当前位置:文档之家› 计算机过程控制系统DCS课程实验指导书

计算机过程控制系统DCS课程实验指导书

计算机过程控制系统DCS课程实验指导书
计算机过程控制系统DCS课程实验指导书

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验

一、实验目的

1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、分析分别用P、PI和PID调节时的过程图形曲线。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备

AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。

三、实验原理

图2-15为单回路水箱液位控制系统

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。

图2-16 P、PI和PID调节的阶跃响应曲线

四、实验内容和步骤

1、设备的检查和连接

1).关闭排水阀门,检查AE2000A型过程控制对象的储水箱水位是否达到总高度的50%

以上,如不够,灌水。

2).打开以循环泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的

切换阀门。

3).打开上水箱泄水阀,开至适当的开度。

4).检查电源开关是否关闭。

2、系统连线如图2-17所示:

DCS接线端子排

6 5 4

6 5 4

(I/O航空插座接线端子)

图2-17 单容水箱液位PID参数整定控制系统接线图

1).将24芯通讯电缆I/O线,按图2-17的连法,接到对应的DCS接线端子排上。

将24芯通讯电缆H-1端即上水箱液位+(正极)接到DCS接线端子排的5-E端(即SP313电流信号输入板的正极),将24芯通讯电缆H-4端上水箱液位-(负极)接到DCS接线端子排的5-F端(即SP313电流信号输入板的负极)。

将DCS接线端子排的6-G端(即SP322模拟信号输出板的正极),接至24芯通讯电缆H-19端即调节阀的2~10V输入端的+端(即正极),DCS接线端子排的6-H端(即SP322模拟信号输出板的负极),接至24芯通讯电缆H-20端即调节阀的2~10V输入端的-端(即负极),并且在DCS接线端子排的6-G端和6-H端间连接一500Ω电阻。

2).用网线将上位机与DCS连接起来。

3).电源控制板上的电源空气开关、单相泵电源开关打在关的位置。

3、启动DCS

1).将DCS控制柜的电源插头接到220V的单相交流电源。

2).打开DCS控制柜后的两个空气开关,给控制柜散热风扇、交换机和系统电源供电。

3).打开DCS控制柜前的两个电源开关,启动DCS系统。

4、启动实验装置

1).将实验装置电源插头接到220V的单相交流电源。

2).将电源控制板上的“漏电保护开关”打开。

3).打开“电源总开关”, 给实验装置和控制柜供电。

4).打开“单向泵”开关, 给循环泵供电。

5).打开“调节阀”开关, 给电动调节阀供电。

6).开启“24VDC电源”开关,给信号检测仪表供电。

5、比例调节控制

1).启动“AdvanTrol-Pro实时监控”软件,进入实验系统选择相应的实验,如图1所示:

图1 AdvanTrol-Pro“实时监控—流程图”画面

2).点击“液位控制”下方数字(文本框),弹出“显示仪表(回路)”窗口。

点击“4#单回路”按钮,进入“AdvanTrol-Pro实时监控软件—调整画面”如图2所示。

图2 AdvanTrol-Pro实时监控软件—调整画面

注:图2中设定值10cm,比例系数40,积分时间0.66分,微分时间3秒,泄水阀半开。

或设定值10cm,比例系数20,积分时间0.33分,微分时间3秒,泄水阀全开。

3).设定给定值,按表1逐一调整比例度(P)。

4).待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设

定值实现)。记录曲线在经过几次波动稳定下来后,系统有稳态误差。

5).按表1逐一调整比例度(P),重复步骤3,观察过渡过程曲线,并记录余差大小。

6).继续减小比例度重复步骤3,观察过渡过程曲线,直到出现等幅震荡,并记临界比例

度和临界振荡周期值。

7).选择合适的比例系数(K),可以得到较满意的过渡过程曲线。改变设定值,同样可以

得到一条过渡过程曲线。P=(1/K)x100%

8).注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。

当设定值SV=10cm时,

6、比例积分调节器(PI)控制

1).在比例调节实验的基础上,加入积分作用,即在界面上设置积分时间(Ti)不为0,

观察被控制量是否能回到设定值,以验证PI控制下,系统对阶跃扰动无余差存在。

2).选择合适的K和Ti值(P=60%,Ti=0.66分),使系统对阶跃输入扰动的输出响应为一

条较满意的过渡过程曲线。此曲线可通过改变设定值(如设定值变化20%,SV由10cm

变到12cm)来获得。

7、比例积分微分调节(PID)控制

1).在PI调节器控制实验的基础上,再引入适量的微分作用,即把软件界面上设置微分

时间(Td)参数,然后加上与前面实验幅值完全相等的扰动,记录系统被控制量响

应的动态曲线,并与PI控制下的曲线相比较,由此可看到微分时间(Td)对系统性

能的影响。

2).选择合适的K、Ti和Td,使系统的输出响应为一条较满意的过渡过程曲线(阶跃输

入可由给定值突变20%来实现)。

3).在历史曲线中选择一条较满意的过渡过程曲线进行记录。

8、用临界比例度法整定调节器的参数

在实现应用中,PID调节器的参数常用下述实验的方法来确定。用临界比例度法去整定PID调节器的参数是既方便又实用的。它的具体做法是:

