当前位置:文档之家› 超化煤矿矿井设计

超化煤矿矿井设计

超化煤矿矿井设计
超化煤矿矿井设计

目录

第一章:井田基本概况

第二章:采区地质概况

第三章:采区储量及生产能力第四章:采区方案设计

第五章:采煤工艺

第六章:采区生产系统

第七章:采区施工设计

第八章:安全技术措施

第九章: 技术经济指标

第一章矿区概述及井田地质特征

第一节矿区概述

一、地理位置与交通

1地理位置

四矿位于河南平顶山矿区西部,平顶山市西北郊约5km,为平煤集团总公司的主干矿井之一。行政区划隶属平顶山市管辖,主井地理坐标东径113°13′26″,北纬33°47′03″。

图1 -1 四矿交通位置图

2 、范围

四矿主要开采己煤段煤层中的己15,己16-17煤层,现确定的边

界如下:

北部:以-800m底板等高线为界。东部:与三矿相接,。南部止于各煤层露头风氧化带。西部:与十一矿毗邻。

3、交通条件

井田东部和西部分别有京广、焦枝两条铁路干线穿过;东南距孟(庙)宝(丰)铁路线上的平顶山火车站9km,该站向东70km与京广铁路孟庙火车站相接;向西与宝丰火车站约28km与焦枝线相接。矿区专用铁路通过矿口与国铁接轨。公路四通八达,向北经襄城可分别至许昌、禹县、新郑、郑州;向北西经郟县至临汝、洛阳;往西经宝丰至鲁山,向南可通往叶县、舞阳、南阳等地,交通极为便利。见交通位置图

二、自然环境

1、地形地貌

平顶山煤田地处汝河以南、沙河以北的低山丘陵地带。北部主要由二迭纪平顶山砂岩组成的低山,自西向东有红石山、龙山、擂鼓台、落凫山、平顶山、马棚山等,为地表分水岭,最高点擂鼓台标高+505.60m,龙山+464.37m;南部主要由震旦纪片岩和片麻岩及寒武纪灰岩组成走向西北的丘陵山地,有蝎子山、芦山和九里山,海拔+150~158m。井田位于低山丘陵的槽形谷地之间,为一北高南低的倾斜平原。标高+90~130m。

2河流

沙河位于井田外南部,流向东南,属淮河水系,河床宽阔坡度平缓,最大流量3300m3/s;旱季流量为0.8m3/s。西南部的白龟山水库为本区最大的地表蓄水体,库容量为3.21亿m3;南部湛河呈东西向从井田南部煤层露头带经过。红旗渠自井营经九矿流入井田,为一农田灌溉水渠,此外井田内发育有多条南北向季节性冲沟,雨后洪水汇入湛河向东排泄。

3 矿区气候条件

本区属大陆性半干旱气候,夏季炎热,冬季寒冷,四季分明。最高气温42.6℃(1996年7月19日),最低气温-18.8℃(1955年1月3日),历年平均气温14.9℃,冰冻期一般为11月到次年3月。年最大降雨量1323.6mm(1964),年最小降雨量373.9mm(1966),年平均降雨量742.6mm,月最大降雨量366mm(1971年6月),雨季多集中在七、八、九月份,约占年降雨量的50%。年最大蒸发量2823.6mm(1959),年最小蒸发量1490.5mm(1964),月最大蒸发量408mm(1959年7月),月最小蒸发量40.7mm(1957年1月)。

平均绝对湿度13.5mm,平均相对湿度67%,最大冻土深度14mm(1977年1月30日)。

冬季多北风和西北风,最大风速24m/s,平均风速2.8m/s。

4水源电源

井田内第三、第四系含水量相对比较丰富,可作为矿井供水水源。平顶山各矿工业及生活用水主要以白龟山水库和沙河古河床为取水水源。但由于水量有限,先后在二矿、五矿和七矿建立水厂,对矿坑排水进行资源化处理,取得了良好的经济效益和社会效益。目前,三个矿共计理水量达5万m3/h,经化验符合饮用水标准。

五矿目前以本矿矿井排水为供水水源,主要来源于寒武纪、石炭纪灰岩裂隙岩溶含水层,取水量800~1500m3/h,日净化水量1.1~1.5万t/d。水质类型为HC03-CaMg型,经处理后各项指标均符合工业及生活用水国家标准。除供本矿工业及生活用水之外,部分供六矿用水,并将为九矿电厂提供用水。目前,供水水仓容量8500m3,二期改造后可达15000m3。

