当前位置:文档之家› 信号处理基础

信号处理基础

信号处理基础
信号处理基础

补充材料:第二章信号与系统

第一部分:基本概念

1.1信号的概念

预习思考题:

1. 消息、信息和信号的区别与联系?

2. 信号有哪些描述方法?

本节知识点:

1. 信号的概念

2. 信号的描述方法

1.1.1 信号、消息和信号

1.1.2 描述信号的方法

1.1.1消息,信息和信号

主要是讲述有关信号处理的一些基本原理和方法。目的是希望大家能在学完后,对如何处理信号,特别是如何用计算机这种数字处理设备(从某种意义上说,计算机是一种数字处理设备)来进行信号处理,有一些基本的认识。

那么,什么是信号呢?

人类对自然界的认识和改造过程都离不开对自然界中的信息的获取。所谓信息,是指存在于客观世界的一种事物形象,是关于事物运动规律的知识。一般泛指消息、情报、指令、数据、信号等有关周围环境的知识。

凡是物质的形态、特性在时间或空间上的变化,以及人类社会的各种活动都会产生信息。千万年来啊,人类用自己的感觉器官---眼睛啊、鼻子啊、手啊等等吧---从客观世界获取各种信息,如语言、文字、图象、颜色、声音、自然景物信息等等,可以说,我们是生活在信息的海洋之中,因此获取信息的活动是人类最基本的活动之一。而且从某种意义上说,信息交换也是人类得以成为人类的重要原因。

那么,什么是消息呢?

所谓消息,是指用来表达信息的某种客观对象,如电话中的声音,电视中的图象,雷达的目标距离、高度、方位等参量都是消息。在我们得到一个消息之后,可能得到一定的信息,而我们所得到的信息与我们在得到消息前以及得到消息后对某一事件的无知程度无关。因此,我们可把信息与消息在含义上的区别概括为:信息是消息中不确定性的消除(也就是该消息给予受信者的新知识),消息就是知道了的信息。

大家还可以自己举例,说明哪些是消息。

下面,进一步的,什么是信号呢?

所谓信号,是带有信息的某种物理量,如电信号,光信号,声音信号等。因此,信号是指消息的表现形式,而消息则是信号的具体内容。消息的传送一般都不是直接的,而必须借助于一定形式的信号才能便于传输和进行各种处理。由于信号是带有信息的某种物理量,这些物理量的变化包含着信息。

可见,信号是与物理量相联系着的。这就为我们对它们进行研究定下了物理背景。换言之,我们要很好地理解某些信号,可以思考一下它对应的物理现象,蕴涵的物理规律。

1.1.2描述信号的方法

前面我们知道了信号的重要作用,也知道了它是与物理量有一定关系的,那么,怎么表示信号,或者说如何来描述信号呢?

信号作为带有信息的某种物理量,可以随时间变化或随空间变化。因此,在数学上,信号可以用一个或几个独立变量的函数来表达,也可以用函数的曲线图形---即信号的波形来表示。今后,在本门课程中,将把信号与函数视作同一概念,不加区别。

如在交流电中,电信号的相位随时间的变化情况。既可以用函数来表达,也可以画出波形来表示。

日常生活中所用的交流电的相位随时间是不断变化的,我们可以在相位与时间之间建立函数关系,一般可以用sin(t)来表示,即交流电相位这种信号可以用三角函数sin(t)来描述。如果我们将相位与时间之间关系用图形表示出来,如下图这样,则相对比较直观,便于从中发现一些有关信号的规律。

其实,将信号与函数等同后,数学描述方式与波形描述方式就是自然而然的事了。另外,将事物运动的规律抽象化,用数学符号来表达,是科学研究中常用的方法,也就是为什么我们以前老是用"学好数理化,走遍天下都不怕"来说明数学这一学科的用处了。同样的,在信号处理这门课里,将描述、分析和处理信号的方法用数学形式来说明,对于方便研究是很有好处的。

除了上述两种直观的信号描述方法以外,还可以用信号的频谱来描述信号。关于频谱的概念,我们将在以后的章节中详细讲解。要说明的是,我们通常视信号频谱为信号的一种间接描述,而将其数学描述和波形描述视为是对信号的直接描述。

其实,人们一般更倾向于把频谱作为一种对信号进行分析的方法,或者说手段,而不太强调它也是信号的描述方法。

这里,描述的含义要灵活地来理解。因为频谱与信号有一一对应关系,所以从频谱就可以知道对应信号的特点---而信号特点正是我们在描述信号时所需要表现出来的---因此,说频谱是对信号的描述也是成立的。

1.2 信号的分类

预习思考题:

1.信号分类的各种依据分别是什么?

2.计算机能处理的信号属于什么类型?

3.如何求信号的周期?

4.因果信号、非因果信号和反因果信号的区别?

本节知识点:

1.确定信号与随机信号

2.实值信号与复值信号

3.时间连续信号与时间离散信号

4.模拟信号与数字信号

5.周期信号与非周期信号

6.能量信号与功率信号

7.奇异信号与普通信号

1.2.1 确定信号与随机信号

1.2.2 实值信号与复值信号

1.2.3 时间连续信号与时间离散信号

为了研究信号处理的方法,我们先要搞清楚信号有哪些种类,每类信号各有什么特点,各适合于如何处理。通过这些分类,还可以让同学们更清楚地认识到在本门课程中所学知识是用于处理哪些信号的,也明白了对实际信号应用何种处理方法。

1.2.1 确定信号与随机信号

我们先来看看信号的取值情况。根据它,可以对信号进行分类。

根据信号的取值是否确定,可以将信号分为确定信号和随机信号。

如果信号可以用确定的数学表达式来表示,或用确定的信号波形来描述,则称此类信号为确定信号。在工程上,有许多物理过程产生的信号都是确定信号。例如:卫星在轨道上运行,电容器通过电阻放电时电路中的电流变化等。如果信号只能用概率统计方法来描述,其取值具有不可预知的不确定性,则称此类信号为随机信号。随机信号也是工程中的一类应用广泛的信号。例如:在通信传输中引入的各种噪声,海面上海浪的起伏等。

随机信号是工程中的一类很重要的信号,从某种意义上讲,甚至可以说我们接触的信号都是随机的---因为差异是绝对存在的嘛。但通常有些差异我们是不太强调或者说注意的,所以就把信号看成是确定性的了。但有的差异变化实在太大,再看成是不变的,认为是确定的,就有点儿自欺欺人了。:)对这类信号,我们只好用统计的方法来研究它了。这种研究信号或者处理信号的方法与原理,我们在其它课程里再学习,本门课不对此进行讲授。

1.2.2 实值信号与复值信号

前面,我们探讨了信号取值的随机性问题,现在来看看信号所取值的类别---即是实数,还是复数。

说明一下,从严格意义上讲,实数也是复数,但在这里,我们把复数认为是仅指明那些"非实数"。这样说起来比较方便。希望同学们注意。

根据信号的取值是否是实数,可以将信号分为实值信号和复值信号。

如果信号的取值为实数,则称此类信号为实值信号,简称实信号。物理可实现的信号都是实信号,例如:无线电信号,电视信号,雷达信号。

如果信号的取值为复数,则称此类信号为复值信号,简称复信号。

大家可能要问了:取值为复数,这种信号是个什么东西啊?我说:复信号不是个东西。:)?因为现实生活中的信号都是实的!复信号只是一种"梦想",是"纸上谈兵"的产物。但是,虽然在实际中不能产生复信号,采用复信号来代表某些物理量,往往更便于理论分析。这一点,通过学习傅里叶频谱分析,将使我们的认识更深刻。后面我们在讲"复指数"信号的时候,大家也可以发现这种信号的引入,的确使得研究问题更方便了。