1).在只有比例调节作用下(将积分时间放到最大,微分时间放到最小),先把比例系数

K放在较小值上,然后逐步增加调节器的比例系数,并且每当增加一次比例系数,待

被调量回复到平衡状态后,再手动给系统施加一个5%~15%的阶跃扰动,观察被调量

变化的动态过程。若被调量为衰减的振荡曲线,则应继续增加比例系数,直到输出

响应曲线呈现等幅振荡为止。如果响应曲线出现发散振荡,则表示比例系数调节得

过大,应适当减少,使之出现等幅振荡。图2-19为它的实验方块图。

图2-19 具有比例调节器的闭环系统

2).在图2-20系统中,当被调量作等幅荡时,此时的比例系数K就是临界比例系数,用

K m表示之,此时的临界比例度为δk,δk=1/K m,相应的振荡周期就是临界周期T m。

据此,按下表可确定PID调节器的三个参数δ、Ti和Td。

图2-20 具有周期T m的等幅振荡

3).必须指出,表格中给出的参数值是对调节器参数的一个初略设计,因为它是根据大

量实验而得出的结论。若要就得更满意的动态过程(例如:在阶跃作用下,被调参

量作4:1的衰减振荡),则要在表格给出参数的基础上,对δ、Ti(或Td)作适当调整。

五、实验报告要求

1、画出单容水箱液位控制系统的方块图。

2、用接好线路的单回路系统进行投运练习,并叙述无扰动切换的方法。

3、用临界比例度法整定调节器的参数,写出三种调节器的余差和超调量。

4、作出P调节器控制时,不同δ值下的阶跃响应曲线。

5、作出PI调节器控制时,不同δ和Ti值时的阶跃响应曲线。

6、画出PID控制时的阶跃响应曲线,并分析微分D的作用。

7、比较P、PI和PID三种调节器对系统无差度和动态性能的影响。

六、注意事项

1、实验线路接好后,必须经指导老师检查认可后方可接通电源。

七、思考题

1、实验系统在运行前应做好哪些准备工作?

2、为什么要强调无扰动切换?

3、试定性地分析三种调节器的参数K、(K、Ti)和(K、Ti和Td)的变化对控制过程各

产生什么影响?

4、如何实现减小或消除余差?纯比例控制能否消除余差?

实验二、上水箱中水箱液位串级控制实验

一、实验目的

1)、掌握串级控制系统的基本概念和组成。

2)、掌握串级控制系统的投运与参数整定方法。

3)、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、实验设备

AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。

三、实验原理

上水箱液位作为副调节器调节对象,中水箱液位做为主调节器调节对象。控制框图如图12-1所示:

12-1、上水箱、中水箱液位串级控制框图

四、实验内容和步骤

1、设备的连接和检查:

(1)、打开以循环泵、调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门,关闭动力支路上通往其他对象的切换阀门。

(2)、打开上水箱出水阀至半开,中水箱的出水阀至全开。

(3)、检查电源开关是否关闭

2、系统连线图:

DCS接线端子排

6 5 4

H F D B H F D B H F D B

6 5 4

(I/O航空插座接线端子)

图2-2 上水箱、中水箱液位串级控制系统接线图

1).24芯通讯电缆I/O线,按图2-17的连法,接到对应的DCS接线端子排上。

将24芯通讯电缆H-1端即上水箱液位+(正极)接到DCS接线端子排的5-E端(即SP313电流信号输入板的正极),将24芯通讯电缆H-2端即中水箱液位+(正极)接到DCS接线端子排的5-G端(即SP313电流信号输入板的正极),将24芯通讯电缆H-4端上、中水箱液位-(负极)接到DCS接线端子排的5-F端(即SP313电流信号输入板的负极)。

将DCS接线端子排的6-G端(即SP322模拟信号输出板的正极),接至24芯通讯电缆H-19端即调节阀的2~10V输入端的+端(即正极),DCS接线端子排的6-H端(即SP322模拟信号输出板的负极),接至24芯通讯电缆H-20端即调节阀的2~10V输入端的-端(即负极),并且在

DCS接线端子排的6-G端和6-H端间连接一500Ω电阻。

2).用网线将上位机与DCS连接起来。

3).源控制板上的电源空气开关、单相泵电源开关打在关的位置。

3、启动DCS

1).将DCS控制柜的电源插头接到220V的单相交流电源。

2).打开DCS控制柜后的两个空气开关,给控制柜散热风扇、交换机和系统电源供电。

3).打开DCS控制柜前的两个电源开关,启动DCS系统。

4、启动实验装置

1).将实验装置电源插头接到220V的单相交流电源。

2).将电源控制板上的“漏电保护开关”打开。

3).打开“电源总开关”, 给实验装置和控制柜供电。

4).打开“单向泵”开关, 给循环泵供电。

5).打开“调节阀”开关, 给电动调节阀供电。

6).开启“24VDC电源”开关,给信号检测仪表供电。

5、上水箱、中水箱液位串级控制

1).启动“AdvanTrol-Pro实时监控”软件,进入实验系统选择相应的实验,如下图所示:

图3、“AdvanTrol-Pro实时监控”软件界面

2).点击““内/外环控制””下方数字(文本框),弹出“显示仪表(回路)”窗口。

点击“4#串级”按钮,进入“AdvanTrol-Pro实时监控软件—调整画面”如图4/图5

所示。

3).点击工具栏上流程图按钮,返回图3“AdvanTrol-Pro实时监控软件—流程图”

可完成“串级内环”与“串级外环”调整画面之间的切换。

在调整画面中进行赋值操作, 整定副控(内环)参数(P=30%,Ti=0.00分)

图5 AdvanTrol-Pro实时监控软件—调整画面(串级外环)

