当前位置:文档之家› 电动汽车制动系统(上)

电动汽车制动系统(上)

电动汽车制动系统(上)
电动汽车制动系统(上)

上篇:汽车制动系统基本构成

无论传统汽车还是电动汽车都离不开制动系统,制动系统的好坏是衡量汽车安全性的一个重要指标。

为了确保汽车安全行驶,理想上,汽车应具备以下四种制动系统:

1. 行车制动系统:主要作用是使行驶中的汽车降低速度至安全停车,俗称脚刹

2. 驻车制动系统:主要作用是当汽车需要长时间停止不动时,用机械的办法保证汽车能在外力干扰下(如坡道上),俗称手刹

3. 辅助制动系统:主要作用是为了更好的保护行车制动系统、优化制动操作过程中车辆的制动能力。比如ABS系统,设计理念就是通过机电一体化装置来达到点刹的效果,防止车轮抱死导致轮胎摩擦爆胎、侧向滑移、甩尾等

4. 紧急制动系统:主要作用是为了在一些紧急突发情况下,驾驶员反应不够迅速时,汽车仍能制动减速到停车,这也可以被称作是智能制动系统。一般由测距传感器、制动装置、控制器+控制算法等构成

实际上,大部分汽车至少具备两套制动系统,即行车制动系统和驻车制动系统。

制动系统主要由制动操纵机构和制动器两个主要部分组成,详细说,制动系统包括以下三个部分:

1. 制动器:产生阻碍车辆运动的机械部件,如常见的盘式制动器

2. 控制装置:产生制动动作的控制部件,如行车制动脚踏板、驻车制动操纵杆,包括机械式和电子式等

3. 传动辅助装置:将制动能量传输到制动器,并且辅助制动器动作的部件,例如各种气压泵,液压缸或者电磁单元等,下图中红色圈出的部分

电动汽车驱动电机匹配设计.

电动汽车驱动电机匹配设计 目录 1 概述 (1) 2 世界电动汽车发展史 (2) 3 电驱动系统的基本要求 (5) 3.1电驱动系统结构 (5) 3.2电机的基本性能要求 (6) 4 电动汽车基本参数参数确定 (7) 4.1电动汽车基本参数要求 (7) 4.2 动力性指标 (7) 5 电机参数设计 (7) 5.1 以最高车速确定电机额定功率 (7) 5.2 根据要求车速的爬坡度计算 (8) 5.3 根据最大爬坡度确定电机的额定功率 (9) 5.4 根据额定功率来确定电机的最大功率 (9) 5.5 电机额定转速和转速的选择 (9) 6 传动系最大传动比的设计 (10) 7 电机的种类与性能分析 (11) 7.1 直流电动机 (11) 7.2交流三相感应电动机 (11)

7.3 永磁无刷直流电动机 (11) 7.4 开关磁阻电动机 (12) 8 电机的选择 (13) 9 电机其他选择与设计 (15) 9.1 电机形状位置设计 (15) 9.2 电机冷却设计 (15) 10 总结与展望 (17) 10.1 总结 (17) 10.2 问题与展望 (17) 致谢 (18) 参考文献 (19) 1.概述 汽车工业在促进世界经济飞速发展和给人们生活提供便利的同时,又展现出了其双刃剑的另一面,它将能源与环境问题推到了日益尴尬的处境。“能源、环境和安全”成为了21世纪世界汽车工业发展的3大主题。其中,能源与环境问题作为全球面临的重大挑战和制约汽车工业可持续发展的症结所在,更成为重中之重。电动汽车使用电能作为动力能源,而电能具有来源广、清洁无污染等特点。电动汽车被公认为21世纪重要的交通工具。 电动汽车是指汽车行驶的动力全部或部分来自电机驱动系统的汽车,它主要以动力电池组为车载能量源,是涉及机械、电子、电力、微机控制等多学科的高科技技术产品。按照汽车行驶动力来源的不同,一般将电动汽车划分为纯电动汽车(Pure Electric Vehicle,PEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)、插电式混合动力电动汽车(Plug-in Hybrid Electric Vehicle,PHEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)4种基本类型。 自1881年法国电气工程师Gustave Trouve制造出首辆电动汽车开始,电动汽车经历了曲折起伏的几个发展阶段,其中的决定因素就是动力电池技术和人们