矿区内现有平顶山电厂,装机容量1.5万kW,供本区工农

业用电。

矿区里有五矿变电所,永久电源由平顶山220kV变电站供给。

第二节井田地质特征

一、井田地形及煤系地层概述

区内老地层在湛河以南,含煤地层在湛河以北的沟谷中有零星出露。低山丘陵主要由二叠系石千蜂组砂岩和平顶山砂岩组成。其余均为第四系覆盖,露头稀少。根据1:5000的地质填图和钻探工程揭露,地层从老到新主要为:寒武系、石炭系、二叠系、第三系和第四系。

二、含煤地层

井田内含煤地层为石炭系太原组、二叠系山西组,下石盒子组和上石盒子组。含煤地层厚556-1090m,平均为796m,含煤21~56层,其中有可采和局部煤层。根据岩性分为八个煤段,可采煤层以己煤段为主要煤层,并且此次设计开采己煤段(见图3-1)。现将含煤地层自老到新叙述如下:

图1-2 含煤地层柱状图

三、井田地质构造

平顶山煤田处于秦岭纬向构造带的东延部分,淮阳山宇型构造的西翼反射弧顶部,由于受纬向构造带和淮阳山宇型的双重控制和影响,形成了少许轴向NW的复式褶皱,并发育以NW 向为主的张扭性和压扭性断裂,伴有少量NE向张扭性断裂构造。向斜周缘由NW和NE向的高角度正断层切割,构成煤田的自然边界。同时,使煤田成为四周断陷盘地烘托的隆起断块。断块内构造仍以断层为主,褶皱为辅。

境内的锅底山断层,F1,F3和F6为正段断层;F2,F4,F5断层为逆断层;另外在井田内还有一些小断层,落差都是几米。

井田构造属于中等类型。

四、矿井涌水量

地质报告中预计矿井涌水量:正常500-5503/h

最大680m3/h

第三节井田煤层特征

一、煤层埋藏条件及围岩性质

本井田主要含煤地层为下二叠统山西组的己组煤。主要可采煤层为二己15,己16-17煤层

本组为含煤地层的己煤段,顶界位于砂锅窑砂岩的底界面,与下伏地层呈整合接触。

由灰~深灰色泥岩、砂质泥岩、粉砂岩、细粒砂岩和煤层组成。含煤4~5层,其中己15煤层和16-17煤层为全区主要可采煤层。底部砂岩有时相变为砂质泥岩,可作为辅助标志层(K3);中

下部的大占砂岩为细~中粒长石石英砂岩。厚0.8~28m,平均厚8m,层面上富集有大小不等的白云母片,具大型板状交错层理。其岩性和层位均较稳定,是区域性的良好标志层(K4);顶部泥岩具鲕状结构,含有褐紫色斑块,俗称小紫泥岩。本组厚53~98m,平均75m。主要化石有:

Lingula sp.(舌形贝,未定种),

Sphenophyllum thonii (畸楔叶),

Lobatannularia sinensis(中国瓣轮叶),

Cladophlebis manchurica(东北枝脉蕨),

Gigantonoclea lagrelii (波缘单网羊齿),

Emplectopteris triangularis (三角织羊齿)。

根据丰富的动植物化石和其他沉积特征,本组以潮坪和三角洲平原沉积为主。

具体平煤五矿可采煤层特征见表1-1。

二、煤层特征

1己15煤层

位于山西组下部,上距砂锅窑砂岩(K5)39~81m,平均60m。时有炭质泥岩伪顶,直接顶为泥岩或砂质泥岩,厚5~10m,老顶为中粒砂岩,厚10~20m;伪顶为炭质泥岩,底板即己16-17煤层之顶板。

己15煤层厚0.81~5.33,平均3m。煤呈块状、鳞片状、粒状,煤层结构简单,区内未见夹矸。在井田范围内,从东向西煤层厚度变簿,稳定煤层。

2 己16-17煤层

位于山西组下部,上距砂锅窑砂岩(K5)46~99m,平均70m,距己15煤层20m,有厚约0.2~0.5m的炭质泥岩伪顶,直接顶板为厚约10m的泥岩和细砂岩互层,老顶为5~8m的细~中粒砂岩;底板为厚4.8~10m的泥岩或砂质泥岩,致密坚硬。