设定给定值SV=10.00,整定主控(外环)参数(P=60%,Ti=0.66分)。

4).待系统稳定后,在中水箱水位设定值给一个阶跃信号,观察软件的实时曲线变化,并记录此曲线。

5).系统稳定后,在副回路上加干扰信号,观察主回路和副回路上的实时曲线的变化。记

录并保存曲线。

五、实验报告要求。

1)、画出串级控制系统的控制方块图。

2)、分析串级控制和单回路PID控制不同之处。

六、注意事项

1)、实验线路接好后,必须经指导老师检查认可后方可接通电源。

2)、系统连接好以后,在老师的指导下,运行串级控制实验。

七、思考题

1)、串级控制控制相比于单回路控制有什么优点

计算机组成原理实验指导书

“计算机组成原理” 实验指导书 伟丰编写 2014年12月

实验一算术逻辑运算实验 一、实验目的 1、掌握简单运算器的组成以及数据传送通路。 2、验证运算功能发生器(74LS181)的组合功能。 二、实验容 运用算术逻辑运算器进行算术运算和逻辑运算。 三、实验仪器 1、ZY15Comp12BB计算机组成原理教学实验箱一台 2、排线若干 四、实验原理 实验中所用的运算器数据通路如图1-1所示。其中运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。运算器的输出经过一个三态门(74LS245)和数据总线相连。数据显示灯已和数据总线(“DATA BUS”)相连,用来显示数据总线容。

图1-l 运算器数据通路图 图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。其中除T4为脉冲信号,其它均为电平控制信号。实验电路中的控制时序信号均已部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接,其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。按动微动开关PULSE,即可获得实验所需的单脉冲。 五、实验步骤 l、按图1-2连接实验线路,仔细检查无误后,接通电源。(图中箭头表示需要接线的地方, 2、用INPUT UNIT的二进制数据开关向寄存器DR1和DR2置数,数据开关的容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。以向DR1中置入11000001(C1H)和向DR2中置入01000011(43H)为例,具体操作步骤如下:首先使各个控制电平的初始状态为:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,并将CONTROL UNIT的开关SP05打在“NORM”状态,然后按下图所示步骤进行。

过控实验指导

本章开始进行控制系统设计。主要是单回路PID设计,其中PID参数的调整是一个非常麻烦的工作,同学们需要不断总结经验。 实验1 单闭环流量控制实验 一、实验目的 1、掌握单回路控制的特点 2、了解PI控制特点,以及对控制效果的评价。 3、掌握通过调节阀控制流量的原理和操作。 二、实验设备 A3000现场系统,任何一个控制系统。 三、实验原理与介绍 1、单回路控制逻辑 调节阀流量控制实验逻辑关系如图5-1所示。FIC指用于流量的调节器,这个调节器可能是智能仪表,也可以是计算机上的PID调节器,也可以是PLC中的PID调节器。类似的TIC就是用于温度控制的调节器。 图5-1 流量计流量定值控制实验 该控制逻辑是一个经典的单回路流量控制系统。单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是管道流量,即控制的任务是控制流量等于给定值所要求的大小。根据控制框图,这是一个闭环反馈型单回路流量控制,采用PID控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器

参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图5-2中的曲线①、②、③所示。 图5-2 P、PI和PID调节的阶跃响应曲线 本实验暂时对PID控制的调节问题不涉及更多。 2、控制系统接线表 3、实验方案 被调量为调节阀开度,控制目标是水流量,通过测量水流量,控制器与给定值进行比较,然后输出控制值到调节阀。 首先进行比例控制,看控制效果,进行比较。 然后进行积分控制,看控制效果,进行比较。

《控制系统CAD》实验指导书

《控制系统CAD及仿真》实验指导书 自动化学院 自动化系

实验一SIMULINK 基础与应用 一、 实验目的 1、熟悉并掌握Simulink 系统的界面、菜单、工具栏按钮的操作方法; 2、掌握查找Simulink 系统功能模块的分类及其用途,熟悉Simulink 系统功能模块的操作方法; 3、掌握Simulink 常用模块的内部参数设置与修改的操作方法; 4、掌握建立子系统和封装子系统的方法。 二、 实验内容: 1. 单位负反馈系统的开环传递函数为: 1000 ()(0.11)(0.0011) G s s s s = ++ 应用Simulink 仿真系统的阶跃响应曲线。 2.PID 控制器在工程应用中的数学模型为: 1 ()(1)()d p i d T s U s K E s T s T s N =+ + 其中采用了一阶环节来近似纯微分动作,为保证有良好的微分近似效果,一般选10N ≥。试建立PID 控制器的Simulink 模型并建立子系统。 三、 预习要求: 利用所学知识,编写实验程序,并写在预习报告上。

实验二 控制系统分析 一、 实验目的 1、掌握如何使用Matlab 进行系统的时域分析 2、掌握如何使用Matlab 进行系统的频域分析 3、掌握如何使用Matlab 进行系统的根轨迹分析 4、掌握如何使用Matlab 进行系统的稳定性分析 5、掌握如何使用Matlab 进行系统的能观测性、能控性分析 二、 实验内容: 1、时域分析 (1)根据下面传递函数模型:绘制其单位阶跃响应曲线并在图上读标注出峰值,求出系统 的性能指标。 8 106) 65(5)(2 32+++++=s s s s s s G (2)已知两个线性定常连续系统的传递函数分别为1G (s)和2G (s),绘制它们的单位脉冲响 应曲线。 4 5104 2)(2 321+++++=s s s s s s G , 27223)(22+++=s s s s G (3)已知线性定常系统的状态空间模型和初始条件,绘制其零输入响应曲线。 ?? ??????????--=????? ???? ???212107814.07814.05572.0x x x x []?? ????=214493 .69691.1x x y ??? ???=01)0(x 2、频域分析 设线性定常连续系统的传递函数分别为1G (s)、2G (s)和3G (s),将它们的Bode 图绘制在一张图中。 151)(1+= s s G ,4 53.0)(22++=s s s G ,16.0)(3 +=s s G 3、根轨迹分析 根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定 的K 值范围。 ) 2)(1()()(++= s s s K s H s G

计算机网络实验指导书(new)