1.2.3 时间连续信号与时间离散信号

下面,我们来考察一下信号取值的值域和定义域。根据这些域的不同,来将信号进行分类。

根据信号的取值在时间上是否是连续的(不考虑个别不连续点),可以将信号分为时间连续信号和时间离散信号。

希望同学们注意这里的"连续"概念。

除个别不连续点外,如果信号在所讨论的时间段内的任意时间点都有确定的函数值,则称此类信号为时间连续信号,简称连续信号。连续信号的函数值可以是连续的,也可以是离散的。

若信号的时间与取值都是连续的,则称此类信号为模拟信号。例如信号f(t)=sin(t)的时间和取值都是连续的,即为模拟信号。

如果信号的时间连续,但是信号的取值离散,则称此类信号为量化信号。

由于"连续"是相对于时间而言的,故连续信号取值可以是连续的,也可以是离散的。为了进一步区分这两种情况,而引入了模拟信号和量化信号的概念。

若信号只在离散时间瞬间才有定义,则称此类信号为时间离散信号,简称离散信号。离散信号也常称为序列。此处"离散"是指在某些不连续的时间瞬间给出函数值,在其它时间没有定义。离散信号的函数值可以是连续的,也可以是离散的。

可见,离散信号的定义域是离散的点组成的,有些地方没有定义。什么叫"没有定义"啊?就是不知道信号在那些地方该取什么值。:)

若离散信号的取值是连续的,则也可称此类信号为抽样信号或取样信号。

注意:这里的"连续"是指信号取值时没有什么限制,不是从指定的一些离散值中选择,而是任意的。所以这种连续与前面讲的"连续信号定义域是连续的"是有点儿差别的。希望同学们能注意区分。

若离散信号的取值是离散的,则可称此类信号为数字信号。

同理,离散信号的取值可以是连续的,也可以是离散的。为了进一步区分这两种情况,而引入了抽样信号和数字信号的概念。

下面是一些典型的信号的波形。

时间连续信号模拟信号

抽样信号数字信号

所以,有两种连续信号:一种是取值也是连续的,一种是取值是离散的;同理,离散信号也有两种:一种是取值连续----这也叫抽样信号,一种是取值离散----这也叫数字信号。

1.2.4 周期信号与非周期信号

若信号按照一定的时间间隔周而复始,并且无始无终,则称此类信号为周期信号。他们的表达式可以写作

f(t)=f(t nT) n=0,1,2……(任意整数)

其中nT称为f(t)的周期,而满足关系式的最小T值则称为是信号的基本周期。为叙述方便,在不致引起混淆的情况下,如不作特别强调,今后我们将把"基本周期"简称为"周期"。

若信号在时间上不具有周而复始的特性,即周期信号的周期趋于无限大,则称此类信号为非周期信号。

这种把非周期信号的周期视作为无穷大,是一种很有用的思想方法。后面我们在学习傅里叶变换时,从周期信号的傅氏级数推广到非周期的一般信号傅氏变换,就是用到了这种思路。

而从非周期信号的傅氏变换推广到周期信号的傅氏变换,则利用了" '周期信号'可以由'非周期信号'周而复始地进行重复而得到"的思路,把"非周期信号"作为一个片段,不断重复,就得到了一种周期信号。

怎么样"周期重复"呢?我们有相应的数学方法或思路来完成解决这个问题。这在我们学习完本部分的"信号运算"(其中的加法、卷积运算)以及"奇异信号"中的"冲激信号"后就可以来做了。因为冲激信号具有"搬移特性",能够将其它信号"搬移(平移、移动)"到指定的位置,这个特性我们以后会学到。同学们可以在这里作个记号,将来学到的时候,回过头来看看是不是这样。

1.2.5 能量信号与功率信号

在研究过程中,我们有时需要知道信号的能量特性和功率特性。对连续信号f(t)和离散信号f(n),我们分别定义它们在区间上的能量E为:

注意:这里的能量是定义在区间上的。相加的(积分也是一种相加)是信号的幅值的平方,一般把它称为是信号的能量。

信号的功率P是区间上的平均功率,即:

大家知道功率是能量在一定时间内的平均值,所以在公式里要除时间长度。这个时间长度,对于离散信号来讲,就是其点数了。

如果信号的能量,则称之为能量有限信号,简称能量信号。

如果信号的功率,则称之为功率有限信号,简称功率信号。

为什么还要研究信号的功率呢?这是因为有的信号的能量太大了(等于无穷:))。研究没太大意义。但是不是都可以用功率来进行研究呢?不过,很遗憾,有些信号的能量变化实在太快了,没法表示,这时研究它的功率就没有意义。所以,能量和功率各有所长所短,根据需要来使用。

1.2.6 奇异信号与普通信号

若信号本身有不连续点,或其导数与积分存在不连续点,而且不能以普通函数的概念来定义,则称此类信号为奇异信号,反之,则称为普通信号。

为什么说一个信号是奇异的,我们以后将结合具体的例子来说明。在这里,大家只要知道有这样一种分类标准或方法就可以了。

关于典型的普通信号以及常见的几个奇异信号,将分别在后文中详细讲述。

1.3 典型普通信号

预习思考题:

1.欧拉公式?

2.指数信号的指数与其波形的关系?

3.如何统一用复指数信号来表示指数信号、正弦或余弦信号和直流信号?

4.Sa(t)函数的性质有哪些?

本节知识点:

1.欧拉公式

2.复指数信号

3.Sa(t)信号(抽样信号)

1.3.1 指数信号

1.3.2 正弦信号

1.3.3 复指数信号

1.3.4 Sa(t)信号(抽样信号)

1.3.1指数信号

我们先来看看指数信号。

指数信号的数学表达式为: 。其中参数a是实数。

所以,指数信号通常是"实指数信号"的一种简称。如果指数是复数怎么办呢?我们就定义一种新信号来描述它。这种信号就是我们后面马上要讲到的"复信号",它有很多好的特性。下面,我们来看看指数信号的一些特性,以及这些特性是怎么决定的。

指数信号的参数a控制着信号的特性:

(1)参数a的符号决定信号是取值不断减小的衰减型,还是取值不断增大的增长型。a为负,则信号衰减;a为正,则信号增长。

(2)(2)参数a的绝对值大小则决定信号变化(衰减或增长)的速度快慢。a的绝对值越大,则信号变化的速度越快。

指数信号的一个特殊情况是:当a=0时,信号成为直流信号,这时f(t) = K是一个不随时间变化的恒定值,其波形是一条与时间轴平行的直线。

就上述情况,我们来看几个指数函数的示例。

上图中的各种类型的信号与它们的参数a的关系如下:

指数信号具有一个重要特性是,它对时间的微分或积分仍然是指数信号。这里的微分与积分是对信号的运算,我们随后将在信号运算一节中讲述它们。

现在大家只要知道它们是一种运算即可,或者也可以将信号视为函数,则这些信号的运算与函数的运算实际上就是一样的了。函数如何进行微分和积分,大家要是忘了,请找本高等数学的书来复习一下。

1.3.2 正弦信号

正弦信号和余弦信号二者仅在相位上相差,经常统称为正弦信号,其表达式一般写作

。下图中是正弦信号和余弦信号的一个片段,可以看出它们之间只有相位差,而波形则是一样的。

这种信号的几个参数分别表示什么意思?这是我们以前学过的。其中,K是正余弦信号的幅度,是正余弦信号的角频率,是信号的初相位(显然,正弦信号的初相位为零,而余弦信号的初相位为。这些三角函数的很重要的参数,决定了函数的波形。

正弦信号是周期信号,其周期与角频率和频率之间的关系满足下列关系式

即正弦信号的周期蕴含在它的参数中。

我们已经知道指数信号的一个重要性质----信号经过微分或积分后仍然是原类型的信号,其实正弦信号也有类似的特性,即正弦信号对时间的微分与积分仍为同频率的正弦信号(大家要注意,这里的"正弦信号"是一种统称)。这一点,我们在学完高等数学的微分以及积分后,就应该知道的。