纯电动汽车制动系统计算方案

纯电动汽车制动系统计算方案 1 2020年4月19日

文档仅供参考 目录 前言............................................................................ 错误!未定义书签。 一、制动法规基本要求 ............................................ 错误!未定义书签。 二、整车基本参数及样车制动系统主要参数 ......... 错误!未定义书签。 2.1整车基本参数................................................ 错误!未定义书签。 2.2样车制动系统主要参数 ................................ 错误!未定义书签。 三、前、后制动器制动力分配 ............................. 错误!未定义书签。 3.1地面对前、后车轮的法向反作用力 ............ 错误!未定义书签。 3.2理想前后制动力分配曲线及 曲线 ............. 错误!未定义书签。 3.2.1理想前后制动力分配 .......................... 错误!未定义书签。 3.2.2实际制动器制动力分配系数............... 错误!未定义书签。 五、利用附着系数与制动强度法规验算 ................. 错误!未定义书签。 六、制动距离的校核 ................................................ 错误!未定义书签。 七、真空助力器主要技术参数................................. 错误!未定义书签。 八、真空助力器失效时整车制动性能 ..................... 错误!未定义书签。 九、制动踏板力的校核 ............................................ 错误!未定义书签。 十、制动主缸行程校核 ............................................ 错误!未定义书签。十一、驻车制动校核 ................................................ 错误!未定义书签。 1、极限倾角 ....................................................... 错误!未定义书签。 2、制动器的操纵力校核.................................... 错误!未定义书签。 I 2020年4月19日

电动汽车动力性能分析与计算

电动汽车与传统内燃机汽车之间的主要差别是采用了不同的动力源,它由蓄电池提供电能,经过驱动系统和电动机,驱动电动汽车行驶。电动汽车的能量供给和消耗,与蓄电池的性能密切相关,直接影响电动汽车的动力性和续驶里程,同时影响电动汽车行驶的成本效益。 电动汽车在行驶中,由蓄电池输出电能给电动机,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力。电动汽车在运行过程中,行驶阻力不断变化,其主电路中传递的功率也在不断变化。对电动汽车行驶时的受力状况以及主电路中电流的变化进行分析,是研究电动汽车行驶性能和经济性能的基础。 1、电动汽车的动力性分析 1.1 电动汽车的驱动力 电动汽车的电动机输出轴输出转矩M,经过减速齿轮传动,传到驱动轴上的转矩Mt,使驱动轮与地面之间产生相互作用,车轮与地面作用一圆周力F0,同时,地面对驱动轮产生反作用力Ft.Ft 与F0大小相等方向相反,Ft方向与驱动轮前进方向一致,是推动汽车前进的外力,将其定义为电动汽车的驱动力。有: 电动汽车机械传动装置是指与电动机输出轴有运动学联系的减速齿轮传动箱或变速器、传动轴及主减速器等机械装置。机械传动链中的功率损失包括:齿轮啮合点处的摩擦损失、轴承中的摩擦

损失、旋转零件与密封装置之间的摩擦损失以及搅动润滑油的损失等。 1.2 电动汽车行驶方程式与功率平衡 电动汽车在上坡加速行驶时,作用于电动汽车的阻力与驱动力始终保持平衡,建立如下的汽车行驶方程式: 以电动汽车行驶速度va乘以(2)式两端,考虑机械损失,再经过单位换算之后可得: 或 由(4)、(5)两式可以看出,电动汽车在行驶时,电动机传递到驱动轮的输出功率与体现在驱动轮上的阻力功率始终保持平衡。将(4)变换可得: 式中PM为电动机的输出功率。 用曲线图表示上述功率关系,将电动机的输出功率、汽车经常遇到的阻力功率与对应车速的关系归置在x-y坐标图上得到电动汽车功率平衡图如图1所示。

纯电动汽车制动系统计算方案

目录 前言 (1) 一、制动法规基本要求 (1) 二、整车基本参数及样车制动系统主要参数 (2) 2.1整车基本参数 (2) 2.2样车制动系统主要参数 (2) 三、前、后制动器制动力分配 (3) 3.1地面对前、后车轮的法向反作用力 (3) 3.2理想前后制动力分配曲线及 曲线 (4) 3.2.1理想前后制动力分配 (4) 3.2.2实际制动器制动力分配系数 (4) 五、利用附着系数与制动强度法规验算 (9) 六、制动距离的校核 (11) 七、真空助力器主要技术参数 (12) 八、真空助力器失效时整车制动性能 (12) 九、制动踏板力的校核 (14) 十、制动主缸行程校核 (16) 十一、驻车制动校核 (17) 1、极限倾角 (17) 2、制动器的操纵力校核 (18)

前言 BM3车型的行车制动系统采用液压真空助力结构。前制动器为通风盘式制动器,后制动器有盘式制动器和鼓式制动器两种,采用吊挂式制动踏板,带真空助力器,制动管路为双回路对角线(X型)布置,安装ABS系统。 驻车制动系统为后盘中鼓式制动器和后鼓式制动器两种,采用手动机械拉线式操纵机构。 一、制动法规基本要求 1、GB21670《乘用车制动系统技术要求及试验方法》 2、GB12676《汽车制动系统结构、性能和试验方法》 3、GB13594《机动车和挂车防抱制动性能和试验方法》 4、GB7258《机动车运行安全技术条件》 400N