己16-17煤层厚0.90—5.55平均3.6m。煤多呈块状、粒状、间或有鳞片状,易碎为粉末。矸,多数为一层,属结构简单型煤层。

井田内大部地段己16-17煤层为合层,仅局部地段,如43、44线之间,43-2孔以南,向西到23071切眼400m处,进入回风巷44-10孔附近,分叉为二层,夹矸厚度0.4~2.12m,平均1.05m。

据钻孔及井下揭露资料可知,己16-17煤层厚度一般较稳定,属全区较稳定可采煤层。

三、煤的物理性质

1、(1)己15煤层:

黑色,玻璃光泽,条带状结构,局部为线理状、透镜状或鳞片状结构。层状构造。硬度1~2。

(2)己16-17煤层:

黑色,玻璃光泽,多具条带状结构,层状构造,结构疏松,易成粉末。平坦状或参差状断口,硬度1~2。平均容重1.4 t/m3,据筛分试验结果,粉煤多达75%以上。原煤静止角为39.5o,摩擦角为31.4o,散煤容重为0.75t/m3。

2、煤的工业分析

煤的工业分析表1-2

3、瓦斯、煤尘及自燃

①瓦斯:井田内瓦斯含量不高相对瓦斯涌出量为1.3 M3/吨。

确定设计按低瓦斯矿井考虑。

②煤尘:经鉴定,一般无煤尘爆炸危险。设计按无煤尘爆炸

危险考虑。

③自燃自燃发火期为6个月。

四、矿井工作制度

矿井工作日为30 0天,日工作班数为4班,其中三班生产,

一班检修,每天净提升时间为14小时。

五、矿井设计生能力

经过矿井的建设,矿井的主要生产环节已经形成,矿井设

计产量在0.9M/t左右,

对于技术改造后的矿井规模,实际认为1.16M/t比较合适。主要理由如下:

1、矿井储量是决定矿井生产能力的关键,本矿井—800水平以上保有地质储量约107.78Mt,可采储量62.60Mt,生产能力为1.5Mt/a, 矿井的服务年限为32.1年。对于技术改造后的矿井,该矿井服务年限符合要求。

2、矿井的构造因素:矿井走向长2000,倾向长1000m,其中南部有1.0km 深处于五条断层之间,北部有0.6km在3条断层之间,煤层被切割成大小不等的块段,不能布置综合机械化工作面。3.矿井的开采技术条件:本矿井为高瓦斯矿井,瓦斯相对涌出量1.3M3/t。

第四节矿井开拓、采区布置及工作面装备

一、矿井开拓

矿井开拓方式为立井开拓,工业广场布置有一对立井。矿井共分三个水平,水平标高分别为-68m,-291m,-550m。-291m,-550m 水平采用暗井延伸(并作为采区下山、每水平布置有胶带输送机,轨道和进回下山各一条)。矿井的通风方式为分区对角式。

矿井共有五个井筒,分别主立井、副立井、南翼斜风井、南翼回风立井和北翼回风立井。主立井净直径5m,井深291m,承担煤炭提升任务,副立井净直径6m,井深256m,承担辅助提升任务,南翼斜风井斜长273m,断面9.4m3,承担安全出口任务,南翼回风立井净直径4.5m,井深491m,承担南翼采区回风,北翼回风立井净直径6m,井深314.1m,承担北翼采区回风。

矿井-69m水平已经开采完,目前生产主要集中在-291m水平。

三矿为高瓦斯矿井,通风方式为中央对角式,核定通风能力为1.508Mt/a,主井、副井通风,南北翼风井回风。随着矿井开采的延深,辅助运输路线增长,加上一些主要巷道损坏严重通风风阻较大。

二、采区布置

目前开采采区为30采区和31采区,30采区进风下山,独立会风下山,三水平胶带运输机下山、三水平行人下山和三水平排水泵房,中央变电所,水仓的硐室已施工,北大巷也已经开拓1000 余米,尚有1200米没有施工,31采区目前已经开采一个区段。矿井采煤方法为走向长壁后退式一次采全高放顶煤开采,全部跨落法管理顶板,目前矿井有四个工作面生产,其中两个为综采放顶煤工作面,两个为炮采放顶煤工作面。

