当前位置:文档之家› 叶绿素荧光成像技术及其在光合作用研究中的应用

叶绿素荧光成像技术及其在光合作用研究中的应用

Fluorcam荧光成像技术及其在光合作用研究

中的应用

Eco‐lab生态实验室

北京易科泰生态技术有限公司

info@eco‐https://www.doczj.com/doc/5d10761395.html,

目录

1、叶绿素荧光成像技术发展过程

2、荧光参数及其生理意义

3、PSI介绍(荧光成像的发明者)

4、PSI产品介绍

5、应用案例

叶绿素荧光技术发展历程

?Kautsky effect: Kautsky and Hirsch(1931)首次用肉眼发现叶绿素荧光现象并发表论文“CO2同化新实验”,后被称作“Kautsky effect”

?PAM(Pulse Amplitude Modulated Fluorometer): Schreiber(1986)等发明了PAM脉冲调制技术测量叶绿素荧光。?FluorCam:KineKc imaging of chlorophyll fluorescence: Ladislav Nedbal(2000)等于上世纪90年代末期发明了与

PAM技术相结合的叶绿素荧光成像技术

成像测量局部放大

荧光参数及其意义

?Fo、Fm与QY,此外还有PAR_Abs及ETR

?Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd

?荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,NPQ,Qp,Rfd 等50多个参数

?OJIP曲线:快速荧光诱导曲线。Fo,Fj,Fi,P或Fm,Mo(OJIP曲线初始斜率)、FixArea固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等

?LC光响应曲线:Fo,Fm,QY,QY_Ln

叶绿素荧光仪著名厂商

?PSI:捷克布尔诺Brno(孟德尔在此发现著名的孟德尔遗传定律),Ladislav Nedbal为首席科学家和主要股东(另一股东为David Kramer,美国密执根州立大学教授),1997年为美国华盛顿大学H.Pakrasi教授研制成了第一台FluorCam荧光成像系统。主要产品有:

–FluorCam叶绿素荧光成像系列产品

–FL3500/FL5000双调制荧光仪系列产品

–FluorPen及AquaPen等手持式荧光仪产品

–光养生物反应器等藻类培养与在线监测产品

–光源与植物培养室

?Optics:美国,主要产品为OS5p‐PAM叶绿素荧光仪等?Walz:德国,主要产品为PAM2500叶绿素荧光仪等

PSI厂家介绍

PSI厂家剪影

laboratory

FluorCam叶绿素荧光成像:

1. Handy FC——FluorCam便携式叶绿素荧光成像系统

2. Handy GFPCam——FluorCam便携式荧光蛋白成像系统

3. Handy Leaf chamber——便携式光合联用叶绿素荧光成像系统

4.Closed FC——封闭式叶绿素荧光成像系统

5. Closed GFPCam——封闭式多光谱荧光蛋白成像系统

6. Open FC——开放式叶绿素荧光成像系统

‐Rover FluorCam——移动式大型植物荧光成像系统

‐Transect FluorCam——样带扫描式植物荧光成像系统

‐XY‐Plane FluorCam——多光谱XY‐平台式大型植物荧光成像系统

‐Arch FluorCam——拱形三维植物荧光扫描成像系统

7. Micro‐FluorCam——显微叶绿素荧光成像系统,又分标准版、增强版(可选配

GFP FilterCube Set)及滤波轮版

8. Conveyor and RoboKc PlantScan System——PlantScan全自动植物光谱成像分析

系统

9. Fluorescence KineKc Microscope——FKM荧光动态显微光谱成像系统

Fluorcam荧光成像技术特点

◆对叶片无损伤、测量迅速

◆测量对象多样,包括叶片、果实、藻类、地衣、苔藓、拟

南芥等

◆具备自动重复测量功能,从而实现无人职守自动成像实验◆结果以图片或视频形式输出,直观、易于观察

◆应用领域广泛,如光合作用、植物胁迫生理学、水生生物学、海洋学和遥感等

◆实验室、野外均可使用

◆测量面积范围广,小至微米,大至整块草坪

◆用户可根据实验需要,自定义测量参数

FlourCam叶绿素荧光成像技术应用领域

?植物光合特性和代谢紊乱植株的筛选

?生物和非生物胁迫的检测

?植物抗胁迫能力或者易感性研究

?气孔非均一性研究

?长势与产量评估

?植物——微生物交互作用研究

?植物——原生动物交互作用研究

Kautsky effect in a diuron‐inhibited leaf

(敌草隆抑制电子传递实验)