二、整车基本参数及样车制动系统主要参数 2.1整车基本参数 2.2样车制动系统主要参数

本车型要求安装ABS 三、 前、后制动器制动力分配 3.1地面对前、后车轮的法向反作用力 在分析前、后轮制动器制动力分配比前,首先了解地面作用于前后车轮的法向反作用力(图1)。 由图1,对后轮接地点取力矩得: 1z g du F L Gb m h dt =+……………………(1) 式中:1z F —地面对前轮的法向反作用力,N ; G —汽车重力,N ; b —汽车质心至后轴中心线的水平距离,m ; m —汽车质量,kg ; g h —汽车质心高度,m ; L —轴距,m ; du dt —汽车减速度2/m s 。 对前轮接地点取力矩,得: 2z du F L Ga m dt =-……………………(2) 式中:2z F —地面对后轮的法向反作用力,N ; a —汽车质心至前轴中心线的距离,m 。 12()()z g z g G F b h L G F a h L ???=+??? ?=-?? (3)

详解电动汽车传动系统原理、传动方式及拓扑构架设计

详解电动汽车传动系统原理、传动方式及拓扑构架设计 随着现代汽车电子技术的发展,新能源汽车、电动汽车的出现无疑给整个行业注入了一股新鲜而且充满挑战性的血液。凭借可以减少很多废弃物、有害气体的排放,对整个社会的生活环境都有很大的改善效果,得到社会及国家的高度的重视,具有很好的发展前景。下面我们就来从电动车的结构引入到电动汽车传动系统,并分析它的工作原理、传动方式、优势等,并简单的列举一些成功的应用案例。电动汽车和普通的汽车不同,它是用车载电源提供行驶的动力,用电机来驱动车轮的运动,而不是用点火装置来提供向前运动的力。我们知道,电动汽车主要是由电力驱动及控制系统、驱动力传动系统、工作装置等各个部分组成。它的工作原理是蓄电池中提供恒定的电流输出,这些恒定的电路通过电力调节器进行一次转换成可以驱动电动机的合适的电流和电压,从而可以驱动整个动力传动系统的正常运行,经过他们之间相互的作用最终给汽车提供可以运行的动力汽车可以正常的行驶。由此可见,电动汽车传动系统的有效性和安全性直接影响着整个系统的运行。电动汽车传动系统原理是直接将电动机的驱动转矩传给汽车的驱动轴。汽车传动轴在采用电动轮驱动时,由于它是靠车载电源提供动力源驱动电动机因而可以实现带负载启动,无需离合器;也正是因为是车载电源可以提供恒定的电流,中间会有电路控制的环境来实现驱动电机的方向和转速的控制,所以不需要倒档和差速器。若采用无级调速,就可以实现自动控制,无需变速器。电动汽车传动系统的传动方式主要有三种:(1)电机+传动轴+后桥(2)电机+变速箱+后桥(3)电机+磁力变矩器+后桥以目前的变速箱技术成熟度而言,除了传统车的变速箱外还没有一款真正成熟的适用于电动汽车的产品,最可靠和适用的传动方式还是电机+传动轴+后桥的直驱方案。当然在具体的设计时,我们需要更具实际情况来设计,包括电机的位置、电源的位置、驱动负载的能力、行驶速度要求、稳定性等这些都需要综合的来考虑。了解车辆效率损失分配即从发动机输出的功率消耗在不同汽车部件上的量及比例。这对改善车辆总体的传动效能非常有用,以达到适当配置资源,改善性能的目的。各种损失,使用安装在车辆适当位置的传感器进行测定。电动汽车传动系统拓扑构架设计汽车动力传动系统采用传统的内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车。在低速小功率运行时可以关闭发动机,采用电动机驱动;而高速行驶时用内燃机驱动;通过发动机和电动机的协同工作模式,将车辆在制动时产生的能量转化为电能,并积蓄起来成为新的驱动力量.从而在不同工况下都能达到高效率。一般上有串联式、并联式、混联式和复合式4种布置形式。(1)串联式—下图中采用的电力电子装置只有电机控制器,电池和辅助动力装置都直接并接在电机控制器的入口,属于串联式,车辆的驱动力只来源于电动机。 (2)并联式—下图中是典型的并联式动力系统结构,通常在电池和电机控制器之间安装了一个DC/DC变换器,电池的端电压通过DC/DC变换器的升压或降压来与系统直流母线的电压等级进行匹配。车辆的驱动力由电动机及发动机同时或单独供给。(3)混联式----采用四轮驱动、前后轮分别与不同的驱动系相连,后轮驱动有发动机、后置电机、发电机、变速器等组成,前轮驱动由前置电机、发电机组成。由于它使用不同的驱动方式,所以整个电动汽车传动系统既分离又相关联,可以更好的控制。下图就是一个简单的混联式的拓扑构架。同时具有串联式、并联式驱动方式。(4)复合式---改结构主要集中于双轴混合动力系统中,前轴和后轴独立驱动,前轮和后轮之间没有任何驱动抽或转电力主动型的设计,这种独立的驱动,让传动系统各个部件在运行过程中相互独立控制,因此可以有更好的传输能力。要让整个系统可以更好的运行,除了结构设计方面需要注意之外,还有一个就是电动汽车传动系统的参数设计也需要合理的匹配,这些参数对传动结构的性能影响也是很大的。这一方面的知识,小编在这边文章就不具体介绍了。总结能源问题和环境污染问题是现在社会日益突出的问题,深受国家的重视。因此寻找新能源汽车可以减少废气排放,让能源可以更好的利用在汽车电子设计行业是当务之急。电动汽车正是因为具有上面