1.3.3 复指数信号

复指数信号的函数表达式为。其中是复数s的实部,为其虚部。

借助欧拉公式将复指数信号的函数表达式展开,可得

欧拉公式我们在其它课程中已经学习过,不知道大家是否记得?下面给出欧拉公式

此结果表明,一个复指数信号可以分解为实部、虚部两部分。实部含余弦信号,而虚部则是正弦信号。

由上面的关系式,我们常将正弦信号和余弦信号借助于复指数信号来表示。利用欧拉公式可推导出

这种替换写法有什么意义呢?当我们学习到信号的傅里叶级数展开时会知道,函数(信号)可以展开成正弦函数(信号)的无穷级数表示,而如用复指数函数(信号)来改写该级数,则函数(信号)可以用复指数函数(信号)的无穷级数来表示,从而不仅使表达式更为简捷,带来了复指数信号的优点,而且还便于从傅里叶级数向傅里叶变换的推广。这些,我们将在第二章的相关内容中接触到。

不仅如此,利用复指数信号可以使许多运算和分析得以简化。在信号分析理论中,复指数信号是一种非常重要的基本信号。

前面我们已经说过,引入复信号是为了方便研究。虽然实际上不能产生复指数信号,但是可以利用复指数信号来描述各种基本信号,如指数信号,正弦或余弦信号,直流信号。

复指数信号的指数因子的虚部w表示正弦与余弦信号的角频率,而实部s则表示正弦与余弦函数振幅随时间变化的情况:(1)若> 0,正弦、余弦信号是增幅振荡;(2)若<0,正弦及余弦是衰减振荡。

复指数函数有三种特殊情况:

(1) 当=0时,即s为虚数,则正弦和余弦信号是等幅振荡;

(2) 当=0时,即s为实数,则复指数函数成为一般的指数信号;

(3) 最后,若=0且=0,即s等于零,则复指数信号的实部和虚部都与时间无关,成为直流信号。

1.3.4 Sa(t)信号(抽样信号)

我们把正弦函数sin(t)与自变量t的比值称为抽样函数或Sa(t)函数,其表达式为

Sa(t) = sin(t)/t

其波形如图所示。

要注意这个信号在零点处的取值。分式的上下都为零了,怎么办呢?

当t=0时,Sa(t)函数的分子与分母都是零,借助于罗彼塔法则求得,Sa(0) = 1。当t <> 0时,随着t的绝对值的增大,函数值的绝对值振荡着不断减小,逐渐趋向于零。

由于正弦函数sin(t)在时函数值为0,因此Sa(t)函数在

点处函数值为0。通常,我们把相邻两个过零点为端点的区间称为过零区间。

显然,除原点附近的过零区间宽度为2外,Sa(t)函数的其他过零区间宽度均为。

下面,我们来看看Sa(t)信号还有哪些性质?

Sa(t)函数具有下列性质:

1.Sa(t)函数是偶函数。这一点既可以从信号的波形看出,也可以根据偶函数的性质进行证明。

2.

3. 。由前两条性质,本性质很容易证明。

鉴于我们在后续章节中还将学习对信号的抽样,为为避免与信号经抽样后所得"抽样信号"(或取样信号、采样信号)相混淆,以后我们将只称Sa(t)信号或Sa(t)函数。

另外还有一个类似的函数称为sinc(t)函数,其表达式为

1.4. 信号的运算

预习思考题:

1.信号的运算与函数的运算的关系?

2.如何从信号f(t)的波形得到信号f(-at-b) 的波形?

3.信号的卷积是如何进行运算的?

4.信号的相关与卷积运算有什么异同?

本节知识点:

1.信号的四则运算(加减乘除)

2.信号的平移、尺度和反褶运算

3.信号的积分与微分运算

4.信号的卷积运算

5.信号的相关运算

1.4.1 四则运算

1.4.2 时移、尺度与反褶运算

1.4.3 卷积运算

1.4.4 相关运算

前面我们学习了一些比较典型的普通信号及其性质,初步建立了对信号的概念。下面,我们从信号运算的角度,认识信号。

信号运算在信号的分析和处理中常会遇到,是整个信号处理过程的核心。

为了便于理解掌握,我们可以把信号的运算大致分一下类,将信号的加减乘除等运算归到"四则运算"一类中,把信号的平移、尺度和反褶称为是对信号的"波形运算"(目的是想着重强调运算对信号波形的变化作用),把信号的积分和微分称为"数学运算"(因为这样更便于理解这两类运算),而将卷积与相关称为是信号之间的"相互运算"(目的是想强调信号之间的相互关系)。

特别要说明指出的是:这样分类的原则与目的,仅仅是考虑到便于学习和理解这些不同的信号运算,并不是很严谨的。

1.4.1 四则运算

我们先来看看对如何对信号进行常规的四则运算,也就是加减乘除运算。

信号的四则运算包括:信号相加,信号相减,信号相乘,信号相除。其运算方法是:运算结果得到一个新信号,新信号在定义域上各点的取值,是参与运算的两个信号在对应点取值进行相应运算的结果。

也就是说:若两个信号相加,则结果信号的取值是参与运算的两信号对应点取值相加,若是相乘运算,则是对应点取值相乘。依此类推。

我们可以发现:信号的四则运算与函数的运算实际上一致的,只不过在这里,参与运算的函数以及运算的结果函数一般都有比较明确的物理含义而已。

需要指出的是:对于信号相除,如果分母在某点处为零,则运算后的结果信号在该点的取值,要取决于分子信号在该点是否也为零。如果分子信号在该点取值为零,而又可以根据罗彼塔法则求出结果,则即为最后的结果信号值。如果分子信号在该点的取值不为零,则最后的结果信号在该点上没有定义。

因此,信号在运算后,所得信号的定义域与原信号的定义域可能会不一致。

下面以sin(t)、sin(8t)为例,说明信号相加、相乘运算

(1)已知sin(t)的波形如下:

(2) 已知sin(8t)的波形如下:

(3) 它们相加的结果为:sin(t) + sin(8t);相应的波形如下:

(4) 则它们相乘的结果为:sin(t) * sin(8t);相应的波形如下:

请大家留意一下乘积信号的波形与两个原信号的波形之间的关系。你会发现好象是sin(8t)的波形变化受到了sin(t)的约束。这种现象称为"调制"。在通信系统中,信号从发射端传输到接收端,这实现信号的传输,往往需要进行调制和解调。这是因为:

(1) 无线电通信系统是通过空间辐射方式传送信号,根据电磁波理论,对于语音信号来说,相应的辐射天线尺寸要在几十公里以上,实际上这是不可能制造出来的。而调制过程则将信号的频

谱搬移到任何所需的较高频率范围,这样就容易以电磁波形式辐射出去。

(2) 如果不进行调制而是把被传送的信号直接辐射出去,那么各电台所发出的信号频率就会相同,

它们混在一起,收信者将无法选择所要接收的信号。而调制作用的实质是把各信号的频谱搬移,使它们互不重叠地占据不同的频率范围,也即信号分别托附于不同频率的载波上,接收机就可以分离出所需频率的信号,不致互相干扰。

如何进行频谱的搬移,我们在学习到后面的知识就会明白了。

1.4.2时移、尺度与反褶运算

这几类信号运算,都是在对函数的自变量进行变换,或加上一个常数偏移(时移),或乘上一个常数作比例系数(尺度),或改变变量的符号(反褶)。它们的作用效果能够从原信号的波形变化上很直观地看出。