三、工作面装备

综采工作面设备选用MG200-W型可调双滚筒采煤机,

2F2000/16/242D型放顶煤液压支架,SGD-630/220型刮板运输机。工作面实际生产能力在0.3-0.5Mt/a左右。矿井共有十个掘进工作面,其中岩巷掘进工作面五个,煤巷掘进工作面五个。

煤巷掘进工作面配备煤电钻、刮板输送机、胶带输送机、局部通风机、污水泵的设备。

岩巷掘进工作面配备YF24风动凿岩机,5t蓄电池电机车、调度绞车、锚喷设备等。

第五节井下运输

井下煤炭运输采用胶带运输机运输,二水平主皮带型号为DX-1000,铺设斜长为1375m,坡度170。胶带采用ST-3150型,带宽1m带速2.4m/s,电机功率为2*380kw,控制柜为KYGG-6型。

大巷辅助运输采用8t蓄电池牵引900mm轨距2t固定矿车。

第六节提升、通风、排水设备

一、提升设备

提升系统主要负担原煤的正常运输。装备2JK-4/20型双滚筒提升机,电动机型号为JRZ800-12, 功率800kw(一台),电控设备型号为TKD-A2-89系列。提升容器JQZ-8性标准箕斗(2个),一次提升为8t,核定提升能力为1.5275Mt/a。

提升系统主要负担矿井上下人员、设备和材料。装备

2JK-3/20A型双滚筒提升机,电动机型号为JRQ158-8,功率为380kw(1台),电控设备型号为TKD-A-1系列。提升容器为2t单层单车罐笼,核定提升能力为1.544 Mt/a。

二、通风设备

通风方式为中央对角式,核定通风能力为1.508 Mt/a。主井、副井进风,南、北翼风井回风。目前北翼风机静压3780Pa,装备2台,2K60-4NO-24型风机。南翼风机静压3953Pa,装备2

台G4-73- NO-280型风机。

三、排水设备

矿井井下排水采用混合排水方式,一水平(-68m)泵房直接排到地面,三水平(-550m)泵房排至二水平(-291m)泵房,由二水平泵房排至井上。

1、一水平中央泵房(标高-68m)

泵房内装备五台MD280-43*8型水泵,配备JSQK148-4型电机,功率为440kw,水仓容重为2000M3,排水能力为560M3/h,

2、二水平中央泵房(标高为-291m)

泵房内安装三台D450-60*9型水泵,配备JSQ1512-4型电机,功率为1050kw,水仓容重为3480 M3,排水能力为900M3/h。

3、三水平中央泵房(标高-550m)

泵房装备四台D450-60*5型水泵,配备JSQ158-4型电机,为680kw,水仓容重为3358 M3,排水能力为900M3/h

第二章采区地质情况概述

第一节采区位置

1.采区在矿井中的位置

本采区是一水平北翼一采区,该采区东部是已采空的二采区,西部是已采空的三采区,上部和下部是尚未开采的实体煤。

2.采区在地面的位置以及地面设施

本采区地面相对位置在东马驹河村的南部,工业广场的东北部,上方是马驹河村和马驹河水库,地面由南向北倾斜。

第二节采区地质构造

1.根据实测资料,以及开拓现场提供的资料,本采区顶板无褶曲及断层等地质构造情况其采区的基本顶为碳酸岩,其直接顶为致密粉沙岩,节理、裂隙不发育,厚度为4m,伪顶为0.5m厚的砂岩,其特性为随采随落。

2.根据实测资料及开拓现场提供的资料,本采区底板亦无褶曲以及断层等地质构造。其直接底为冲水石灰岩。

3.采空区顶底板的特性。采空区的处理可使用全部垮落法处理。

第三节煤层及顶底板特性

1.采区可采煤层煤的概况。

根据实测资料可知,该三采区可采煤层的层数为亦层,本采区可采煤为二一煤,瘦煤,可采煤的煤厚为四米,并含有少量夹矸,其倾角为15°,走向为NW10°---NE20°,其可采煤层煤的容重为1.4t/m3,可采煤层煤的赋存情况稳定,且无尖灭等情况出现。

2.采区瓦斯涌出情况。

根据实测资料,本采区相对瓦斯涌出量为不高,由此可确定,该采区为低瓦斯采区。

3.采区煤层自燃自然发火期为6个月.