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

纯电动汽车的结构和驱动系统性能比较资料

纯电动汽车的结构分析和驱动系统性能比较 摘要 纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。 绪论 作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。如今,有多种驱动系统可以使用。根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。 整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。 为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。 结构分析 整体式驱动 整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。图1 b和直驱系统十分相似,除了扭矩由变速器调节。因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。

电动汽车自动变速器设计研究

电动汽车自动变速器设计研究 时间:2011-04-30 14:39来源:南昌大学机电工程学院作者:黄菊花等点击: 次 本文首先简述了常见自动变速器的结构原理和优缺点,结合电动汽车电机特性和双离合器自动变速器的优点,提出将两挡双离合器自动变速器应用于电动汽车。 0引言 电动汽车以可再生清洁的电能为动力,克服了传统内燃机汽车的环境污染和资源短缺问题;电动汽车牵引电机相对传统内燃机具有较宽的工作范围,并且电机低速时恒转矩和高速时恒功率的特性更适合车辆运行需求。然而固定速比减速器仅有一个挡位,使得电动汽车电机常处在低效率区域,既浪费宝贵电池能量而使续驶里程减少,又提高了对牵引电机的要求。电动汽车牵引电机既要在恒转矩区提供较高瞬时转矩,又要在恒功率区提供较高运行速度,才能满足车辆的高速、爬坡和加速等整车性能要求。为使电动汽车发挥其优越性,并降低电动汽车对动力电池和牵引电机要求,电动汽车传动系统应多挡化。 手动变速器换挡操纵复杂以及换挡过程中需要切断动力源影响电动汽车的驾驶性能和舒适性。自动变速是车辆变速发展趋势,自动变速器相对手动变速器具有较高整车的安全性、舒适性等性能。基于平行轴式手动变速器的双离合器自动变速器,不仅继承了手动变速器传动效率高、结构紧凑、价格便宜等许多优点;同时还解决了换挡动力中断问题,也保留了液力自动变速器、无级自动变速器等换档品质好的优点。因此电动汽车采用两挡双离合器自动变速器具有更好的整车性能。 1电动汽车自动变速器结构原理 1.1系统结构原理图 图1 所示为两挡双离合器自动变速器系统结构原理图,它以变速器电控单元为中心,接收制动踏板、选择开关、加速踏板等传感器获知的信号,同时可以利用CAN 总线技术接收来自整车控制器的信号,如车速、电机转速等信号。变速器电控单元采集当前路况信息,通过一定的换挡规律发出信号指令,控制离合器执行机构操纵离合器的分离与结合等动作。