计算机网络实验指导书 实验一以太网的组建(2学时) 实验名称:以太网的组建 实验目的: 1、了解实验室布局;认识交换机与路由器的结构与连接方法; 2、掌握简单的局域网组网方法; 3、掌握简单的局域网配置方法。 实验步骤: 1、观察实验室计算机网络的组成 步骤1:观察所在机房的计算机网络的组成,并描述计算机网络的组成。 步骤2:画出机房网络拓扑结构。 步骤3:通过Internet搜索集线器或交换机的结构和连接方法。 2、组建简单的局域网 步骤1:将计算机网卡插入PCI插槽,并安装网卡驱动程序,记录网卡驱动程序名称。 步骤2:制作双绞线(直通线) 步骤3:用双绞线将安装网卡的计算机与交换机相连。 步骤4:将交换机通电 步骤5:网络操作系统配置,每个网卡对应一个本地连接,在本地连接属性中进行局域网基本配置。 3、局域网基本配置 步骤1:选择网上邻居属性,如图1所示。选择本地网卡对应的“本地连接”属性,查看并记录本机安装的网络组件,如图2所示。 图1 网络连接属性图2 网络组件 步骤2:命名计算机,例如,命名为:netuser,如图3所示。并配置TCP/IP,例如将IP地址和子网掩码分别设置为:192.168.0.1 255.255.255.0。

图3 计算机命名图4 配置TCP/IP 步骤3:将同网络其他计算机分别命名,计算机名不能重复。 IP地址分别为:192.168.0.2~192.168.0.254,IP地址也不能重复。 4、使用集线器与交换机组建的以太网 在包跟踪软件中,分别使用集线器和交换机组建如图所示的以太网。各计算机的TCP/IP 配置信息根据下表进行配置:(MAC地址请记录在表格空白处) 使用集线器组建简单的以太网 模拟数据包运行结果:(PC0—>PC2)

DCS抗干扰试验作业指导书

DCS抗干扰试验作业指导书

QB 宁夏京能宁东发电有限责任公司企业标准 DCS系统抗干扰试验作业指导书 修改记录版次页码日期修改 人审核 人批准 人 00 Q/BEIH-NDP105.03.RK17-2012 版本/修改:A/0

前言 为实施精细化管理,创建一流发电企业,结合宁夏京能宁东发电有限责任公司生产实际需要,特编制本指导书,用于指导热控专业设备检修维护工作。 本指导书主要针对从事设备检修的有关人员,根据国家标准、行业标准、厂家图纸资料,结合设备实际情况和现场检修经验编写而成,重点阐述了设备的检修工序、工艺和质量标准。 由于部分资料欠缺,加之编者水平有限,本规程中的错误和疏漏之处在所难免,恳请各级领导和员工批评指正,以便于完善提高。 生产系统各级人员应熟悉并遵守本指导书,设备管理部、外委维护单位、参加检修工作的施工单位人员应掌握并执行本指导书。 本规程由宁夏京能宁东发电有限责任公司委托设备管理部起草、提出并归口管理,自发布之日起执行。目录 前言...................................... I 目次..................................... II 附录A(规范性附录)计划表 (1) 1 目的 (2) 2适用范围 (2) 3 作业条件 (2) 4风险分析/危害辨识 (2) 5 组织及开工准备 (3) 6 计划进度 (3) 7 工具、材料和备件明细 (3)

8检修工序、工艺及质量标准 (4) 9检修质量验收记录 (6) 10备品备件检验及使用记录 (7) 11 完工报告单 (8)

PLC控制系统实验指导书(三菱)(精)

电气与可编程控制器实验指导书 实验课是整个教学过程的—个重要环节.实验是培养学生独立工作能力,使用所学理解决实际问题、巩固基本理论并获得实践技能的重要手段。 一 LC控制系统实验的目的和任务实验目的 1.进行实验基本技能的训练。 2.巩固、加深并扩大所学的基本理论知识,培养解决实际问题的能。 3.培养实事求是、严肃认真,细致踏实的科学作风和良好的实验习惯。为将来从事生产和科学实验打下必要的基础。 4.直观察常用电器的结构。了解其规格和用途,学会正确选择电器的方法。 5.掌握继电器、接触器控制线路的基本环节。 6.初步掌握可编程序控制器的使用方法及程序编制与调试方法。 应以严肃认真的精神,实事求是的态度。踏实细致的作风对待实验课,并在实验课中注意培养自己的独立工作能力和创新精神 二实验方法 做一个实验大致可分为三个阶段,即实验前的准备;进行实验;实验后的数据处理、分及写出实验报告。 1.实验前的准备 实验前应认真阅读实验指导书。明确实验目的、要求、内容、步骤,并复习有关理论知识,在实验前要能记住有关线路和实验步骤。 进入实验室后,不要急于联接线路,应先检查实验所用的电器、仪表、设备是否良好,了解各种电器的结构、工作原理、型号规格,熟悉仪器设备的技术性能和使用

方法,并合理选用仪表及其量程。发现实验设备有故障时,应立即请指导教师检查处理,以保证实验顺利进行。 2. 联接实验电路 接线前合理安排电器、仪表的位置,通常以便于操作和观测读数为原则。各电器相互间距离应适当,以联线整齐美观并便于检查为准。主令控制电器应安装在便于操作的位置。联接导线的截面积应按回路电流大小合理选用,其长度要适当。每个联接点联接线不得多余两根。电器接点上垫片为“瓦片式”时,联接导线只需要去掉绝缘层,导体部分直接插入即可,当垫片为圆形时,导体部分需要顺时针方向打圆圈,然后将螺钉拧紧,下允许有松脱或接触不良的情况,以免通电后产生火花或断路现象。联接导线裸露部分不宜过长。以免相邻两相间造成短路,产生不必要的故障。 联接电路完成后,应全面检查,认为无误后,请指导老师检查后,方可通电实验。 在接线中,要掌握一般的控制规律,例如先串联后并联;先主电路后控制电路;先控制接点,后保护接点,最后接控制线圈等。 3.观察与记录 观察实验中各种现象或记录实验数据是整个实验过程中最主要的步骤,必须认真对待。 进行特性实验时,应注意仪表极性及量程。检测数据时,在特性曲线弯曲部分应多选几个点,而在线性部分时则可少取几个点。 进行控制电路实验时。应有目的地操作主令电器,观察电器的动作情况。进一理解电路工作原理。若出现不正常现象时,应立即断开电源,检查分析,排除故障后继续实验。 注意:运用万用表检查线路故障时,一般在断电情况下,采用电阻档检测故障点;在通电情况下,检测故障点时,应用电压档测量(注意电压性质和量程;此外,还要注意