O

J

I P

Screen mutants by NPQ parameters (通过荧光淬灭分析筛选变异植株)

水分对沙漠中苔藓的光合特性的影响

加水0.5 h后

高光胁迫获得的衣藻突变体

重金属胁迫条件下的烟叶荧光成像

左图为对照烟叶,中图为通过叶脉浸泡硫酸铜30分钟后的荧光成像,右图为经硫

酸铜浸泡处理60分钟后的荧光成像。上图的荧光成像色彩代表荧光衰减参数Rfd

(Rfd=Fm ‐‐‐Fs)/Fs ,红色代表Rfd 值低,蓝色为高。Rfd 可以代表植物的光合效

率,上图可以看出,跟未进行硫酸铜浸泡处理的对照烟叶相比,随着浸泡处理

后时间的延长,沿叶脉区域Rfd 越来越低(Ciscato and Valcke,1998)

30 min 0 min 60 min

DeNovo. Biosynthesis of Faoy Acids Plays Critical Roles in the Response of the PhotosyntheKc Machinery to Low Temperature 1265–1275(2010)in Arabidopsis,Plant Cell Physiol.51(8):1265–1275(2010)

Laury Chaerle.Chlorophyll fluorescence imaging for disease‐resistance screening of sugar beet, Plant Cell Tiss Organ Cult (2007) 91:97–106

Image types from left to right are visual spectrum reflectance,chlorophyll fluorescence and thresholded chlorophyll fluorescence.The images from the upper panels were captured at 9 days after infection, the lower panels1.5 days later.

Paul Kenny. Characterization and early detection of tan spot disease in wheat in vivo with chlorophyll fluorescence imaging. Acta Biologica Szegediensis, Volume 55(1):87‐90, 2011

Early warning fluorescence changes during leaf spot disease in different wheat cultivars.

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

Fluorcam多光谱荧光成像技术及其应用

FluorCam多光谱荧光成像技术(Multi-color FluorCam) 自上世纪90s年代PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM脉冲调制叶绿素荧光技术与CCD技术结合在一起,成功研制生产FluorCam叶绿素荧光成像系统(Nedbal等,2000)以来,FluorCam叶绿素荧光成像技术得到长足发展和广泛应用,先后有封闭式、开放式(包括标准版和大型版)、便携式叶绿素荧光成像系统,及显微叶绿素荧光成像系统、大型叶绿素荧光成像平台(包括移动式、样带式、XYZ三维扫描式等)等,近些年还进一步发展了PlantScreen植物表型成像分析平台(Phenotyping)(有传送带版、XYZ三维扫描版及野外版等)及多光谱荧光成像技术。 Multi-color FluorCam多光谱荧光成像技术包括多激发光-多光谱荧光成像技术和UV 紫外光激发多光谱荧光成像技术: 1.多激发光-多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光) 到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、绿波轮及相应滤波器,对不同波长荧光(多光谱荧光)进行成像分析。如FluorCam便携式GFP/Chl.荧光成像仪及FluorCam封闭式GFP/Chl.荧光成像系统具备红光和兰光及相应滤波器,可以对GFP和叶绿素荧光成像分析;FluorCam开放式多光谱荧光成像系统可以进一步选配不同颜色的激发光,如除红光、蓝光外,还可选配绿色光源及相应滤波器,以对YFP进行荧光成像分析等; 2.UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片 激发,可以产生具有4个特征 性波峰的荧光光谱,4个波峰 的波长为兰光440nm(F440)、 绿光520nm(F520)、红光690nm (F690)和远红外740nm (F740),其中F440和F520 统称为BGF,由表皮及叶肉细 胞壁和叶脉发出,F690和F740 为叶绿素荧光Chl-F。紫外光 激发多光谱荧光(UV-MCF)可 以用来灵敏、特异性地评估植 物生理状态包括受胁迫状态, 包括干旱、病虫害、环境污染、 氮胁迫等 本文就FluorCam多光谱荧光成像技术产品及最新应用案例做一简单介绍,其中FluorCam便携式GFP/Chl荧光成像仪(Handy GFPCam)和FluorCam封闭式GFP/Chl荧光成像系统(Closed GFPCam)已有较为详细的资料介绍,在此不再专门介绍。

叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍 前言 近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。 荧光测量基础 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。 为什么荧光产量会发生改变?Kautsky效应和Beyond 叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体Q A(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体Q B。此期间,反应中心是关闭的,反应中心关闭的比

荧光成像的原理和方法

荧光成像的原理与方法 荧光成像在基因组学和蛋白质组学等生物学领域应用中的独特优势: 高灱敏度:灱敏度进超比色法,在大部分应用中其灱敏度近乎放射性同素。 多组样品一次成像:将不同样品(如:对照、处理)通过不同发射波长的荧光素标记(如 Cy3或 Cy5等)可以同时检测多样品荧光信号。 稳定性高:较放射性同位素相比,荧光素标记的抗体、杂交探针、PCR引物等的信号稳定性优势明显,可稳定存在数月以上,这使需要大规模标记并多阵列之间的标准化比较成为了可能。 低毒性成本低:多数情况下,荧光标记和检测的全过程试验用手套即可对实验者提供足够的保护。易于运输和实验后处理,多数情况下实验成本低于放射性同位素。 商业可获得性:许多重要的荧光标记型生物大分子如各种单抗、多抗、CAT等及荧光标记用试剂盒都可以方便获得,同时一些公司提供荧光标记的外包服务。 荧光信号的产生及信号捕获原理: 荧光物质被特定外界能量激发(如激光等高能射线),引起其电子轨道向高能轨道跃迁, 并最终释放能量回归基态的过程中会产生可被检测的荧光信号。当然不是所有的物质都能被激发产生荧光,只有当该物质与激发光具有相同的频率并在吸收该能量后具有高的荧光效率而非将能量消耗于分子间碰撞过程中,其荧光信号才可被光学设备所检测(Fig.1)。 Fig.1 ①激发能②无辐射弛豫能③荧光发射能。三种荧光素(绿色:fluorescein;黄色:DNA-bound TOTO TM;红色:DNA-bound EB)的激发光波长(a)和发射光波长(b)。 荧光成像系统的组件和工作原理: 荧光物质被激发后所发射的荧光信号的强度在一定范围内是与荧光素存在的量成线性关系的,这是荧光成像系统应用于生物学研究的理论基础,激光扫描系统的性能指标主要有:系统分辨率、线性范围、均一性、灱敏度。 为了实现荧光信号的激发、捕获和放大的检测过程,按照顺序荧光成像系统主要包括以下组件:激发源(Excitation resource)、激光传输组件(Light delivery optics)、荧光收集组件(Light collection optics)、发射滤镜(Emission filter)和信号检测放大组件(Detection and amplification)(Fig.2)。在荧光成像系统工作的过程中,每个组件的性能都关系着最终荧光信号的收集和检测结果。

对于叶绿素荧光全方面的研究

对于叶绿素荧光全方面的研究 叶绿素荧光现象的发现 将暗适应的绿色植物突然暴露在可见光下后,植物绿色组织发出一种暗红色,强度不断变化的荧光。荧光随时间变化的曲线称为叶绿素荧光诱导动力学曲线。最直观的表现是,叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象。其本质是,叶绿素吸收光后,激发了捕光色素蛋白复合体,LHC将其能量传递到光系统2或光系统1,期间所吸收的光能有所损失,大约3%-9%的所吸收的光能被重新发射出来,其波长较长,即叶绿素荧光。 叶绿素荧光动力学研究的特点 1、叶绿素荧光动力学特性包含着光合作用过程的丰富信息 光能的吸收和转换 能量的传递与分配 反应中心的状态 过剩光能及其耗散 光合作用光抑制与光破坏 2、可以对光合器官进行“无损伤探查” 3、操作步骤简单快捷 光合作用的光抑制 光抑制是过剩光能造成光合功能下降的过程。过剩光能指植物所吸收的光能超出光化学反应所能利用的部分。过去人们把光抑制与光破坏等同起来,认为发生了光抑制就意味着光和机构遭到破坏。甚至把光抑制、光破坏、光氧化等,沦为一体。 光抑制的基本特征表现为: 光合效率下降说明叶片吸收的光能不能有效地转化为化学能。光破坏:PSII 是光破坏的主要场所,破坏也可能发生在反应中心也可能发生在与次级电子受体结合的蛋白上。发生光破坏后的结果:电子传递受阻、光合效率下降。当过剩的光能,不能及时有效地排散时,会对光合机构造成不可逆的伤害,如光氧化、光漂白等等。一切影响二氧化碳同化的外界因素,如低温、高温、水分亏缺、矿质元素亏缺等都会减少对光能的利用,导致过剩光能增加,进而加重光破坏。 植物防御破坏的措施 1、减少对光能的吸收 增加叶片的绒毛、蜡质 减少叶片与主茎夹角 2、增强代谢能力 碳同化 光呼吸 氮代谢 3、增加热耗散 依赖叶黄素循环的热耗散 状态转换 作用中心可逆失活 光合作用