信号的波形是原信号f(t)的波形沿时间轴整体平移的结果,我们称这一过程为信号的时移。时移量为,方向与的符号有关。

下图是关于信号时移的两个示例。一个左移,另一个是右移。我们发现,时移操作不会改变信号的波形形状,只改变了它在时间轴上的位置。

如果是正的,则时移将使信号向右平移;反之,则向左平移。如果新信号是,则结论又正好相反。当向右平移时,通常是使得信号发生的时刻延迟了,所以有时也称此运算操作之为"延时",而将参数称为"时延"。

如果将信号f(t)的自变量t乘以一个正的实系数a,则新信号f(at)的波形与原信号的波形有压缩(a>1)或扩展(a<1)的关系。我们称这种运算为尺度运算(有时也称尺度变换、压扩运算、压扩变换)。

下图是关于波形压缩(a=2)、波形扩张(a=0.5)的示例。我们可以发现,压扩后的信号与原信号在整体形状上保持了一定的相似性。

以放录音磁带为例,设f(t)表示以正常速度播放,则f(2t)表示以两倍的正常速度快放,而f(0.5t)

则表示以二分之一的正常速度慢放。

如果信号所乘的实系数a=-1,则称新信号f(-t)是原信号的反褶。

下图是关于信号反褶的一个示例。我们发现,信号在反褶后波形关于纵轴是对称的。

这时,f(-t)的波形与f(t)的波形关于纵轴是对称的。换个角度说,对信号进行反褶操作的方法是:将信号以纵轴为对称轴对折过来。

如果运算既包含时移运算,又有尺度运算和反褶运算,则如何从原信号得到新信号呢?最简便的方法是:先平移,再压扩,最后反褶。

例:已知信号f(t)的波形,试绘出新信号f(-at-b)的波形,其中参数a与b都是正的。

解:分三步来完成。

(a)将原信号f(t)的波形沿时间轴向右平移b个单位,得f(t-b)。

注意这里了取值是正的,其前面的符号是减号,否则就不一定是向右了。

(b)新信号沿时间轴进行a倍压缩或扩展(视参数a与1的关系来定),得信号f(at-b)。

如果参数a大于1,则进行波形压缩;反之则进行波形扩展。

(c) 将(b)中所得信号以纵轴为中心对折过来,得信号f(-at-b)即为所求。

1.4.3 卷积运算

信号的卷积运算是信号处理领域中最重要的运算之一。随着对信号与系统理论研究的深入,特别是计算机技术的不断发展,不仅使卷积方法在很我领域得到了很广泛的应用,而且卷积运算的逆运算---反卷积的问题也受到了越来越大的重视和应用。

比如,在语音识别、地震勘探、超声诊断、光学成像、系统辨识及其他诸多信号处理领域中,甚至可以说卷积与反卷积的问题无处不在,而且很多的问题,都是有待深入研究的课题。

所以,大家要切实理解和掌握好卷积分运算的各个方面,打好牢固的基础。下面,我们来看看卷积的定义是怎样的。

信号的卷积积分(简称卷积),定义为:

简记为,其中的星号是卷积运算符。注意不要与我们在编写计算机程序时所用的乘法的表示符号搞混了。在信号处理课程里,乘法往往是用居中的点来表示的,或者干脆不写居中的点,而直接将要进行乘积运算的信号(包括直流信号---它是一个常数)连在一起写。

信号的卷积运算对应着一定的物理背景,这要在我们进一步学习了关于系统的激励与响应的关系之后,才能更深入地理解。

不仅如此,信号的卷积运算还对应着一定的几何解释。从定义式我们可以看出:(1) 在积分式中,信号自变量改变了符号,这对应在几何波形上,就是将信号进行了反褶变换;(2) 并且,信号f2的波形位置与积分变量的取值有关,积分变量在积分限内的不断变化,将导致信号的波形发生移动,即是对它不断进行平移操作;(3) 最后,每当信号处在一个新位置,都要与信号f1相乘,且依据积分的定义,要将这些乘积加起来,而其结果实际上对应着两信号波形相交部分的面积。所以,卷积运算可以用几何图解方式来直观求解。

下面我们来说明如何用它的几何意义来求解两信号的卷积。

将信号的自变量改为,信号变为。对任意给定的,卷积的计算过程为:

(b) 将关于r进行反褶得到;

(c) 再平移至t0得到;

(d) 与相乘得到;

(e) 对r进行积分得,即;

不断变化,就可以得到s(t)。

从上面的计算步骤可以看出:卷积计算的几何求解可以通过对信号进行"反褶、平移、相乘、积分"等运算来完成。下面我们以一个实例进一步阐述信号之间卷积运算过程的几何解释。

例:下面是矩形脉冲信号e(t)的波形和三角信号h(t)的波形,试根据卷积运算的几何解释求它们的卷积。

矩形脉冲信号e(t)

三角脉冲信号h(t)

解:下面按照卷积运算的几何解释以图解方式来求解。

(1) 首先将h(t)反褶

(2) 然后将h(t)沿时间t轴从左向右平移

(3) 在平移过程中,将反褶后的h(t)与e(t)相乘相加(积分)

根据h(t)与e(t)之间的位置关系,分阶段求积分结果。也就是两信号波形相交部分的面积随时间变换的函数关系。

(a)

这时,两个信号的波形没有相交,也即两信号在此区间内的卷积为零。

(b)

在此区间内,两信号相交的部分组成一个三角形。在确定了积分的上限和下限后,可以计算出相应的卷积结果如下:

上图中的黄色三角形表示两信号的相交部分,其面积随时间的变化关系即为卷积在此区间内的结果。

(c)

在此区间内,两信号相交的部分组成了一个梯形,该梯形的面积随着三角波的右移而不断增加,其相应的卷积结果如下:

同样的,上图中的红色梯形表示两信号的相交部分,其面积随时间的变化关系即为卷积在此区间内的结果。

(d)

在此区间内,两信号的相交部分也是梯形,但面积将随时间不断减小,其卷积面积与时间的关系如下:

同理,上图中的桔色梯形表示两信号的相交部分,其面积随时间的变化关系即为卷积在此区间内的结果。

(e)

此时,两信号再一次远离,不再相交,所以卷积结果为零。

e(t)*h(t)=0

(4) 最后的卷积结果为:

综合前面几步的结果,可以绘出下面的卷积的波形如下。

要强调指出的是,卷积作为信号的一种运算,其结果仍是一种信号,描述的是卷积过程中所得面积随时间的变化关系。

那么,这种运算有哪些重要的性质呢?

下面我们来看看卷积运算的性质。

(a) 交换律

f(t)*h(t)=h(t)*f(t)

此性质可以根据变换积分变量法很容易地加以证明。

证明:

上式表明:在计算卷积积分时,保持不动,将反褶、平移后,乘积曲线下面的面积与不动,将反褶、平移后,乘积曲线下面的面积是相等的。

此性质表明,两信号在作卷积运算的时候,它们的前后次序是无关紧要的,可以互换,不会改变卷积的结果。

(b) 分配律

卷积对加法的分配律是积分运算的线性的直接推论。利用积分运算的线性,可以容易地证明此条性质。

证明:

(c) 结合律

证明:

令,则, 于是上式变为

变换积分次序,上式变成为

这条性质表明,当多个信号进行卷积运算时,可以随意进行结合,而不会改变结果。这条性质与数值的乘除运算的结合律是相通的。

(d) 卷积的微分

两个信号卷积的微分,等于其中任一信号的微分与另一信号的卷积,即

信号的统计检测理论

信号的统计检测理论 信号的统计检测理论是随机信号处理的基础理论之一。在随机信号特性统计描述的基础上,研究信号状态的最佳判决及其检测性能,是信号统计检测理论的主要任务。 本章概述了信号统计检测的基本概念、合理判决方法、判决结果和判决概率;重点讨论了信号统计检测各种最佳的概念、最佳判决式和检测性能的分析方法及参量信号的最佳检测理论和方法;还讨论了信号的序列检测,一般高斯信号的检测及复信号的检测等问题。 1.贝叶斯准则 在二元信号情况下,考虑判决概率P(H i |H j ),各假设H j 的先验概率P(H j )和各种判决所付出代价的代价因子c ij (i,j =0,1;c ij,i ≠j >c jj ),其平均代价为 C = c ij P(H j )P(H i |H j )1 i=0 1j=0 (.2) 所谓贝叶斯准则,就是在假设H j 的先验概率P(H j )已知,各种判决代价因子c ij 给定的情况下,使平均大家C 最小的准则。 贝叶斯准则的最佳判决式,其似然比检验形式为 λ(x )?p (x |H 1)p (x |H 0) H 1?H 0 P H 0 (c 10?c 00)P H 1 (c 01?c 11)?η 式中,λ(x)是似然比函数,决定于观测信号(x|H j )的统计特性,与P(H j ),c ij 无关;η是似然比门限,决定于P(H j )和c ij ,与(x|H j )的统计特性无关。这样,能够实现任意(x|H j )统计特性下和任意P(H j ),c ij 下使平均代价C 最小的最佳信号检测。 2.最小平均错误概率准则 如果假设H j 的先验概率P H j (j =0,1)已知,各种判决的代价因子c ij =1?δij ,则平均错误概率 P e = P H j P H i H j 1 i=0 i ≠j 1j=0=P H 0 P H 1 H 0 +P H 1 P H 0 H 1 .7 使平均错误概率P e 最小的准则,称为最小平均错误概率准则。 最小平局错概率准则的似然比检验形式为 λ(x)?p(x|H 1)p(x|H 0)H 1?H 0 P H 0 P H 1 ?η 如果假设H j 的先验概率相等,即P H 0 =P H 1 ,则η=1,称为最大似然比准则。 3.奈曼—皮尔逊准则 在错误判决概率P H 1 H 0 =α约束下,使正确判决概率P H 1 H 1 最大的准则,称为奈曼—皮尔逊准则。 奈曼—皮尔逊准则的似然比检验形式为

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

《统计信号处理基础》实验四

实验报告 姓名: 实验名称: 学号: 课程名称: 班级: 实验室名称: 组号: 实验日期: 一、实验目的、要求 本实验的目的是在了解了Matlab 编程语言的编程和调试的基础上,利用Matlab 本身自带的函数来展示不同功率谱估计的性能。试验内容涉及非参数化功率谱估计、参数化功率谱估计、频率估计等内容。本实验主要是为了让学生在充分理解不同的功率谱估计方法之间的性能差异,通过计算机仿真和多次重复来验证理论上的结论 要求包括以下几个部分: 1.要求独立完成实验的内容所要求的各项功能,编制完整的Matlab 程序,并在程序中注释说明各段程序的功能。 2.要填写完整的实验报告,报告应包含程序、图形和结论。要求记录在实验过程中碰到的问题,以及解决的方法和途径。 二、实验原理 实验1.宽带AR 过程()x n 是由单位方差的高斯白噪声通过滤波器 1221 ()(10.50.5)(10.5) H z z z z ---= -++ 实验 2. 本实验是验证最大熵方法的功率谱估计。 对随机过程()()()y n x n w n =+, ()w n 是方差为2 w σ的白高斯噪声,()x n 是(2)AR 过程,由单位方差的白噪声通过如下滤波 器所获得 12 1 ()1 1.5850.96H z z z --= -+ 三、实验环境 验所要求的设备: 每组包含完整的计算机 1 台; 可共用的打印机1台,A4纸张若干; 计算机上安装的软件包括: Matlab 6.5以上(应包含Signal Processing Toolbox, Filter

Design Toolbox ); Word 2000以上; 五、实验过程、数据记录、处理及结论 实验1 1221 ()(10.50.5)(10.5) H z z z z ---= -++ a. 生成()x n 的256N =个样本,取4p =并用自相关方法来计算功率谱,画出估计的功率谱并与真实功率谱相比。 clear all;close all; a=[1,-0.5,1,-0.25,0.25]; p=4; N=256;%数据长度 M=100; w=[0:pi/M:pi-pi/M]; v=randn(1,N); x=filter(1,a,v); [a1,err] = acm(x,p); h0=freqz(1,a,M); A=zeros(1,M); for m=2:p+1; A=A+a1(m)*exp(-j*m*w); end A=abs(A+1); Pw=1./(A.^2);%%%估计功率谱 A1=zeros(1,M); for k=2:5 A1=A1+a(k)*exp(-j*k*w); end A1=abs(A1+1); Pw1=1./A1.^2;%%%%%%%%%%%理论功率谱 figure(1) plot(w,Pw1,'-bo',w,Pw,'-b.');title('功率谱');xlabel('K');ylabel('幅值');hleg1=legend('理论功率谱','估计功率谱'); b. 重复a 中的计算20次,分别画出20次的重迭结果和平均结果。评论估计的方差并 说明怎样才能提高自相关方法估计功率谱的精度; clear all;close all; a=[1,-0.5,1,-0.25,0.25];%%%%%宽带AR 过程 %a=[ 1 -2.737 3.74592 -2.62752 0.9216];%%%%%%%%%%%窄带AR 过程 p=4;%功率谱数据长度 M=100;%%% N=256;%数据长度 w=[0:pi/M:pi-pi/M];

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

912《信号处理(信号与系统+信号处理基础)》

《信号处理基础》考试大纲 一、考试的总体要求 要求掌握信号与系统以及数字信号处理的基本概念、理论、算法、变换方法和设计方法。 二、考试方式 考试采用笔试方式,考试时间为180分钟,试卷满分为150分。 三、题型 题型由填空题(20分)、选择题(30分)和计算题(100分)三部分组成。 四、考试内容 考试内容包括信号与系统、数字信号处理两部分。 (一)信号与系统主要内容 (1) 绪论 了解信号与系统的概念、表示与分类,了解连续时间信号与离散时间信号的概念,掌 握信号的分解与运算,了解线性时不变系统的概念与基本性质。 (2) 线性时不变系统的时域分析 掌握线性时不变系统输入输出方程的建立及解法,掌握零输入响应和零状态响应、单 位冲激响应(单位样值响应)和单位阶跃响应、卷积(和)等概念及求解运算,掌握线性时 不变系统的基本性质并能用框图表示线性时不变系统。 (3) 连续时间傅里叶变换 掌握连续时间周期信号傅里叶级数的各种表示及系数转换关系,掌握傅里叶变换及其 性质,掌握傅里叶变换应用于连续时间线性时不变系统的分析方法。 (4) 拉普拉斯变换、连续时间系统的s域分析 掌握双边/单边拉普拉斯变换的定义、收敛域和基本性质,掌握拉普拉斯逆变换的求解 方法,掌握微分方程和电路的s域求解方法,掌握线性时不变系统的系统函数、零极 点图等概念,掌握系统的因果性、稳定性等性质与零极点分布和收敛域的关系,掌握 连续时间线性时不变系统的框图表示。 (5) 连续时间傅里叶变换应用于通信系统—滤波、调制与抽样 掌握奈奎斯特抽样定理,掌握抽样前、后信号的频谱之间的关系,了解内插公式,掌 握模拟信号正弦振幅调制和解调的频谱变化关系。