4.采区煤层地质构造情况

由实测资料,该采区无断层、褶曲的地质构造出现,节理不发育,其煤层平均可采厚度为3m,瘦煤,并含有少量夹矸,煤层赋存稳定。

5.采区煤层的顶底板情况

根据实测资料,以及开拓现场提供的资料,本采区顶板无褶曲及断层等地质构造情况其采区的基本顶为碳酸岩,其直接顶为致密粉沙岩,节理、裂隙不发育,厚度为四米,伪顶为0.5m厚的砂岩,其特性为随采随落。

根据实测资料及开拓现场提供的资料,本采区底板亦无褶曲以及断层等地质构造。其直接底为冲水石灰岩。

第四节煤尘情况

由实测资料,该采区煤层为二一煤,瘦煤,可采煤层为一层,可采厚度为3m,含少量夹矸,煤层赋存稳定,其煤尘爆炸指数为8,因此该采区的煤尘无爆炸性,主要做好综合防尘工作即可。详见第八章。

第五节可能影响本采区开采的其他条件

1.采区水源

根据实测资料,本采区的煤层赋存较为稳定,无褶曲断层等地质构造出现,顶底板较稳定,顶底板为中等硬度的II型,其底板石灰岩中存在冲水的情

煤矿矿井初步设计和采区设计说明

煤矿矿井初步、采区设计 一、设计原则 ㈠遵循国家发布的与煤矿建设项目有关的政策、规程、规。 ㈡遵循上一阶段设计中所确定的主要技术原则及标准。 ㈢提高设计水平,保证设计质量。使设计的矿井实现技术先进,经济合理,安全可靠。 二、设计的主要依据 ㈠已批准的煤矿矿井地质报告。 ㈡国家有关煤炭工业的技术政策、规程和规等。 ㈢其他有关支撑性文件及材料,如采掘工程平面图,煤层自燃倾向性、煤尘爆炸危险性、瓦斯等级鉴定报告等。 三、设计的主要程序及步骤 ㈠煤矿矿井设计的主要程序 可行性研究报告→项目申请报告→初步设计及安全专篇(其他专项设计,如瓦斯抽采工程初步设计、防治煤与瓦斯突出专项设计)→施工图设计。 ㈡煤矿矿井设计的主要步骤

1、学习有关煤矿生产、建设的政策法规,收集有关地质和开采技术资料,掌握上级管理部门对设计的具体规定。 2、明确设计任务,掌握设计依据。 3、深入现场,调查研究。 4、研究方案,编制设计。 四、初步、采区设计的主要容 初步、采区设计的主要容分为说明书、图纸、设备清册及概算书。 按照煤矿安全监察局、省煤炭工业局下发的《省小型煤矿(井工、露天)初步设计及初步设计安全专篇编制指导意见(试行)》、《煤炭工业五项设计编制容》及《煤炭工业矿井工程建设项目设计文件编制标准》(GB/T50554-2010)等的要求,说明书主要容为前言、井田概况及地质特征、井田开拓、大巷运输、采区布置及装备、矿井通风、矿井主要设备、地面生产系统、地面运输、总平面布置及防洪排涝、电气及通信、地面建筑、给排水、采暖及供热、节能减排、职业安全卫生、环境保护与水土保持、建井工期、技术经济等18个章节。 图纸主要分为采用及新制图,其中新制的图纸主要有矿井开拓方式平剖面图、采区布置及主要机械设备布置平剖面图、巷道断面图册、矿井通风系统网络图、矿井反风系统图、工业场地总平面布置平面图、地面生产系统布置平面图、矿井地面总布置平面图、井下消防及防尘洒水平面图、通信系统图、井上下供电系统图、传感器布置平面图、监测监控系统平面图、井下压风管路系统图、矿井运输线路系统图等。

矿井通风设计-毕业论文

辽源职业技术学院 毕业综合实训报告 题目:矿井通风设计 专业班级: 设计人: 指导人: 20XX年X月XX日

目录一、矿井通风设计的内容与要求 5 (一)矿井基建时期的通风 5 (二)矿井生产时期的通风 5 (三)矿井通风设计的内容 6 (四)矿井通风设计的要求7 二、优选矿井通风系统7 (一)矿井通风系统的要求7 (二)确定矿井通风系统8 三、矿井风量计算8 (一)矿井风量计算原则8 (二)矿井需风量的计算8 1.采煤工作面需风量的计算8 2.掘进工作面需风量的计算11 3.硐室需风量计算13 4.其他用风巷道的需风量计算机14 四、矿井通风总阻力计算15 (一)矿井通风总阻力计算原则15 (二)矿井通风总阻力计算15 五、矿井通风设备的选择16