新能源汽车电气技术教案47-48-新能源汽车制动系统认知

教学设计

教学过程 教学环节教师讲授、指导(主导)内容 学生学习、 操作(主体)活动 时间 分配 一、二、三、组织教学: 组织学生起立,师生问好。 导课部分: 作为一名新能源汽车售后服务人员,你知道纯电动汽车、混 合动力汽车制动系统于传涛的汽车制动系统有什么区别吗? 新授部分: 1.混动汽车制动系统的工作原理 电源开关打开后,蓄电池想控制器供电,控制器开始工作, 此时Emb信号灯显示系统应正常工作。驾驶员进行制动操作 时,首先由电子制动踏板行程传感器弹指驾驶员的制动意图, 把这一信息传给ECU。ECU汇集轮转速传感器、制动踏板行 程传感器等各路信号。根据车辆行驶状态计算出每个车轮的 最大值动力,在发出指令给执行器,让其执行哥车轮的制动, 电动机械制动器能快速而精确的提供车轮所需制动力,从而 保证最佳的整车减速和车辆的制动效果 2.制动能量回收系统 制动能量回收是电动汽车与混合动力汽车重要技术之一, 也 是它们的重要特点。在普通内燃机汽车上,当车辆减速、制动 时,车辆的运动能量通过制动系统而转变为热能,并向大气中 释放。而在电动汽车与混.合动力汽车上,这种被浪费掉的运动 能量已可通过制动能量回收。 3.制动能量回收系统的原理 一般情况下,在车辆非紧急制动的普通制动场合,约1/5的能量 可以通过制动回收。制动能量回收按照混合动力的工作方式 不同而有所不同。在发动机气门不停止工作场合,减速时能够 回收的能量约是车辆运动能的1/3。通过智能气门正时与升程 控制系统使气门停止工作,发动机本身的机械摩擦(含泵气损 失)能够减少约70%。回收能量增加到车辆运动能量的2/3。 班长报告出勤人数、 事由 学生进行回答 多媒体课件、动画演 示,制冷系统各部件 的作用。 2分 5分 15分 15分 15分 15分

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 j i w f t F F F F F +++= (1)

纯电动汽车传动系统知识分享

第一章绪论 1.1 课题的目的意义: 1.1.1 纯电动汽车的背景 当前,我国电动汽车发展已经进入关键时期,既面临重大的发展机遇,也面临着严峻的挑战。我国电动汽车发展中还存在很多需要解决的问题,如核心技术还不具备竞争力,企业投入不足,政府的统筹协调能力还没有充分发挥等。总体上看来,我国电动汽车产业,起步不晚,发展不慢,但是由于传统汽车及相关产业基础相对薄弱、投入不足,差距仍然存在,中高端技术竞争压力越来越大,因此,必须加大攻坚力度,推动我国汽车产业向创新驱动转型,提高核心技术竞争力,确保我国汽车行业的可持续发展。 纯电动汽车使用电动机作为传动系统的动力源,缓解了能源紧缺的压力,实现了人们长期以来对汽车零尾气排放的期盼,传动系统作为汽车的核心组成部分,其技术创新是纯电动汽车发展的必经之路。 1.1.2 纯电动汽车的意义 近年来,关于纯电动汽车的研究主要集中在能量存储系统、电驱动系统和控制策略的开发研究三方面。 能量存储系统相当于纯电动汽车的发动机,是纯电动汽车电动机所需电能的提供者。目前,铅酸蓄电池是使用最为广泛的,但其充电速度较慢,使用寿命短,节能环保差。随着电动汽车技术的发展,其他电池正在渐渐取代着铅酸蓄电池。目前发展的新电源有纳硫电池、锂电池、镍镉电池、飞轮电池、燃料电池等,尽管这些新电源投入应用,但是短时间内还是无法解决纯电动汽车电源充电缓慢,电量存储低续航里程短的问题。 纯电动汽车整车控制策略的开发研究一直在紧锣密鼓的进行着,整车控制系统是纯电动汽车实现整车控制和管理的关键,是实现和提高整车控制功能和性能水平的一个重要技术保证。其核心技术主要体现在整车控制软件的架构设计、转矩控制策略以及对整车和各系统得能量管理上。尽管控制策略的开发研究一直没有间断,但是,系统开发较为复杂,进度较慢。

电动汽车驱动控制系统设计.

电动汽车驱动控制系统设计 摘要 驱动系统是电动汽车的心脏,也是电动汽车研制的关键技术之一,它直接决定电动汽车的性能,本文根据异步电动机矢量控制理论,结合电动汽车的实际要求,研究设计基于无速度传感器矢量控制的电动汽车驱动系统。矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,已达到直流电动机的控制效果。最后,在Matlab环境中建立了仿真系统,验证了无速度传感器矢量控制系统原理应用于电动汽车驱动系统的可行性。 关键词:电动汽车;驱动系统;异步电动机;无速度传感器矢量控制

ABSTRACT Driving system is the heart of EV and one of the key parts of the vehicle that determines the performance of the EV directly. According to the control technique、the method of induction motor drive system and based on the factual requirement of EV, the speed sensorless vector control was designed in this article. By transforming coordinate, the stator current is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively, So magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. Finally, intimation system is established in the environment of Matlab to validate these control arithmetic. The system proved its enormous practical value of application. Key words: EV; Drive system; Induction motor; speed sensorless vector control

