,故31q a ?;同理可得41q a ?,。。。, 因此对于任意都有2i ≥1i q a ?,特别的有1k q a ?,由于1p a ,故1(1k n pq a a )=?(*)。 若结论不成立,则1(1k n pq a a =)?,与(*)相减可得1(k n a a ?),矛盾。 综上所述,结论成立。 此题平均得分:4.804分

2、外接圆的圆心为O ,分别在线段上,ABC ?,P Q ,CA AB ,,K L M 分别是,,BP CQ PQ 的中点,圆过Γ,,K L M 并且与相切。证明:OP PQ OQ =。 证明:由已知MLK KMQ AQP ∠=∠=∠,MKL PML APQ ∠=∠=∠,因此 APQ MKL ??~。所以 AP MK BQ AQ ML CP == ,故AP CP AQ BQ ?=?(*)。 设圆O 的半径为R ,则由(*)有2 2 2 2 R OP R OQ ?=?,因此OP OQ =。 不难发现OP 也是圆Γ与相切的充分条件。 OQ =PQ 此题平均得分:3.710分

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

2018年世界各地数学竞赛试题汇集(PDF版)

目 录 2018年亚太地区数学奥林匹克 (1) 2018年波罗的海地区数学奥林匹克 (2) 2018年第10届Benelux数学奥林匹克 (5) 2018年巴尔干地区数学奥林匹克 (6) 2018年巴尔干地区初中数学奥林匹克 (7) 2018年高加索地区数学奥林匹克 (8) 2018年中美洲及加勒比地区数学奥林匹克 (10) 2018年Cono Sur数学奥林匹克 (11) 2018年捷克-波兰-斯洛伐克联合数学竞赛 (12) 2018年捷克和斯洛伐克数学奥林匹克 (13) 2018年多瑙河地区数学奥林匹克 (14) 2018年欧洲女子数学奥林匹克 (16) 2018年欧洲数学杯奥林匹克 (18) 2018年拉丁美洲数学奥林匹克 (20) 2018年国际大都市数学竞赛(IOM) (21) 2018年第2届IMO复仇赛 (22) 2018年第5届伊朗几何奥林匹克 (23) 2018年第17届基辅数学节竞赛 (27) 2018年地中海地区数学竞赛 (29) 2018年中欧数学奥林匹克 (30) 2018年北欧数学奥林匹克 (32) 2018年泛非数学奥林匹克 (33) 2018年罗马尼亚大师杯数学奥林匹克 (35) 2018年第14届Sharygin几何奥林匹克 (36) 2018年丝绸之路数学奥林匹克 (42)

2018年Tuymaada国际数学奥林匹克 (43) 2018年乌克兰几何奥林匹克 (45) 2018年第14届Zhautykov国际数学奥林匹克 (47) 2018年ARML数学竞赛 (48) 2018年美国数学邀请赛(AIME) I (57) 2018年美国数学邀请赛(AIME) II (60) 2018年美国数学奥林匹克 (63) 2018年美国初中数学奥林匹克 (64) 2018年美国IMO代表队选拔考试 (65) 2018年美国TSTST (67) 2018年美国第20届ELMO (69) 2018年第20届美国旧金山湾区数学奥林匹克 (71) 2017-2018年度USAMTS (74) 2018年美国女子数学奖学金竞赛(决赛) (79) 2017-2018年度威斯康星数学、科学与工程学人才选拔 (80) 2018年奥地利数学奥林匹克 (84) 2018年澳大利亚、英国IMO国家队联合训练考试 (87) 2018年波黑数学奥林匹克(地区级) (88) 2018年波黑EGMO代表队选拔考试 (90) 2018年波黑JBMO代表队选拔考试 (91) 2018年巴西数学奥林匹克 (92) 2018年巴西数学奥林匹克复仇赛 (94) 2017/2018英国数学竞赛 (95) 2018年保加利亚数学奥林匹克 (97) 2018年保加利亚JBMO代表队选拔考试 (98) 2018年加拿大数学奥林匹克 (99) 2018年塞浦路斯IMO代表队选拔考试 (100) 2018年塞浦路斯JBMO代表队选拔考试 (102)

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

相关主题
文本预览
相关文档 最新文档