计算机控制技术范立男实验指导书

百度文库 《计算机控制技术》实验指导书

目录 实验一:A/D、D/A转换实验 (2) 实验二:数字PID实验 (4) 实验三:大林算法 (8) 实验四:炉温控制实验 (11)

实验一:A/D 、D/A 转换实验 一、实验目的与要求 1、掌握A/D 、D/A 转换原理 2、熟悉8位A/D 、D/A 转换的方法。 二、实验类型 验证性 三、实验原理及说明 1、通过数据通道接口板完成8位D/A 转换的实验,转换公式如下: V V K K K V U ref ref o 52/)222(8006677+=+++= 例如:数字量=01010001 K 7=0,K 6=1,K 5=0,K 4=1,K 3=0,K 2=0,K 1=0,K 0=1 模拟量0.12/)222(8006677=+++=K K K V U ref o 实验中,根据输入的数字量,D/A 转换为模拟量,其结果经 A/D 采集并显示在计算机上。实验示意图见图1-1。 图1-1 实验示意图 2、通过数据通道接口板完成8位A/D 转换的实验,转换公式如下: 数字量=模拟量/N 2Vref 。其中N 是A/D 转换器的位数,Vref 是基准电压。 例如:N=8 Vref= 模拟量= 则数字量=×28 =51(十进制) 实验中设置的模拟量由D/A 转换取得,此模拟量经A/D 转换为数字量,并显示在计算机上。实验示意图见图1-2。 图1-2 实验示意图 序 号 名 称 主要用途 1 SAC-CCT 计算机控制技术教学实验系统 构成实验所需的硬件电路 2 PC 机 输入参数,观察运行结果 五、实验内容和步骤 (一)

计算机组成原理虚拟实验指导书

计算机组成原理实验指导书 (虚拟实验系统)

实验1 1位全加器 ?实验目的 ?掌握全加器的原理及其设计方法。 ?熟悉组成原理虚拟教学平台的使用。 ?实验设备 与非门(3片)、异或门(2片)、开关若干、指示灯若干 ?实验原理 1位二进制加法器单元有三个输入量:两个二进制数Ai,Bi和低位传来的进位信号Ci,两个输出量:本位和输出Si以及向高位的进位输出C(i+1),这种考虑了全部三个输入量的加法单元称为全加器。来实验要求利用基本门搭建一个全加器,并完成全加器真值表。 ?实验步骤 各门电路芯片引脚显示于组件信息栏。 1. 测从组件信息栏中添加所需组件到实验流程面板中,按照图1.1所示搭建实验。 图1.1 组合逻辑电路实验流程图

2. 打开电源开关,按表1设置开关的值,完成表1-1。 表1-1 实验2 算术逻辑运算实验 ?实验目的 ?了解运算器的组成结构 ?掌握运算器的工作原理 ?掌握简单运算器的组成以及数据传送通路 ?验证运算功能发生器(74LS181)的组合功能 ?实验设备 74LS181(2片),74LS273(2片), 74LS245(2片),开关若干,灯泡若干,单脉冲一片 ?实验原理 实验中所用的运算器数据通路图如图2.1所示,实验中的运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开关用来给出参与运算的数据(A和B),并经过一个三态门(74LS245)和数据显示灯相连,显示结果。 ?74LS181:完成加法运算 ?74LS273:输入端接数据开关,输出端181。在收到上升沿的时钟信号前181和其 输出数据线之间是隔断的。在收到上升沿信号后,其将输出端的数据将传到181, 同时,作为触发器,其也将输入的数据进行保存。因此,通过增加该芯片,可以通 过顺序输入时钟信号,将不同寄存器中的数据通过同一组输出数据线传输到181 芯片的不同引脚之中 ?74LS245:相当于181的输出和数据显示灯泡组件之间的一个开关,在开始实验后

DCS首次送电及复原试验作业指导书要点

DCS首次送电及复原试验作业指导书要点1.工程(系统或设备)概况及工程量 1.1系统或设备概况(作业涉及的系统范围、设备简介)(空) 1.2工程量(范围、具体工作量等)(空表格) 1.3工期:20天 2.编制依据(空) 2.1《火力发电厂分散控制系统在线验收测试规程》DL/T—1998 2.2DCS厂家技术资料 3.作业前的条件和准备 3.1技术准备(空) 作业指导书编制完毕且经讨论批准;技术交底完毕。 3.2作业人员(配置、资格) 3.2.1作业人员配置、资格

3.2.2作业活动中的组织分工和人员职责: 3.2.2.1作业的组织分工(与相关作业和其他专业的分工)(空) 电气专业负责测量系统接地电阻及UPS 送电维护;DCS 厂家负责作业的执行;调试所配合厂家作业。 3.2.2.2作业人员的职责(空表格) 3.3作业机具(包括配置、等级、精度等)(空表格) 3.4材料(空) 4.5安全器具(空表格) 3.6场地道路(空) 3.7工序交接(空) DCS 系统硬件设备安装完毕;设备之间联结电缆联接完毕;电气UPS 验收合格。 3.8其他(空) 4.作业程序的步骤和方法 4.1作业程序的步骤流程(流程图)

4.2作业方法(空) 4.2.1系统上电 4.2.2传送组态 4.2.3性能测试 4.2.4功能测试 5.作业过程中控制点的设置和质量通病及预防 5.1质量分目标:根据本工程的质量总体目标分解该项目质量分目标。 5.2质量事故预想: 5.2.1DCS 系统首次送电模件损坏。 5.3保证措施: 5.3.1严格按照施工图纸、厂家资料和规程规范进行送电调试。 5.4作业过程中控制点的设置

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

DCS实验报告.