植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一) ——FluorCam叶绿素荧光成像技术

FluorCam叶绿素荧光成像技术 Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.Plant Methods, 2013, 9:17),利用FluorCam开放式叶绿素荧光成像系统作为高通量表型分析平台,采用图像阈值分割等分析方法,对植物病原体感染进行了定量分析检测,根据Fv/Fm将感染分为不同阶段/等级,特别是可以将用其它方法难以分辨出来的感染前期加以分辨,并对5个品种的菜豆对普通细菌性疫病的抗性进行了定量分析评价。 PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术(Pulse Amplitude Modulated technique—— 脉冲调制技术)与CCD技术结合在一起,于1996 年在世界上成功研制生产出FluorCam叶绿素荧 光成像系统(Heck等,1999;Nedbal等,2000; Govindjee and Nedbal, 2000)。FluorCam叶 绿素荧光成像技术成为上世纪90年代叶绿素荧 光技术的重要突破,使科学家对光合作用与叶 绿素荧光的研究一下子进入二维世界和显微世 界,广泛应用于植物生理生态、植物胁迫与抗 性监测、作物育种、植物表型分析等。不同于 其它成像分析技术,FluorCam叶绿素荧光成像 只对叶绿素荧光波段敏感,可以有效避免环境 光的干扰,特异性、高灵敏度反映植物生理生 态状况。 主要功能特点如下: 1)高灵敏度CCD,时间分辨率可达50帧/秒,有效抓取叶绿素荧光瞬变;可选配高分 辨率CCD,分辨率1392x1040像素,用于气孔功能成像分析、稳态荧光如GFP荧光测量等

藻类叶绿素荧光仪快讯

藻类研究监测快讯 藻类是水体生态系统中的生产者,在生态系统中起着不可或缺的作用。随着能源与环境方面研究的深入,藻类已经越来越多的被利用到实验当中。叶绿素荧光是藻细胞中的叶绿素吸收光能后受激发而释放出的能量,通过检测荧光的强弱, 可初步判断藻类的光合作用强度及生理状况。该项技术使藻 类的生理生化研究变得更加简单、方便、精确。 重要参数如下: Ft瞬时荧光,与藻细胞浓度、叶绿素浓度有 关。在暗适应状态下测得的Ft值即为Fo最小荧 光值,在给予饱和光照时,即为Fm最大荧光值; QY反映藻类的光合效率,对胁迫非常敏感;暗适应条件下测得的QY值为最大光合效率值即(Fm-Fo)/Fm,反映藻类的潜在光合效率,光照下测得的QY值为有效光量子产量即(Fm’-Ft)/Fm’,反映藻类的实际光合效率。 OJIP曲线快速荧光诱导曲线,可测定藻类在由暗适应转到光照下的瞬间荧光变化,其中 FixArea与藻类叶绿素浓度 呈正相关,可作为藻类浓度 指标;PI为功能指数,对 胁迫非常敏感。有些胁迫不 会影响PSⅡ,也不会导致 QY降低,但可通过PI体 现出来,PI可以反映三个方面:反应中心密度、用于电荷分离过程的光子吸收率、电子传递效率。 NPQ 非光化学荧光淬灭,多余辐射能的散失,反映的藻类的光保护能力。 1、AquaPen探头式藻类荧光仪 AquaPen探头式藻类荧光仪用于水体微藻类的荧光测量,其高灵敏度和便携性可以对水 体较低浓度的浮游植物进行快速测量。检测极限可达0.5 μg Chl/L,测量计算参数:Fo, Ft, Fm, Fm‘, QY, OJIP, NPQ等。 光化学光和饱和光的强度在0 - 3,000 μmol·m-2·s-1可调,光 化光的持续时间可调,界面简单,易于操作,内存可达4Mb, 4节AAA电池供电,数据可通过USB数据线传至计算机或 掌上电脑。检测器前带有暗适应罩子,适合野外测量。