(一)主要通风机的选择17 六、概算矿井通风费用21

前言 通风是关系到煤矿生产安全的重要环节。确保通风系统的稳定可靠,要做到随矿井生产变化即时进行通风系统改造与协调,严格控制串联通风,强化局部通风管理,杜绝局部通风机无计划断电,做到通风系统正规合理、可靠、稳定.

矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。 第一章矿井通风设计的内容与要求 矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通

风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。 矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。 第一节矿井基建时期的通风 矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 第二节矿井生产时期的通风 矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况: (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。 (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。 矿井通风设计所需要的基础资料如下:

鹤岗矿业集团峻德煤矿240万吨年新矿井设计

摘要 本设计矿井为鹤岗矿业集团峻德煤矿240万吨/年新矿井设计,共 有2层可采煤层17#、21#。煤层工业牌号为1/3焦煤,设计井田的可 采储量20700Mt,服务年限为61a。设计采用以双立井为主的联合开拓 方式,划分两个水平,六个采区。达产时采区为一采区和二采区,各 布置一个工作面,联合布置,17#、21#层单独开采。采煤方法为走向 长壁下行垮落采煤法,采煤工艺为综合机械化放顶煤工艺,顶板处理 方法为全部垮落法。 矿井通风方式为分区式,通风方法为抽出式,采区通风系统为轨道上山和运输上山进风,回风上山回风,采煤工作面采用“U”型上行式通风,掘进工作面采用压入式通风,矿井容易时期设计需风量为139 m3/s,困难时期设计需风量为146m3/s。进而选出矿井主要通风机型号为BD NO-22,电动机型号为YB355M2-8,且对矿井所需通风构筑物进行布置。 关键词:通风设计矿井通风系统通风阻力

Abstract The design of mine for Hegang Junde Coal Mining Group 2,400,000 tons / year of new mine design, a total of 2 coal seam layer 17 #, 21 #. Industrial grade coal is 1 / 3 coking coal, the design of mine recoverable reserves of 20700Mt, length of service for the 61a double shaft design combined to open up the way, divided into two levels, six mining area. Mining area at the middle of a mining area and the second mining area, the layout of a face, a joint arrangement, 17 #, 21 # layers separate mining. Mining methods to falling down a long wall coal mining law, mining technology for integrated mechanized top coal caving technology approach for the entire roof falling Act. Mine ventilation for partition type, the method of taking the type of ventilation, ventilation systems for the mining area and transport up the mountain track up the mountain into the wind, to wind up the mountain back to the wind, coal face using "U"-type upstream ventilation, the use of heading face pressure-in ventilation, mine design to be easy to time the wind was 139 m3 / s, designed to be a difficult time for the air flow 146m3 / s. Elected to the main mine fan model BD NO-22, the motor model YB35M2-8, and the structure of the mine ventilation required to set up their equipment. Key words :ventilation design mine ventilation system ventilation resistance

第七章---矿井通风系统与通风设计

第七章 矿井通风系统与通风设计 本章主要内容 1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择 2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统 3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施 4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择 5、可控循环通风 第一节 矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。 一、矿井通风系统的类型及其适用条件 按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。 1、中央式 进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。 2、对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果 只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。 在井田的每一个生产区域开凿进、回风井, 分别构成独立的通风系统。如图。 4、混合式 由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。 二、主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。 1、抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2、压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。 3、压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。 三、矿井通风系统的选择 根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。 中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采 用。

煤矿排水系统设计说明书

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井井口低273m,排水设备工况扬程低,水泵级数少,设备投资省,电耗低。