电动汽车助力器

电动汽车真空助力制动系统的匹配计算与研究 以某微型汽车为例,建立了其真空助力制动系统的数学模型,对燃油汽车改装为电动汽车后的制动系统真空助力匹配进行了计算分析,从而为电动汽车真空助力系统中真空罐、真空助力器、真空泵的选型和匹配提供了理论依据。通过试验验证可知,本文的真空罐及真空泵阀值选择合理,电动真空泵工作时间为4~6 s。 绝大多数微型汽车和轿车采用真空助力伺服制 动系统。传统燃油汽车由发动机提供真空助力源,而纯电动汽车或燃料电池汽车的制动系统由于没有真空动力源而丧失真空助力功能,仅由人力所产生的制动力无法满足行车制动需要,因此需要对制动系统真空助力装置进行改装,而改装的核心问题是产生足够压力的真空源。考虑到行车制动可靠性及能源的节约,有必要对真空助力制动性能进行合理分析计算,以此为电动真空泵、真空储能机构的选择或设计提供理论依据。本文以改装的纯电动汽车为例,对其真空助力制动系统进行计算分析,在保证制动性能的前提下,设计出合理的所需真空度及合适的真空储能罐,为电动真空泵的选型提供理论依据。 原车采用带有真空助力装置的双管路液压制动系统和前盘后鼓式制动器。真空助力器安装于制动踏板和制动主缸之间,由踏板通过推杆直接操纵,真空助力器的真空伺服气室由带有橡胶的活塞分为常压室(与真空源连接)与变压室,一般常压室的真空度为66 . 7 kPa 。真空助力器所能够提供的助力大小取决于其常压室与变压室气压差值。制动系统真空助力装置的真空源来自于发动机进气歧管。拆除发动机总成后,制动系统由于没有了真空源而丧失真空助力功能,为此,需要重新匹配一个能够提供足够压力的真空源。若采用真空泵与电源直接相连的方案,一旦汽车接通电源,真空泵就开始持续工作,这样的工作情况比较苛刻,根据整车道路试验情况,汽车在城市工况下行驶6000 km后,电动真空泵就出现损坏。虽然现在真空泵寿命最小可以达到600h,但还是不能达到可以接受的目标行驶里程,故需要增加真空储能机构来延长行驶里程。真空泵采用间歇性工作模式,可以提高制动系统的工作寿命和可靠性。 图1为改装后的电动汽车真空助力制动系统。电动汽车起动时,控制程序会检测真空储能罐中的真空度。在行驶状态下,监控系统会监控真空储能罐中的真空度,低于设定的下限值时立即启动真空泵工作,达到设定的上限值时真空泵停止工作。 当真空助力器初始真空度小于34.7 kPa时,制动器不能提供足够的制动力 真空储能罐体积为2L 在一次完全制动工况下,真空储能罐中真空度降低值为48.4 kPa,即真空泵在不工作状态下,储存的真空度要够一次完全制动,就不得小于48.4 kPa。 真空度压力建立关系曲线如图4所示,从中可以看出,到60 kPa以后,斜率变小,制动真空泵压力建立时间增大。因此,真空度的选择要兼顾真空泵寿命和助力效果。电动机不工作时,踩下制动踏板时的真空度为48.4 kPa。结合真空泵真空度压力建立特性,电动真空泵停

新能源汽车电制动简述

新能源汽车电制动简述 概述:全文共5部分。第一部分,纯电动汽车制动系统概述,主要介绍电动真空助力系统的主要组成元件和工作原理;第二部分,混合动力汽车制动系统,主要介绍混合动力汽车电子制动控制系统的主要组成元件和工作原理;第三部分,制动能量回收系统,主要介绍制动能量回收系统的原理和能量回收模式;第四部分,拓展知识,主要介绍EMB电子机械制动系统、brake-by-wire的发展简介;第五部分,案例,主要介绍本田第四代IMA混合动力系统的制动能量回收系统控制;第六部,传统汽车刹车系统,主要介绍鼓式和盘式刹车。 一、纯电动汽车制动系统 纯电动汽车采用的液压制动系统与传统汽车基本结构区别不大,但是在液压制动系统的真空辅助助力系统和制动主缸两个部件上存在较大的差异。 绝大多数的汽车采用真空助力伺服制动系统,人力和助力并用。真空助力器利用前后腔的压差提供助力。传统汽车真空助力装置的真空源来自于发动机进气歧管,真空度负压一般可达到0.05~0.07MPa。对于纯电动汽车由于没有发动机总成即没有了传统的真空源,仅由人力所产生的制动力无法满足行车制动的需要,通常需要单独设计一个电动真空泵来为真空助力器提供真空源。这个助力系统就是电动真空助力系统,即EVP系统(Electric Vacuum Pump,电动真空助力)。