第二章 语音信号处理基础知识

第二章语音信号处理基础知识 1、语音信号处理? 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。 2、语音信号处理的目的? 1)如何有效地,精确地表示、存储、传递语音信号及其特征信息;2)如何用机器来模仿人类,通过处理某种运算以达到某种用途的要求,例如人工合成出语音,辨识出说话人、识别出说话内容等。 因此,在研究各种语音信号处理技术之前,需要了解语音信号的基本特性,同时,要根据语音的产生过程建立实用及便于分析的语音信号模型。 本章主要包括三方面内容:语音的产生过程、语音信号的特性分析以及语音信号生成的数学模型。 第一部分内容语音的产生过程,我们要弄清两个问题:1)什么是语音?2)语音的产生过程? 3、什么是语音? 语音是带有语言的声音。人们讲话时发出的话语叫语音,它是一种声音,由人的发音器官发出且具有一定的语法和意义。语音是声音和语言的组合体,所以对于语音的研究包括:1)语音中各个音的排列由一些规则控制,对这些规则及其含义的研究成为语言学;2)对语音中各个音的物理特征和分类的研究称为语音学。 4、语音的产生 语音的产生依赖于人类的发声器官。人的发音器官包括:肺、气管、喉、咽、鼻、口等。 ◆喉以上的部分称为声道,其形状随发出声音的不同而变化; ◆喉的部分称为声门。 ◆喉部的声带是对发音影响很大的器官。声带振动产生声音。 ◆声带开启和闭合使气流形成一系列脉冲。

每开启和闭合一次的时间即振动周期称为基音周期,其倒数为基音频率,简称基频。基频决定了声音频率的高低,频率快则音调高,频率慢则音调低。 基音的范围约为70 -- 350Hz,与说话人的性别、年龄等情况有关。 人的说话过程可以分为五个阶段:(1)想说阶段(2)说出阶段(3)传送阶段(4)理解阶段(5)接收阶段。 人的说话的过程: 1)想说阶段:人的说话首先是客观事实在大脑中的反映,经大脑的决策产生了说话的动机; 接着说话神经中枢选择适当的单词、短语以及按照语法规则的组合,以表达想说的内容和情感。 2)说出阶段:由想说阶段大脑中枢的决策,以脉冲形式向发音器官发出指令,使得舌、唇、鄂、声带、肺等部分的肌肉协调地动作,发出声音。与此同时,大脑也发出一些指令给其他有关器官,使之产生各种动作来配合言语的效果,如表情、手势、身体姿态等。经常有些人说话时会手舞足蹈。另外,还会开动“反馈”系统来帮助修正语音。 3)传送阶段:说出的话语是一连串声波,凭借空气为媒介传送到听者的耳朵。有时遇到某种阻碍或其他声响的干扰,使声音产生损耗或失真。 4)接收阶段:从外耳收集的声波信息,经过中耳的放大作用,达到内耳。经过内耳基底膜的振动,激发器官内的神经元使之产生脉冲,将信息以脉冲形式传送给大脑。 5)理解阶段:听觉神经中枢收到脉冲信息后,经过一种至今尚未完全了解的方式,辨认说话人及听到的信息,从而听懂说话人的话。 再开始介绍语音信号的特性之前,我们先了解一下语音和语言的定义。 5、语言 是从人们的话语中概括总结出来的规律性的符号系统。包括构成语言的语素、词、短语和句子等不同层次的单位,以及词法、句法、文脉等语法和语义内容。语言学是语音信号处理的基础。例如,可以利用句法和语义信息减少语音识别中搜索匹配范围,提高正确识别率。 6、语音学 Phonetics是研究言语过程的一门科学。它考虑的是语音产生、语音感知等的过程以及语音中各个音的特征和分类问题。现代语音学发展成为三个分支:发音语音学、声学语音学以

信号与信息处理基础

《信号与信息处理基础》 ——论信号与信息之初认识当今社会是信息时代,在科学研究、生产建设和工程实践中,信号处理技术,特别是数字信号处理技术的应用日益广泛,信息技术在当今社会的重要性日渐体现。同样,在我们的生活中信号与信息也有着潜移默化的作用,信号与信息已经成了我们生活、学习、研究等方方面面起着巨大的作用。可以说现代人的生活已经离不开信号与信息了。 对于信息学科的学子来说信号与信息处理基础也就成为了我们从通信工程和电子信息工程类专业的专业基础课程扩展成信息科学电气信息类学生的新增学科基础课其应用背景也从单一的通信系统扩展到了其它的信息处理系统。其重中之重便是信息和信号。 信息 “信息”一词有着很悠久的历史,早在两千多年前的西汉,即有“信”字的出现。“信”常可作消息来理解。作为日常用语,“信息”经常是指“音讯、消息”的意思,但至今信息还没有一个公认的定义。 信息是物质、能量、信息及其属性的标示。信息是确定

性的增加。信息是事物现象及其属性标识的集合。信息以物质介质为载体,传递和反映世界各种事物存在方式和运动状态的表征。信息(Information)是物质运动规律总和,信息不是物质,也不是能量!信息是客观事物状态和运动特征的一种普遍形式,客观世界中大量地存在、产生和传递着以这些方式表示出来的各种各样的信息。信息论的创始人香农认为:“信息是能够用来消除不确定性的东西”。 图片信息(又称作讯息),又称资讯,是一种消息,通常以文字或声音、图象的形式来表现,是数据按有意义的关联排列的结果。信息由意义和符号组成。 文献是信息的一种,即通常讲到的文献信息。信息就是指以声音、语言、文字、图像、动画、气味等方式所表示的实际内容。 信息是有价值的,就像不能没有空气和水一样,人类也离不开信息。因此人们常说,物质、能量和信息是构成世界的三大要素。所以说,信息的传播是极具重要与有效的。信息是事物的运动状态和过程以及关于这种状态和过程的知识。它的作用在于消除观察者在相应认识上的不确定性,她的数值则以消除不确定性的大小,或等效地以新增知识的多少来度量。虽然有着各式各样的传播活动,但所有的社会传播活动的内容从本质上说都是信息。目前对信息这个概念的描述很多很繁杂,但是却不能涵盖信息的本质特征。其实,

统计信号处理实验四东南大学

统计信号处理 实验四 《统计信号处理》实验四 目的: 掌握自适应滤波的原理; 内容一: 假设一个接收到的信号为:x(t)=s(t)+n(t), 其中s(t)=A*cos(wt+a), 已知信号的频率w=1KHz,而信号的幅度和相位未知,n(t)是一个服从N(0,1)分布的白噪声。为了利用计算机对信号进行处理,将信号按10KHz的频率进行采样。 1) 通过对x(t)进行自适应信号处理,从接收信号中滤出有用信号s(t); 2)观察自适应信号处理的权系数; 3)观察的滤波结果在不同的收敛因子u下的结果,并进行分析; 4)观察不同的抽头数N对滤波结果的影响,并进行分析; 内容二: 在实验一的基础上,假设信号的频率也未知,重复实验一; 内容三: 假设s(t)是任意一个峰峰值不超过1的信号(取幅度为的方波),n(t)是一个加在信号

中的幅度和相位未知的,频率已知的50Hz单频干扰信号(假设幅度为1)。信号取样频率1KHz,试通过自适应信号处理从接收信号中滤出有用信号s(t)。 要求: 1)给出自适应滤波器结构图; 2)设计仿真计算的Matlab程序,给出软件清单; 3)完成实验报告,对实验过程进行描述,并给出试验结果,对实验数据进行分析。实验过程: 1、假设一个接收到的信号为:d(t)=s(t)+n(t), 其中s(t)=A*cos(wt+a), 已知信号的频率w=1KHz,而信号的幅度和相位未知,n(t)是一个服从N(0,1)分布的白噪声。为了利用计算机对信号进行处理,将信号按10KHz的频率进行采样。 1)参考信号d(k)=s(k)+n(k),s(k)=A*cos(wk+a),产生一个与载波信号具有相同频率的正弦信号作为输入信号() x k,即x(k)=cos(wk)。经过自适应处理后,就可以在输出信号() y k端得到正确的载波信号(包含相位和幅度)。 框图如下: 2)改变收敛因子 μ,观察滤波结果。 3)改变滤波器抽头数N,观察滤波结果。 2、在实验一的基础上,假设信号的频率也未知,重复实验一。 参考信号d(k)=s(k)+n(k),s(k)=A*cos(wk+a),将参考信号延时一段时间后得到的信号作为输入信号() x k,即x(k)=d(k-m)。经过自适应处理后,就可以在误差输出端y(k)得到正确的载波信号(包含频率、相位和幅度)。 3、假设s(t)是任意一个峰峰值不超过1的信号(取幅度为的方波),n(t)是一个加在信号中的幅度和相位未知的,频率已知的50Hz单频干扰信号(可以假设幅度为1)。信号取样频率1KHz,试通过自适应信号处理从接收信号中滤出有用信号s(t)。 我们可以使用陷波滤波器对噪声进行滤除,但普通滤波器一旦做成,其陷波频率难以调整。如果使用自适应陷波滤波器,不仅可以消除单频干扰,而且可以跟踪干扰的频率变化,持续消噪。 自适应陷波滤波器的原理框图如下图所示: 假如输入信号是一个纯余弦信号 () cos C t ω? + ,则可将其分为两路,将其中一路进行