华北电力大学 实验报告 实验名称基于DCS实验平台实现的 水箱液位控制系统综合设计课程名称计算机控制技术与系统 专业班级:自动实 1101学生姓名:潘浩 学号:201102030117成绩: 指导教师:刘延泉实验日期:2014/6/29

基于DCS实验平台实现的 水箱液位控制系统综合设计 一.实验目的 通过使用LN2000分散控制系统对水箱水位进行控制,熟悉掌握DCS控制系统基本设计过程。 二.实验设备 PCS过程控制实验装置; LN2000 DCS系统; 上位机(操作员站) 三.系统控制原理 采用DCS控制,将上水箱液位控制在设定高度。将液位信号输出给DCS,根据PID参数进行运算,输出信号给电动调节阀,由DDF电动阀来控制水泵的进水流量,从而达到控制设定液位基本恒定的目的。系统控制框图如下:

四.控制方案改进 可考虑在现有控制方案基础上,将给水增压泵流量信号引入作为导前微分或控制器输出前馈补偿信号。 五.操作员站监控画面组态 本设计要求设计关于上水箱水位的简单流程图画面(包含参数显示)、操作画面,并把有关的动态点同控制算法连接起来。 1.工艺流程画面组态 在LN2000上设计简单形象的流程图,并在图中能够显示需要监视的数据。 要求:界面上显示所有的测点数值(共4个),例如水位、开度、流量等;执行机构运行时为红色,停止时为绿色;阀门手动时为绿色,自动时为红色。

2.操作器画面组态 与SAMA图对应,需要设计的操作器包括增压泵及水箱水位控制DDF阀手操器: A.设备驱动器的组态过程: 添加启动、停止、确认按钮(启动时为红色,停止和确认时为绿色) 添加启停状态开关量显示(已启时为红色,已停时为绿色) B.M/A手操器的组态过程: PV(测量值)、SP(设定值)、OUT(输出值)的动态数据显示,标明单位,以上三个量的棒状图动态显示,设好最大填充值和最大值;手、自动按钮(手动时为1,显示绿色;自动时为0,显示红色),以及SP、OUT的增减按钮;SP(设定值)、OUT(输出值)的直接给值(用数字键盘)

计算机过程控制系统(DCS)课程实验指导书(详)

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。 三、实验原理 图2-15为单回路水箱液位控制系统 单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。 图2-16 P、PI和PID调节的阶跃响应曲线

计算机网络实验指导书--2016

《计算机网络》实验指导书 逯鹏编 电气工程学院自动化系 2016年11月

学生实验须知 一实验要求 1 认真进行实验预习和准备,应教师要求于实验前完成实验准备; 2 按照安排的时间、地点和分组签到和参加实验。因故调换应提交调换申请并经教师批准; 3 在指定实验台(位置)进行实验,不得随意调换,不得动用非实验设备; 4 实验时,主动参与,认真细致,互助合作,注意安全。有问题主动向教师请教。 5 实验结束,整理好实验设备,报告指导教师检查实验结果,经认可后方可离开。 6 损坏设备,应予以赔偿。 二实验报告基本要求 1 在院统一印制的实验报告用纸上书写报告; 2 书写整洁,符号、表格和曲线规范; 3 实验记录数据真实客观,实验结果分析认真正确; 4 按时呈交,实验报告作为教学档案由院留存。 三实验成绩评定 1 每项实验的成绩综合学生出勤、实验过程(参与程度,实验结果,设备安全和人身安全)情况和实验报告质量(内容和规范性)给出。不参加实验或参加实验不提交报告者,该项实验成绩为0分。 2 实验成绩计入课程平时成绩表; 3 不参加实验及不提交报告达三分之一者,将被取消该课程考核资格。

实验一:网络常用命令的使用 一、实验目的: 1. 了解或掌握一些网络常用命令; 2. 掌握Ping、IPconfig、arp等命令的功能及一般用法; 3. 能应用上述命令进行网络连通、网络状态、网络配置等。 二、实验环境: 1. 运行Windows 2000 / 2003 Server / XP操作系统的PC一台; 2. 每台PC具有一块以太网卡,通过双绞线与局域网相连。 三、实验内容与要求: 1. 进入DOS模式: (1)“开始”-> “运行”-> 输入“cmd”; (2)在DOS环境中输入“cd\”,回车; (3)继续输入“md 学号+姓名”,回车; (4)继续输入“cd 学号+姓名”,示例如下图所示。本实验后续内容,需在此目录下完成。 2. 参照附件一:IP地址的查看与配置,完成其中实验要求,并回答下面的问题: (1)使用“ipconfig”命令,查看本机的IP地址是什么?并记录下来。 (2)使用“ipconfig”命令,怎样查看本机的物理地址?截屏记录,并根据截屏回答物理地址具体是多少? 3. 参照附件二:网络连通性的测试,完成其中实验要求,并回答下面的问题: (1)使用ping命令测试网络时,本机通常向被测试计算机发几次请求? (2)执行“ping https://www.doczj.com/doc/4b12823066.html,”,是否可以获取https://www.doczj.com/doc/4b12823066.html,对应的IP 地址?截屏记录其IP地址。 (3)执行“ping https://www.doczj.com/doc/4b12823066.html,”和“ping https://www.doczj.com/doc/4b12823066.html,”,记录两者执行后的参数“平均往返时延”各为多少?并截屏记录。