如图1所示,电动真空助力系统由真空泵、真空罐、真空泵控制器(后期集成到VCU整车控制器里)以及与传统汽车相同的真空助力器、12V电源组成。 电动真空助力系统的工作过程为:当驾驶员起动汽车时,车辆电源接通,控制器开始进行系统自检,如果真空罐内的真空度小于设定值,真空罐内的真空压力传感器输出相应电压信号至控制器,此时控制器控制电动真空泵开始工作,当真空度达到设定值后,真空压力传感器输出相应电压信号至控制器,此时控制器控制真空泵停止工作。当真空罐内的真空度因制动消耗,真空度小于设定值时,电动真空泵再次开始工作,如此循环。 (一)电动真空助力系统的主要组成元件 以下介绍电动真空助力系统的主要组成元件。 (1)真空泵 真空泵是指利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真空的器件或设备。通俗来讲,真空泵

纯电动汽车驱动系统的参数设计及匹配

新能源汽车 6 结语 纯电动乘用车的总布置设计工作是个系统工 程,需要协调车身、动力系统、电池、内外饰、造型等相关部门。如何在确保整车性能的基础上,提高空间利用率,避免各部件的干涉,加快项目进行,需要进行科学的论证,同时,总布置工程师也需要对整车性能、驱动电机、动力电池、高压安全等相关知识相当熟悉,才能合理进行布置,推动项目进展。 参考文献 1 Mehrdad Ehsani,Yi m in Gao,A li Emadi .Modern electric \hy 2bird electric and fuel cell vehicles .CRC Press,2009. 2 王刚,周荣.电动汽车充电技术研究[J ].农业装备与车辆 工程,2008,(6). 3 徐性怡.电动汽车用电机控制器的设计方法与实践[J ],2009,(6). 4 姬芬竹,高峰.电动汽车传动系参数设计及动力性仿真[J ].北京航空航天大学学报,2006. 5 赵云.电动汽车结构布置及设计[J ].汽车电器,2006. 收稿日期:2010-05-05 纯电动汽车驱动系统的参数设计及匹配 张 珍 陈丁跃 刘 栋 (长安大学,西安 710064) 【摘要】 文章系统地介绍了纯电动汽车驱动系统主要部件的选型及根据电动汽车性能要求进行主要参 数的设计及匹配,并通过对具体车型的计算,进一步探讨了主要参数的确定。 【Ab s trac t 】 Choice of the main components of the power train syste m of electric vehicle and de 2 sign and matching of the main para meters according t o require ment of main perfor mance are intr o 2duced .Confir mati on of the main para meters is further discussed thr ough the calculati on t o the s pecific vehicle . 【主题词】 纯电动汽车 驱动系统 参数设计 0 引言 纯电动汽车(EV )是当前研制取代内燃机汽车的首选车型,前景广阔。目前,我国的EV 大都建立在改装车基础上,其设计是一项机电一体化 的综合工程[1] 。改装后的EV 高性能的获得并不是简单地将内燃机汽车的发动机和燃油箱换成电动机和蓄电池便可以实现的,它必须对储能装置、动力装置及变速器、减速器等参数进行合理的匹 配。鉴于目前国内对EV 研究的现状,本文研究是 建立于传统汽车驱动系统基础上。 1 电动汽车的驱动系统的基本结构 1.1 电力驱动的结构形式 采用不同的电力驱动系统可构成不同结构形式E V 。本文研究的E V 的电力驱动结构形式如图 1[2] 所示。1.2 储能装置的结构形式 ? 7? 上海汽车 2010108

研究燃料电池电动汽车动力传动系统关键技术

研究燃料电池电动汽车动力传动系统关键技术 ,蓄电池为辅助能量来源。汽车需要的功率主要由燃料电池提供。可以说, 车用燃料电池的选取,对于燃料电池汽车的性能至关重要。 本文介绍了燃料电池汽车动力传统技术发展概况,围绕燃料电池电动汽车动力传动拓扑架构、多源系统管理和动力系统配置与仿真优化技术等关键技术开展 了详细论述。 2动力传动系统拓扑构架设计 燃料电池汽车的运行并不是一个稳态情况,频繁的启动、加速和爬坡使得汽车动态工况非常复杂。燃料电池系统的动态响应比较慢,在启动、急加速或爬陡坡时燃料电池的输出特性无法满足车辆的行驶要求。在实际燃料电池汽车上,常常需要使用燃料电池混合电动汽车设计方法,即引入辅助能源装置(蓄电池、超级 电容器或蓄电池十超级电容器)通过电力电子装置与燃料电池并网,用来提供峰 值功率以补充车辆在加速或爬坡时燃料电池输出功率能力的不足。另一方面,在汽车怠速、低速或减速等工况下,燃料电池的功率大于驱动功率时,存储富余的 能量,或在回馈制动时,吸收存储制动能量,从而提高整个动力系统的能量效率。2.1直接燃料电池混合动力系统结构 直接燃料电池混合动力系统式结构中采用的电力电子装置只有电机控制器,燃料电池和辅助动力装置都直接并接在电机控制器的入口。如丰田的FCHV-4[16], FIAT-Elettra[17]和日产X-TrailFCV[12]等都采用这种类似的结构设计。 辅助动力装置扩充了动力系统总的能量容量,增加了车辆一次加氢后的续驶里程;扩大了系统的功率范围,减轻了燃料电池承担的功率负荷。许多插电混合的 燃料电池汽车也经常采用这样的构架,美国Ford 公司Edge Plug-in 燃料电池轿车和GM 公司Volt Plug-in 燃料电池车[18]。这种插电式混合动力汽车将有效的减