经典matlab信号处理基础知识

常用函数 1 图形化信号处理工具,fdatool(滤波器设计),fvtool(图形化滤波器参数查看)sptool (信号处理),fvtool(b,a),wintool窗函数设计.或者使用工具箱filter design设计。 当使用离散的福利叶变换方法分析频域中的信号时,傅里叶变换时可能引起漏谱,因此需要采用平滑窗, 2数字滤波器和采样频率的关系。 如果一个数字滤波器的采样率为FS,那么这个滤波器的分析带宽为Fs/2。也就是说这个滤波器只可以分析[0,Fs/2]的信号.举个例字: 有两个信号,S1频率为20KHz,S2频率为40KHz,要通过数字方法滤除S2。 你的滤波器的采样率至少要为Fs=80HKz,否则就分析不到S2了,更不可能将它滤掉了!(当然根据采样定理,你的采样率F0也必须大于80HK,,Fs和F0之间没关系不大,可以任取,只要满足上述关系就行。) 3两组数据的相关性分析r=corrcoef(x,y) 4 expm 求矩阵的整体的exp 4离散快速傅里叶fft信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。Ft为连续傅里叶变换。反傅里叶ifft 5 ztrans(),Z变换是把离散的数字信号从时域转为频率 6 laplace()拉普拉斯变换是把连续的的信号从时域转为频域 7 sound(x)会在音响里产生x所对应的声音 8 norm求范数,det行列式,rank求秩 9 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s; 数字频率w:每个采样点间隔之间的弧度,单位rad。 Ω=2pi*f; w = Ω*T 10 RMS求法 Rms = sqrt(sum(P.^2))或者norm(x)/sqrt(length(x)var方差的开方是std标准差,RMS应该是norm(x)/sqrt(length(x))吧. 求矩阵的RMS:std(A(:)) 11ftshift 作用:将零频点移到频谱的中间 12 filtfilt零相位滤波, 采用两次滤波消除系统的非线性相位, y = filtfilt(b,a,x);注意x的长度必须是滤波器阶数的3倍以上,滤波器的阶数由max(length(b)-1,length(a)-1)确定。

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

《统计信号处理基础》实验报告

实验报告 姓名:实验名称:离散时间随机过程 学号:课程名称:统计信号处理基础 班级:实验室名称: 组号:实验日期: 一、实验目的、要求 实验目的 本实验的目的是在了解了Matlab编程语言的编程和调试的基础上,利用Matlab本身自带的函数来生成随机数,并根据随机数编程来计算随机过程的一些基本特征。本实验主要是为了锻炼学生基本的Matlab编程,并利用信号处理工具箱的函数来完成基本的数据分析功能。 实验要求 要求包括以下几个部分: 1.要求独立完成实验的内容所要求的各项功能,编制完整的Matlab程序,并在程序中注释说明各段程序的功能。 2.要填写完整的实验报告,报告应包含程序、图形和结论。要求记录在实验过程中碰到的问题,以及解决的方法和途径。 3.实验报告是现场用Word填写并打印完成。个人或组必须在报告上署名。 二、实验原理 1、信号大致可以分为两类——确定信号和随机信号。随机信号是实际中存在最多的信号。确定信号可通过重复观测准确复制,而随机信号只能通过其统计特性进行描述。 2、随机过程可以看成是白噪声通过一个系统的输出。 ()。 3、理想高斯白噪声的自相关函数为n 三、实验环境 实验所要求的设备:每组包含完整的计算机 1 台; 可共用的打印机1台,A4纸张若干; 计算机上安装的软件包括:Matlab 6.5以上(应包含Signal Processing Toolbox, Filter Design Toolbox);Word 2000以上;

四、实验过程、数据记录、处理及结论 实验1.本实验主要是分析高斯白噪声的样本自相关序列的估计精度。 a.生成1000个零均值、单位方差的高斯白噪声,并用hist函数来画出直方图,与理 想的高斯分布函数相比较; 可以看出随机信号概率密度函数和标准正态分布曲线比较接近,只是由于实际样本数有限使得其曲线上有许多毛刺。 b. 采用xcorr函数的有偏估计来估计前100个自相关序列,用Plot函数画出该自相关序列,与理想的高斯白噪声的自相关序列相比。 c. 把这组数据分成互不重叠的10段,每段有100个样本。分别对每段数据采用b中的方法来估计前100个样本自相关序列,然后对10段的自相关序列进行平均。获得的结果与b中的结果相比,并与真实的自相关序列相比。 d. 把b中的样本数扩大到10000个,重复实验b中的要求,所得的结果与b相比,并与理论的结果相比。 b、c、d所对应的图如下图figure2

盲信号分离基础知识

专业课程设计学习材料 源信号分离Source Signal Separation

第一部分 简单介绍 一、 目标 我们的目标就是学习源信号分离理论的基础知识和源信号分离时涉及的相关学科知识,最终从观测信号中将源信号分离开来。注意:此时信号源和混合形式可能是未知的。 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.500.050.10.150.20.250.30.350.40.45 -1.5-1.0-0.50.00.51.01.500.050.10.150.20.250.30.350.40.45 图1 源信号波形 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.000.050.10.150.20.250.30.350.40.45 -2.0-1.00.01.02.000.050.10.150.20.250.30.350.40.45 图2 混合信号波形 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-0.50.00.51.01.5 2.0 图3 分离信号波形 二、分离方法 1、FFT 法;条件:不同源信号占有不同的频带 2、自适应滤波方法;条件:已经信号的某些特征 3、盲信号分离方法;条件:遵从某些统计假设条件 三、盲分离的基本模型 盲信号分离的基本模型如图(1)所示。 )(1t )(2t y ) (t y m 图1 盲信号分离的基本模型 其中:)(1t s ,)(2t s ,……,)(t s n 为n 个源信号;)(1t x ,)(2t x ,……,)(t x m 为m 个观测信号;)(1t y ,)(2t y ,……,)(t y n 为待求解的n 个分离信号;)(1t n ,

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

2020年信号处理知识点总结

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号 4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和 3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性

5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值 相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积?傅里叶级数?离散谱 非周期信号:无限区间绝对可积?傅里叶变换?连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同