计算机组成原理实验

计算机组成原理上机实验指导

一、实验准备和实验注意事项 1.本课程实验使用专门的TDN-CM++计算机组成原理教学实验设备,使用前后均应仔细检查主机板,防止导线、元件等物品落入装置内导致线路短路、元件损坏。 2.完成本实验的方法是先找到实验板上相应的丝印字及其对应的引出排针,将排针用电缆线连接起来,连接时要注意电缆线的方向,不能反向连接;如果实验装置中引出排针上已表明两针相连,表明两根引出线内部已经连接起来,此时可以只使用一根线连接。 3.为了弄清计算机各部件的工作原理,前面几个实验的控制信号由开关单元“SWITCH UNIT”模拟输入;只有在模型机实验中才真正由控制器对指令译码产生控制信号。在每个实验开始时需将所有的开关置为初始状态“1”。 4.本实验装置的发光二极管的指示灯亮时表示信号为“0”,灯灭时表示信号为“1”。 5.实验接线图中带有圆圈的连线为实验中要接的线。 6.电源关闭后,不能立即重新开启,关闭与重启之间至少应有30秒间隔。 7.电源线应放置在机内专用线盒中。 8.保证设备的整洁。

二、实验设备的数据通路结构 利用本实验装置构造的模型机的数据通路结构框图如下图。其中各单元内部已经连接好,单元之间可能已经连接好,其它一些单元之间的连线需要根据实验目的用排线连接。 图0-2 模型机数据通路结构框图

实验一运算器实验:算术逻辑运算实验 一.实验目的 1.了解运算器的组成结构; 2.掌握运算器的工作原理; 3.掌握简单运算器的数据传送通路。 4.验证运算功能发生器(74LSl81)的组合功能。 二.实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 三.实验原理 实验中所用的运算器数据通路如图1-l所示。其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-B控制,控制运算器运算的结果能否送往总线,低电平有效。 为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。要将数据总线上的数据锁存到DR1、DR2中,锁存器的控制端LDDR1和LDDR2必须为高电平,同时由T4脉冲到来。 数据开关(“INPUT DEVICE”)用来给出参与运算的数据,经过三态门(74LS245)后送入数据总线,三态门由SW-B控制,低电平有效。数据显示灯(“BUS UNIT”)已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲。 ALU运算所需的电平控制信号S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B均由“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDRl、LDDR2为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

0计算机过程控制系统(DCS)课程实验指导书

启动实时监控软件 正确启动实时监控软件是实现监控操作的前提。由于组态时为各操作小组配置的监控画面及采用的网络策略不同,启动时一定要正确选择。 实时监控软件启动操作步骤如下: 1.在桌面上双击快捷图标(或是点击[开始/程序/AdvanTrol-Pro2.50.04 学习版]中的“实时监控”命令),弹出实时监控软件启动的“组态文件”对话框,如图1所示: 图1实时监控软件启动对话框 ?选择组态文件:通过下拉列表框选择组态索引文件,若要打开新的组态监控,可通过浏览按钮查找新的组态文件。 ?登录权限:选择登录的级别。 ?作为下次运行的组态文件:选中此选项后,下次系统启动时自动运行实时监控软件,并以本次设定的所有选项作为缺省设置,直接启动监控画面。 ?仿真运行:在未与控制站相连时,可选择此选项,以便观察组态效果。 ?浏览按钮:选择组态索引文件。 ?清除按钮:清除“选择组态文件”选项下的文件列表。 ?登录按钮:用户登录。 ?确定按钮:进入监控画面。 ?取消按钮:退出实时监控软件启动对话框。 2.点击“浏览”命令,弹出组态文件查询对话框,如图2所示:

图2 文件查询对话框 3.选择要打开的组态索引文件“简化DCS”(扩展名为.IDX,保存在组态文件夹的Run 子文件夹下),点击“打开”返回到图1所示的界面。 4.点击“登录”按钮,弹出“登录”对话框,如图3所示: 图3 登录对话框 5.选择登录人员的用户名,输入密码,点击“确定”返回到图1所示的界面。 6.在操作小组名称列表中选择操作小组,点击“确定”按钮,弹出“选择网络策略”对话框,如图4所示:

图4选择网络策略对话框 7.网络策略确定了登录操作小组所用数据的来源。选择相应的网络策略(如:本地策略),点击“确定”按钮,进入实时监控画面如图5所示: 或弹出“AdvRTDC”对话框,如下图所示: 点击“是”按钮,进入实时监控画面(“AdvanTrol-Pro实时监控软件—系统介绍”画面)如图5所示:

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

计算机组成原理实验指导书

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: ____ 姓名:____学号:_____ 实验日期:____

一.实验目的 1. 熟悉Dais-CMX16+达爱思教仪的各部分功能和使用方法。 2. 掌握十六位机字与字节运算的数据传输格式,验证运算功能发生器及进位控制的组合功能。了解运算器的工作原理。 3. 完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。 ______________________________________________________________________________二.实验环境 Dais-CMX16+达爱思教仪 ______________________________________________________________________________三.实验原理 实验中所用的运算器数据通路如图1-1所示。ALU运算器由CPLD描述。运算器的输出经过2片74LS245三态门与数据总线相连,2个运算寄存器AX、BX的数据输入端分别由4个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。 图1-1 运算器数据通路 图1-1中,AXW、BXW在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW写入操作。 表1-1 ALU运算器编码表 算术运算逻辑运算 M M13 M12 M11 功能M M13 M12 M11 功能 M S2 S1 S0 M S2 S1 S0 0 0 0 0 A+B+C 1 0 0 0 读B 0 0 0 1 A—B —C 1 0 0 1 非A 0 0 1 0 RLC 1 0 1 0 A-1