纯电动汽车驱动系统的参数设计及匹配

纯电动汽车驱动系统的参数设计及匹配 张珍 (长安大学) 摘要:本文系统的介绍了纯电动汽车驱动系统主要部件的选型及根据电动汽车主要性能的要求进行主要参数的设计及匹配,并通过对具体的车型的计算,进一步探讨了主要参数的确定。 关键词:纯电动汽车(EV) 驱动系统参数设计 1、前言 纯电动汽车(EV)即蓄电池电动汽车是“零污染”的绿色环保交通工具,它没有噪声和振动、操作性能好等远远优于内燃机汽车。EV是当前开发和研制取代内燃机汽车的首选车型,其前景广阔。 目前,我国的EV大都建立在改装车的基础上,其设计是一项机电一体化的综合工程。改装后的EV高性能的获得并不是简单地将内燃机汽车的发动机和然油箱换成电动机和蓄电池便可以实现的,它必须对储能装置、动力装置及变速器、减速器等参数进行合理的匹配。鉴于目前国内对EV研究的现状,故本论文的研究建立在传统汽车驱动系统的基础上。 2、电动汽车的驱动系统的基本结构 本文研究的EV的电力驱动结构形式如图1所示 图1 电驱动的形式 C——离合器;D——差速器;GB——变速器;M——电动机

3、主要部件的选型及主要参数的确定 EV 驱动系统的关键部件为:电动机、蓄电池、变速器等,这些部件类型的选择及参数设置直接决定着EV 的动力性和续驶里程等主要性能。 3.1电动机的选型及其参数的设计 3.1.1电动机的选型 电动机的选择要满足EV 对电动机性能的要求:①高电压、高转速、质量轻;②电动机具有较大的起动转矩和较宽的调速性能;③高效率、低能耗、实现制动能量的收回;④安全性必须符合相关部门的标准和规定。另外,电动机还要求可靠性好、寿命长;结构简单,适合大批生产,使用维修方便,价格低等。 3.1.2电动机额定功率的选择 本课题采用某电动汽车的部分技术参数如表1 表1 电动汽车的部分技术参数 电动机额定功率可根据EV 的最高行驶车速、爬坡和加速性能来确定[1]。建立电动机额定功率的数学模型: t D a m V A C V f g m P η÷??? ???????+???≥7614036003max max 1 (1) t a D a a a a m V A C V g m V f g m P ηαα÷??????? ???+???+????≥761403600sin 3600cos 32 (2) t a a D a m V dt du m V A C V f g m P ηδ÷?????????+??+???≥360076140360033 (3) 式中: max V =100km/h ;a m =1600(kg);D C =0.2;a V =30km/h ;ηt =0.9;

制动工况对对电动汽车制动回收能量影响的分析3

制动工况对电动汽车制动能量回收影响分析 前言 随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。 目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。 制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。 本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。 1制动能量回收影响因素分析 再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类: (1)影响制动总能量的因素,制动总能量计算公式为()222 1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -?),得出影响因素主要是制动初速度、电动汽车整备质量等。 (2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。 (3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。 以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。 2仿真模型与验证 2.1理想再生制动力分配策略 本文采用文献[8]中制定的理想制动力分配策略。理想再生制动力分配策略可以保证前后轴制动力得到合理分配,制动稳定性好,该策略包含制动力在前后轴的分配及在电机制动力与摩擦制动力之间的分配两部分。分配电机制动力和摩擦制动力时要优先利用电机制动力,不足部分再由摩擦制动力补充。 2.2建立仿真模型 使用MATLAB/Simulink 建立整车、电机、电池和控制策略等模型,整车参数如表1所示。

相关主题
文本预览
相关文档 最新文档