小动物活体成像技术_浙江大学汇总

小动物活体成像技术 李冬梅万春丽李继承 摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。 关键词:小动物;活体;成像技术 Small living animal imaging technology LI Dong-Mei1 WAN Chun-li 2 LI Ji-Cheng 1 (1Medical college of Zhejiang university,2Shanghai sciencelight biology sci&tech Co.,Ltd.)Abstract: With the development of small animal imaging technology, non-invasive imaging in small living animal models has gained increasing importance in pre-clinical research. Based on five kinds of small animal imaging special equipments, this article reviews their characteristics and illustrates their main applications. Meanwhile, this article also compares the advantages and limitations of these equipments and summarizes the trends of small living animal imaging equipments. Key words: small animal;living; imaging technology 动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发展规律和研究防治措施,同时大鼠、天竺鼠、小鼠等小动物由于诸多优势在生命科学、医学研究及药物开发等多个领域应用日益增多。近年来各种影像技术在动物研究中发挥着越来越重要的作用,涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。 动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术主要分为光学成像(optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。 活体成像技术是在不损伤动物的前提下对其进行长期纵向研究的技术之一。成像技术可以提供的数据有绝对定量和相对定量两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量[1]。其中可见光成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI介于两者之间。 1 可见光成像 体内可见光成像包括生物发光与荧光两种技术[2]。生物发光是用荧光素酶基因标记DNA,利用其产生的蛋白酶与相应底物发生生化反应产生生物体内的光信号;而荧光技术则采用荧光报告基因(GFP、RFP)或荧光染料(包括荧光量子点)等新型纳米标记材料进行标记,利用报告基因产生的生物发光、荧光蛋白质或染料产生的荧光就可以形成体内的生物光源。前者是动物体内的自发荧光,不需要激发光源,而后者则需要外界激发光源的激发[3]。 1.1 生物发光:哺乳动物生物发光,一般是将萤火虫荧光素酶(Firefly luciferase)基因整合到需观察细胞的染色体DNA上,以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时,荧光素酶也会得到持续稳定的表达[4]。标记后的荧光素酶

植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法 【实验目的】 ?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定 植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。 ?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧 光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。 ?了解荧光仪的广泛应用 【实验原理】 仪器介绍和工作原理 叶绿素荧光(Chlorophyll Fluorescence)的产生 ?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出 来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。 ?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗 散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。 ?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主 要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。 【实验内容与步骤】 一、仪器使用步骤讲解 1. 仪器安装连接 将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。 2. 开机 按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。 3. PAM-2100的键盘 PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

叶绿素荧光成像技术及其在光合作用研究中的应用

Fluorcam荧光成像技术及其在光合作用研究 中的应用 Eco‐lab生态实验室 北京易科泰生态技术有限公司 info@eco‐https://www.doczj.com/doc/5d10761395.html,

目录 1、叶绿素荧光成像技术发展过程 2、荧光参数及其生理意义 3、PSI介绍(荧光成像的发明者) 4、PSI产品介绍 5、应用案例

叶绿素荧光技术发展历程 ?Kautsky effect: Kautsky and Hirsch(1931)首次用肉眼发现叶绿素荧光现象并发表论文“CO2同化新实验”,后被称作“Kautsky effect” ?PAM(Pulse Amplitude Modulated Fluorometer): Schreiber(1986)等发明了PAM脉冲调制技术测量叶绿素荧光。?FluorCam:KineKc imaging of chlorophyll fluorescence: Ladislav Nedbal(2000)等于上世纪90年代末期发明了与 PAM技术相结合的叶绿素荧光成像技术

成像测量局部放大

荧光参数及其意义 ?Fo、Fm与QY,此外还有PAR_Abs及ETR ?Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd ?荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,NPQ,Qp,Rfd 等50多个参数 ?OJIP曲线:快速荧光诱导曲线。Fo,Fj,Fi,P或Fm,Mo(OJIP曲线初始斜率)、FixArea固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等 ?LC光响应曲线:Fo,Fm,QY,QY_Ln