经典信号与系统、信号处理外文书籍推荐

1、《Linear Systems and Signals》——https://www.doczj.com/doc/5912414675.html,thi 这本书个人觉得很不错,是一本线性系统和信号的入门好书。可以适用于通信、电路、控制等专业。虽说是入门的好书,但是本书的编排是内容由浅入深,讲述可是深入浅出。我通读全书后,觉得深有体会,看这本书就像在看小说一般,对于一个话题的介绍,往往从其历史发展说起,让你知道其来龙去脉。不像国内的书,一上来就是定理、定律。同时,书中每讲完一个知识点,都会有适当的例题让你加深理解。本书给我的一种感觉就是,作者将一种菜吃透了,消化了,而且掌握了作者这种菜的方法,然后把这种做法告诉你,然你自己去做菜,做出来的菜可能不一样,但是方法你是掌握了。最根本的你掌握了,做什么菜是你自己的发挥了。不像国内的教科书,就要你做出一样的菜才是学会了做菜。 这本书讲述了线性系统的一般原理,信号的分析处理,例Fourier变换、Laplace 变换、z变换、Hilbert变换等等。从连续信号说到离散信号,总之是一气呵成,中间似乎看不出什么突变。对于初学者,这是一本很好的入门书,对于深入者,这又是一本极好的参考书。极力推荐。实话说,Lathi的书每看一回都会有新的感觉,常看常新。 2、《Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory》——Steven M. Kay 3、《Fundamentals of Statistical Signal Processing, Volume II: Detection Theory》——Steven M. Kay 这两本书是Kay的成名作。我只读过第一卷,因为图书馆只有第一卷 : p这两本书比Van Trees的书成书要晚,所以内容比较新。作者的作风很严谨,书中的推导极其严密。不失为一位严谨的学者的作风!虽说推导严密,但是本书也不只是单纯讲数学的,与工程应用也很贴近。这就是本书的特点。这两册书是统计信号之集大成者。有志于这个领域的,此书必备。 4、《Modern Spectral Estimation: Theory and Application》 ——Steven M. Kay

信号处理基础

补充材料:第二章信号与系统 第一部分:基本概念 1.1信号的概念 预习思考题: 1. 消息、信息和信号的区别与联系? 2. 信号有哪些描述方法? 本节知识点: 1. 信号的概念 2. 信号的描述方法 1.1.1 信号、消息和信号 1.1.2 描述信号的方法 1.1.1消息,信息和信号 主要是讲述有关信号处理的一些基本原理和方法。目的是希望大家能在学完后,对如何处理信号,特别是如何用计算机这种数字处理设备(从某种意义上说,计算机是一种数字处理设备)来进行信号处理,有一些基本的认识。 那么,什么是信号呢? 人类对自然界的认识和改造过程都离不开对自然界中的信息的获取。所谓信息,是指存在于客观世界的一种事物形象,是关于事物运动规律的知识。一般泛指消息、情报、指令、数据、信号等有关周围环境的知识。 凡是物质的形态、特性在时间或空间上的变化,以及人类社会的各种活动都会产生信息。千万年来啊,人类用自己的感觉器官---眼睛啊、鼻子啊、手啊等等吧---从客观世界获取各种信息,如语言、文字、图象、颜色、声音、自然景物信息等等,可以说,我们是生活在信息的海洋之中,因此获取信息的活动是人类最基本的活动之一。而且从某种意义上说,信息交换也是人类得以成为人类的重要原因。 那么,什么是消息呢? 所谓消息,是指用来表达信息的某种客观对象,如电话中的声音,电视中的图象,雷达的目标距离、高度、方位等参量都是消息。在我们得到一个消息之后,可能得到一定的信息,而我们所得到的信息与我们在得到消息前以及得到消息后对某一事件的无知程度无关。因此,我们可把信息与消息在含义上的区别概括为:信息是消息中不确定性的消除(也就是该消息给予受信者的新知识),消息就是知道了的信息。 大家还可以自己举例,说明哪些是消息。 下面,进一步的,什么是信号呢? 所谓信号,是带有信息的某种物理量,如电信号,光信号,声音信号等。因此,信号是指消息的表现形式,而消息则是信号的具体内容。消息的传送一般都不是直接的,而必须借助于一定形式的信号才能便于传输和进行各种处理。由于信号是带有信息的某种物理量,这些物理量的变化包含着信息。 可见,信号是与物理量相联系着的。这就为我们对它们进行研究定下了物理背景。换言之,我们要很好地理解某些信号,可以思考一下它对应的物理现象,蕴涵的物理规律。 1.1.2描述信号的方法

随机信号统计特性分析

实验一、随机信号统计特性分析 学生姓名刘冰 学院名称精密仪器与光电子工程 专业生物医学工程 学号3010202286

一、实验目的 随机信号是生物医学信号处理软件调试所必须的信号。通过本实验,了解一种伪随机信号产生的方法,及伪随机信号的数字特征。 二、实验要求 1.用同余法编制产生伪随机信号的程序。 2.检验所产生的伪随机信号是高斯分布的。 3.检验伪随机信号的自相关函数。 三、实验方法 1.伪随机信号的产生 用下式产生一组在[-0.5,0.5]内均匀分布的伪随机信号: ()()() k i C k i M =?-1% (1) ()()n i k i M =-/.05 (2) 其中(1)表示k(i)为(())/C k i M ?-1的余数,n(i)为一组在[-0.5,0.5]区间的均值为0的伪随机信号。令C =+239,M =212,i=0,1,2,…499。通过任意给定k(0),用上式可以产生一组伪随机信号。 2.用中心极限定理产生一组服从正态分布的伪随机信号 中心极限定理:设被研究的随机变量可以表示为大量独立随机变量的和,其中每个随机变量对总和只起微小作用,则这个随机变量是服从正态分布的。 产生一个长度为500的伪随机信号,其中每一项为L 个伪随机变量和。检验落在 []σσ+-,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%。 () σ2 20 1 1= =-∑N n i i N 3.用自相关函数检验上述信号 对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。 ()()() R k N n i n i k n i N k = *+=-∑1 四.实验流程框图 按照实验方法用matlab 实现

国内统计信号处理在语音识别的应用

国内统计信号处理在音频模式识别中的应用 摘要 语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业,目前具有代表性的语音识别方法主要有动态时间规整技术(DTW)、隐马尔可夫模型(HMM)、矢量量化(VQ)、人工神经网络(ANN)、支持向量机(SVM)等方法。在电话与通信系统中,智能语音接口正在把电话机从一个单纯的服务工具变成为一个服务的“提供者”和生活“伙伴”;使用电话与通信网络,人们可以通过语音命令方便地从远端的数据库系统中查询与提取有关的信息;随着计算机的小型化,键盘已经成为移动平台的一个很大障碍,想象一下如果手机仅仅只有一个手表那么大,再用键盘进行拨号操作已经是不可能的。语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产

业。语音识别技术发展到今天,特别是中小词汇量非特定人语音识别系统识别精度已经大于98%,对特定人语音识别系统的识别精度就更高。这些技术已经能够满足通常应用的要求。由于大规模集成电路技术的发展,这些复杂的语音识别系统也已经完全可以制成专用芯片,大量生产。在西方经济发达国家,大量的语音识别产品已经进入市场和服务领域。一些用户交机、电话机、手机已经包含了语音识别拨号功能,还有语音记事本、语音智能玩具等产品也包括语音识别与语音合成功能。人们可以通过电话网络用语音识别口语对话系统查询有关的机票、旅游、银行信息,并且取得很好的结果。调查统计表明多达85%以上的人对语音识别的信息查询服务系统的性能表示满意。可以预测在近五到十年内,语音识别系统的应用将更加广泛。各种各样的语音识别系统产品将出现在市场上。人们也将调整自己的说话方式以适应各种各样的识别系统。在短期内还不可能造出具有和人相比拟的语音识别系统,要建成这样一个系统仍然是人类面临的一个大的挑战,我们只能一步步朝着改进语音识别系统的方向一步步地前进。至于什么时候可以建立一个像人一样完善的语音识别系统则是很难预测的。就像在60年代,谁又能预测今天超大规模集成电路技术会对我们的社会产生这么大的影响。 在语音识别系统中必然存在预处理,存在语音信号处理的过程,因此能否对语音信号作很好的处理则是一个很重要的环节,因此我们可利用信号处理的理论对其进行描述。

相关主题
文本预览
相关文档 最新文档