计算机系统结构实验指导书-14

北京邮电大学 计算机学院 计算机系统结构实验指导书 王春露邝坚编著 2007.3 – 2013.4

目录z计算机系统结构实验简介 z DLX处理器简介 1. 实验一WINDLX模拟器安装及使用 2. 实验二指令流水线相关性分析 3. 实验三DLX处理器程序设计 4. 实验四代码优化 5. 实验五循环展开(选作)

计算机系统结构实验简介 DLX是一个虚拟处理器。该处理器是加州大学伯克利分校计算机系JohnL .H ennessy教授和斯坦福大学计算机系David A. Patterson教授在其《计算机体系结构:一种定量的方法》一书中提出的。该处理器反映了新一代处理器的特点。通过了解DLX处理器的结构和工作原理,并利用DLX模拟器进行实验,可以帮助学生综合地了解和运用有关处理器指令系统的设计、流水线的设计与实现等方面的知识,有助于计算机系统结构课程内容的理解。 DLX处理器简介 第一节 DLX基本结构 DLX是一种典型的Load/Store型指令集结构。它不仅体现了当今多种机器的指令集结构的共同特点,而且它还体现出未来一些机器的指令集结构的特点。这些机器的指令集结构设计思想都和DLX指令集结构的设计思想十分相似,它们都强调: (1) 具有一套简单的Load/Store指令集; (2) 注重指令流水效率; (3) 简化指令的译码; (4) 高效支持编译器。 DLX是一种易于学习和研究的处理器结构模型。这种类型的机器正在日趋流行,而且其结构非常易于理解。 1.DLX中的寄存器 DLX中有32个通用寄存器(GPRs),分别将其命名为R0,R1…R31。每个通用寄存器长度为32位。 另外,DLX中有32个浮点寄存器(FPRs),分别将其命名为F0,F1…F31。每个浮点寄存器长度为32位。这些浮点寄存器可以用来保存32位的单精度浮点数,或者通过相邻两个浮点寄存器奇偶对FiFi+1(i=0,2,4…,30)来保存双精度浮点数,这种组合而成的64位双精度浮点寄存器在DLX中分别被命名为F0,F2…F28,F30. 2. DLX数据类型 DLX提供了多种长度的整型数据和浮点数据。对整型数据而言,有8位,16位,32位多种长度;对浮点而言,有32位单精度浮点数和64位双精度浮点数。浮点数据表示采用的是IEEE754标准。DLX操作都是对32位整型数据及32或64位浮点数据进行的。 3.DLX的寻址方式和数据传送 DLX提供了寄存器寻址,立即寻址,偏移寻址和寄存器间接寻址四种寻址方式。寄存器寻址字段的大小为5位,用来标识32个通用寄存器或浮点寄存器。

计算机组成原理实验指导书

计算机组成原理实验指导书 山东财经大学

第一节计算机组成原理常用部件实验 一、实验目的 1、掌握计算机组成原理常用部件的结构原理。 2、掌握常用部件的设计过程。 3、熟悉常用部件的功能与应用。 4、掌握常用部件的测试方法。 5、熟悉组成原理实验台和图形输入法软件的使用方法。 二、计算机组成原理中的常用部件 计算机组成原理中的常用部件通常指的是:加法器、数据选择器、译码器、寄存器和计数器等,这些常用部件均为运算器、总线、控制器、存储系统及数据通路的组成部分。熟练掌握常用部件对后续实验将有极大帮助。 三、实验系统置分调模式时,ispLSI1032E的输入、输出资源连接示意图 图1为本实验系统中ispLSI1032E的输入输出资源连接示意图。 ●输入开关:K15-8和K7-0共2组; ●发光管显示:LED15-8、LED7-0共2组; ●时钟脉冲:连续时钟和单脉冲2个; ●复位输入:RET2为ispLSI1032E的复位输入按键。 凡实验系统置分调模式时,以上输入、输出资源可任意编程使用。 图1 ispLSI1032E与输入、输出资源的连接示意图 四、常用部件实验 实验1 数据选择器 1、实验内容及说明 数据选择器是指从多路数据输入中选择一路作为输出,本实验要求设计一个三选一的数据选择器。图2所示为三路数据选择器的框图,图中:A= a3a2a1a0,B=b3b2b1b0,C=c3c2c1c0,E=e3e2e1e0。

2、实验步骤 (1)原理图输入:根据图3电路,采用图形输入法在计算机上完成实验电路的原理图输入。 (2)管脚定义:根据图1中的管脚连接示意图完成原理图中输入、输出管脚的定义。 其中a3a2a1a0定义在k15-k12(33-30),b3b2b1b0定义在k11-k8(29-26),c3c2c1c0定义在k7-k4(60-57),e3e2e1e0定义在LED3-LED0(79-76)。 图3 数据选择器原理图 (3)原理图编译、适配和下载:将实验系统中的模式开关(K23)置于分调模式;在图形输入软件环境中选择ispLSI1032E器件,进行原理图的编译和适配,无误后完成下载。 (4)数据选择器的调试:使用输入开关在数据选择器输入端预置任意数值,然后使AE、BE、CE 分别有效(高电平有效,即开关向上),观察输出E的值是否和相应的输入值相同。 (5)生成元件符号,以备以后使用。 实验2 寄存器 1、实验内容及说明 本实验要求设计一个8位的寄存器,其中d7—d0、q7—q0分别为寄存器的输入和输出,cp为寄存器的时钟脉冲。 图4为8位寄存器的框图。 图5电路为8位寄存器的线路原理图。

相关主题
文本预览
相关文档 最新文档