叶绿素荧光仪著名厂商 ?PSI:捷克布尔诺Brno(孟德尔在此发现著名的孟德尔遗传定律),Ladislav Nedbal为首席科学家和主要股东(另一股东为David Kramer,美国密执根州立大学教授),1997年为美国华盛顿大学H.Pakrasi教授研制成了第一台FluorCam荧光成像系统。主要产品有: –FluorCam叶绿素荧光成像系列产品 –FL3500/FL5000双调制荧光仪系列产品 –FluorPen及AquaPen等手持式荧光仪产品 –光养生物反应器等藻类培养与在线监测产品 –光源与植物培养室 ?Optics:美国,主要产品为OS5p‐PAM叶绿素荧光仪等?Walz:德国,主要产品为PAM2500叶绿素荧光仪等

多功能荧光成像仪

多功能荧光成像仪 一、技术参数 1.设备用途: 采集化学发光(chemiluminescence)、比色(colorimetric)、荧光(fluorescence)及Stain-Free免染成像等核酸凝胶、蛋白凝胶、印迹膜等的数字图像,并对获得的图像进行数据分析。 2.技术规格: 2.1硬件功能 *2.1.1:功能涵盖:化学发光,光密度成像,荧光成像,Stain-Free免染成像等, 2.1.2:CCD检测器:增强型超冷CCD检测器,分辨率6.1M pixel(2,758x2,208) 2.1.3:12.1英寸触摸屏控制,支持多点触控功能(2点) 2.1.4:425nm处绝对Q/E(光电转化率)值:70%,绝对Q/E峰值:75%@525nm 2.1.5:CCD暗电流:0.002 e/p/s;CCD读出噪音:6 e-rms,提供弱光成像所 需 2.1.6:使用f/0.95快速对焦镜头,提高进光量的同时完成自动聚焦 2.1.7:自动优化曝光功能,所有成像过程均保持自动对焦 2.1.8:16bit数据采集(65,536灰度级,4.8OD),所有样品动力学范围>4个 数量级 2.1.9智能样品托盘技术,自动识别插入的样品盘类型,选择成像功能 2.1.10三种样品托盘设计:Chemi/UV/Stain-Free样品盘(化学发光、紫外和 免染样品成像);白光样品盘(将透射紫外转换为透射白光,考染、银染及其他蛋白成像);蓝光样品盘(SYBR?等荧光染料) 2.1.11:光源:反射白光,透射紫外,透射白光(可选),透射蓝光(可选) 2.1.12:滤光片转轮位置:8位(5色荧光、标准滤光片、平场校正、化学发 光) 2.1.13:紫外光源:302nm *2.1.14:最大成像面积16.8 x 21 cm

大白菜叶色突变体的HRM鉴定及其叶绿素荧光参数分析

园艺学报,():– 2014411122152224 http: // www. ahs. ac. cn Acta Horticulturae Sinica E-mail: yuanyixuebao@https://www.doczj.com/doc/5d10761395.html, 收稿日期:2014–08–22;修回日期:2014–10–24 基金项目:河北省海外高层次人才百人计划项目(E2013100011);河北省杰出青年科学基金项目(C2013204118);‘十二五’农村领域国家科技计划课题(2012AA100202-5);农业部农业科研杰出人才培养计划项目(2130106);高等学校博士学科点专项基金项目(20121302110006) 大白菜叶色突变体的HRM 鉴定及其叶绿素荧光参数分析 刘梦洋,卢 银,赵建军,王彦华,申书兴* (河北农业大学园艺学院,河北省蔬菜种质创新与利用重点实验室,河北保定 071000) 摘 要:将大白菜经甲基磺酸乙酯(EMS )诱变种子获得的42株叶色突变体按照生殖时期叶片颜色和叶绿素含量分为9种类型:深绿色、灰绿色、绿色、浅绿色、白绿色、白浅绿色、黄绿色、黄浅绿色、黄色;利用高分辨率熔解曲线(high resolution melting ,HRM )技术对叶绿素荧光基因HCF164突变进行了筛选并结合叶绿素荧光参数测定,获得了1株黄绿色高光合效率突变体A29,1株黄绿色光合结构损伤突变体A35和1株浅绿色光合电子传递受阻突变体A21;对另外7个叶色相关基因的突变进行了HRM 鉴定,表明叶绿素相关基因ATRCCR 、CLH2、PORA 突变可能是造成18个突变体叶色变化的主要原因,黄叶特异基因家族YLS 突变与叶色变化也有关系。 关键词:大白菜;诱变;突变体叶色;HRM ;叶绿素荧光 中图分类号:S 634.1 文献标志码:A 文章编号:0513-353X (2014)11-2215-10 HRM Identification and Chlorophyll Fluorescence Characteristics on Leaf Color Mutants in Chinese Cabbage LIU Meng-yang ,LU Yin ,ZHAO Jian-jun ,WANG Yan-hua ,and SHEN Shu-xing * (College of Horticulture ,Agricultural University of Hebei ,Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei ,Baoding ,Heibei 071001,China ) Abstract :Forty-two leaf color mutants of Chinese cabbage obtained through EMS seeds mutagenesis were used as materials in this study. According to leaf color and leaf chlorophyll content at generative growth mutations were suggested to be divided into 9 types :Dark green ,gray-green ,green ,light green ,white-green ,light white-green ,yellow-green ,light yellow-green and yellow. By detecting the nucleotide variation of the gene HCF164 related to chlorophyll fluorescence using HRM technology and by measuring chlorophyll fluorescence characteristics ,we identified one yellow-green leaf color mutant A29 with high photosynthesis efficiency ,one yellow-green leaf color mutant A35 with photosynthetic structure damages ,one light green mutant A21 with photosynthetic electron transport obstruction. Through identifying other 7 leaf-color-related genes by HRM ,mutation of chlorophyll-related genes ATRCCR ,CLH2 and PORA could be the main reason resulted in 18 leaf color mutants ,mutation of yellow-leaf- specific genes was also affected the variation of leaf color. * 通信作者 Author for correspondence (E-mail :shensx@https://www.doczj.com/doc/5d10761395.html, )

小动物活体成像技术的原理及操作方法

活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和FITC、Cy5、C

2. 生物发光成像 活体生物荧光成像技术是指在小的哺乳动物体内利用报告基因-荧光素酶基因表达所产生的荧光素酶蛋白与其小分子底物荧光素在氧、Mg2+离子存在的条件下消耗ATP发生氧化反应,将部分化学能转变为可见光能释放。然后在体外利用敏感的CCD设备形成图像。荧光素酶基因可以被插入多种基因的启动子,成为某种基因的报告基因,通过监测报告基因从而实现对目标基因的监测。 生物荧光实质是一种化学荧光,萤火虫荧光素酶在氧化其特有底物荧光素的过程中可以释放波长广泛的可见光光子,其平均波长为560 nm(460—630 nm),这其中包括重要的波长超过600 nm的红光成分。在哺乳动物体内血红蛋白是吸收可见光的主要成分,能吸收中蓝绿光波段的大部分可见光;水和脂质主要吸收红外线,但其均对波长为590—800 nm的红光至近红外线吸收能力较差,因此波长超过600 nm的红光虽然有部分散射消耗但大部分可以穿透哺乳动物组织被高灵敏的CCD检测到。 生物发光成像的优点可以非侵入性,实时连续动态监测体内的各种生物学过程,从而可以减少实验动物数量,及降低个体间差异的影响;由于背景噪声低,所以具有较高的敏感性;不需要外源性激发光,避免对体内正常细胞造成损伤,有利于长期观察;此外还有无放射性等其他优点。 然而生物发光也有自身的不足之处:例如波长依赖性的组织穿透能力,光在哺乳动物组织内传播时会被散射和吸收,光子遇到细胞膜和细胞质时会发生折射,而且不同类型的细胞和组织吸收光子的特性也不尽相同,其中血红蛋白是吸收光子的主要物质;由于是在体外检测体内发出的信号,因而受到体内发光源位置及深度影响;另外还需要外源性提供各种荧光素酶的底物,且底物在体内的分布与药动力学也会影响信号的产生;由于荧光素酶催化的生化反应需要氧气、镁离子及ATP等物质的参与,受到体内环境状态的影响。 二、小动物活体成像 1. 制作动物模型 可根据实验需要通过尾静脉注射、皮下移植、原位移植等方法接种已标记的细胞或组织。在建模时应认真考虑实验目的和选择荧光标记,如标记荧光波长短,则穿透效率不高,建模时不宜接种深部脏器和观察体内转移,但可以观察皮下瘤和解剖后脏器直接成像。深部脏器和体内转移的观察大多选用荧光素酶标记。 2. 活体成像 小鼠经过常规麻醉(气麻、针麻皆可)后放入成像暗箱平台,软件控制平台的升降到一个合适的视野,自动开启照明灯(明场)拍摄第一次背景图。下一步,自动关闭照明灯,在没有外界光源的条件下(暗场)拍摄由小鼠体内发出的特异光子。明场与暗场的背景图叠加后可以直观的显示动物体内特异光子的部位和强度,完成成像操作。值得注意的是荧光成像应选择合适的激发和发射滤片,生物发光则需要成像前体内注射底物激发发光。

专家解答体内荧光成像技术难点

专家解答体内荧光成像技术难点 1.如何解决组织吸收问题 来自斯坦福大学放射学系助理教授Jianghong Rao领导的研究小组在进行“Examining protease involvement in tumor metastasis and cell migration”(肿瘤转移与细胞迁移过程中涉及的蛋白酶)这一项研究中遇到了一个难题:利用标准的荧光分子标记观测深部组织,激发荧光的光源必须能穿透具有强吸收力和光散射的组织,并且当标记分子发出光时,也要能通过同样的组织块,从而被检测到。 为了解决这个难题,研究人员采用了一种称为生物发光共振能量转移(Bioluminescence Resonance Energy Transfer,BRET)的方法进行组织成像。不同于利用生物体外激发光源的能量转移方法,BRET主要依赖于生物发光的荧光素酶来提供荧光标记需要的能量转移。一般而言,进行BRET实验的研究人员是将与荧光素酶与荧光蛋白相交联,后者会吸收生物荧光,并重新发出光,但是由于这些BRET交联物的光仍然有大部分会被吸收和散射掉,因此剩下的信号依然很弱。 Rao改进了这一方法,他将荧光素酶交联在quantum dots (QDs),而不是荧光蛋白上,这就将发出的光线变成了依然是长波长,但吸收和散射不强的光。为了能对深部组织进行成像,Rao等人又将luciferase-QD这个结构连接上了一个配体——这个配体与目的分子相连。这样当将底物,复合体(包括荧光素酶的荧光基团)注入小鼠的尾静脉的时候,BRET标记就能发出两种特殊的光:蓝色的生物荧光和红色的quantum-dot光,这样就能更清楚的观测组织。 这里Rao用于解决组织吸收问题的是一类新型的荧光探针,即量子点Qdot或称为半导体纳米晶体,所谓Qdot,指的是准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米(nm)以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应(quantum confinement effect)特别显著。 这种纳米材料对于体内光学成像来说有着得天独厚的光学特点,这就是吸收性高、量子产量高、发射谱带窄、斯托克司频移大以及光褪色抗性强等,能够发射不同波长光谱,可以为单一波长所激发,适用于在一个实验中检测多靶点,因此非常适合活细胞成像和动态研究,甚至有人认为这种纳米荧光是纳米技术的真正代表,给荧光技术带来革命性的突破。 其具体特点如下: ·QDs的发射谱单一而且很“窄”。其半峰宽(FWHM)大都在40nm以下,更好的可以达到30nm甚至十几个nm,因此,QDs作为探针,可以很方便的区别于背景信号或者其它探针的信号。 ·QDs的激发谱很宽,可以在低于发射谱的广泛区间内任意选择激发波长。这个属性使得对设备(光源)的选择变得更加方便,而不必受限于特殊激光器。QDs的这个特点还可以让我们在同一固定激发波长下,同时激发不同颜色的QDs,从而使需要实时观测多种目标分子运

FluorCam叶绿素荧光成像文献 2011 Hyperspectral and Chlorophyll Fluorescence Imaging

Sensors2011, 11, 3765-3779; doi:10.3390/s110403765 OPEN ACCESS sensors ISSN 1424-8220 https://www.doczj.com/doc/5d10761395.html,/journal/sensors Article Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears Elke Bauriegel 1,*, Antje Giebel 1 and Werner B. Herppich 2 1Department of Engineering for Crop Production, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, D-14469 Potsdam, Germany; E-Mail: agiebel@atb-potsdam.de 2Department of Horticultural Engineering, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, D-14469 Potsdam, Germany; E-Mail: wherppich@atb-potsdam.de * Author to whom correspondence should be addressed; E-Mail: ebauriegel@atb-potsdam.de; Tel.: +49-331-5699-414; Fax: +49-331-5699-849. Received: 24 January 2011; in revised form: 23 March 2011 / Accepted: 25 March 2011 / Published: 28 March 2011 Abstract: Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the ?Spectral Angle Mapper‘ me thod, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation

相关主题
文本预览
相关文档 最新文档