煤矿开采毕业设计

毕业设计题目:王屋山煤矿煤层开采设计 姓名: 系部: 班级: 指导教师: 2011 年12 月29 日

目录 第一章井田概况及地质特征 (4) 第一节井田概况 (4) 第二节地质特征 (6) 第二章井田境界及储量 (8) 第一节井田境界 (8) 第二节埋藏储量 (8) 第三章矿井设计生产能力及服务年限 (10) 第一节工作制度 (10) 第二节矿井设计生产能力及服务年限 (10) 第四章井田开拓 (12) 第一节井田地质、老窑及水文对开采的影响 (12) 第二节矿井开拓方式的确定 (12) 第五章矿井基本巷道 (17) 第一节井筒 (17) 第二节井底车场 (20) 第三节主要开拓巷道 (23) 第六章采煤方法和采区巷道布置 (26) 第一节煤层地质特征 (26) 第二节采煤方法 (28) 第三节采区巷道布置及生产系统 (30) 第四节采掘计划 (32) 第七章井下运输 (34) 第一节概述 (34) 第二节主井提升 (34) 第三节副井提升 (37) 第八章矿井通风与安全 (38) 第一节矿井通风系统的选择 (38) 第二节采区所需风量 (40)

第九章矿井排水 (41) 第一节概述 (41) 第二节排水设备 (41) 第十章动力供电及照明 (42) 第一节供电 (42) 第二节照明 (42) 结束语 (44)

第一章井田概况及地质特征 第一节井田概况 一、交通位置 王屋山煤矿位于济源市王屋乡铁山河附近的煤窑沟一带,东距济源市约40km,行政区划隶属王屋乡管辖。矿区西起铁山河,东到汗沟脑,南自汗沟河,北止封门口断层。其地理坐标为东经112°14′26.8″—112°15′41.4″,北纬35°09′12.9″—35°09′46.9″,矿区东西长约1874m,南北宽约1011m,面积1.02km2。 矿区所在地交通较为方便,济源—侯马主干公路从王屋经过,王屋—铁山河支线公路从矿区南部通过,铁山河—矿区有简易公路相通,见图1-1-1。 图1-1-1 矿区交通位置图 二、地质地形及水源情况 矿区位于王屋山与太行山的接合部位,区内地势北高南低,以封门口断层为分界线,以北为中高山区,以南为低山区,区内海拔最高621.1m,最低

矿井通风系统与通风设计

矿井通风系统与通风设计 本章主要内容 1,矿井通风系统----类型,适应条件,主要通风机工作方式 ,安装地点,通风系统的选择 2,采区通风----基本要求,进回风上山选择,采煤工作面通风系统 3,通风构筑物及漏风----风门,风桥,密闭,导风板;矿井漏风,漏风率,有效风量率,减少漏风措施 4,矿井通风设计----内容与要求,优选通风系统,矿井风量计算,阻力计算,通风设备选择 5,可控循环通风 第一节矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气,排出污浊空气的通风网路,通风动力和通风控制设施的总称. 一,矿井通风系统的类型及其适用条件 按进,回井在井田内的位置不同,通风系统可分为中央式,对角式,区域式及混合式. 1,中央式 进,回风井均位于井田走向中央.根据进,回风井的相对位置,又分为中央并列式和中央边界式(中央分列式). 2,对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果只有一个回风井,且进,回风分别位于井田的两翼称为单翼对角式. 2)分区对角式 进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷. 3,区域式 在井田的每一个生产区域开凿进,回风井,分别构成独立的通风系统.如图. 4,混合式 由上述诸种方式混合组成.例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等. 二,主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式,压入式,压抽混合式. 1, 抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态.当主要通风机因故停止运转时,井下风流的压力提高,比较安全. 2,压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态.在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出.当主要通风机因故停止运转时,井下风流的压力降低. 3,压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作.通风系统

煤矿矿井初步设计编制大纲

前言 一、编制设计的依据 二、设计的指导思想 三、设计简况 四、主要技术经济指标 五、存在的问题及建议

第一章井田概况及地质特征 第一节井田概况 一、交通位置 二、地形地貌 三、河流 四、气象及地震 五、矿区经济概况 六、矿区煤炭生产建设概况 七、交通运输 八、电源、水源 第二节地质特征 一、地层 二、构造 三、煤层及煤质 四、水文地质条件 五、工程地质条件 六、环境地质条件 七、其它开采技术条件 八、勘探程度及可靠性

第二章井田开拓 第一节井田境界及储量 一、井田境界 二、矿井储量 第二节矿井设计生产能力及服务年限 一、矿井工作制度 二、矿井设计生产能力 三、矿井服务年限 第三节井田开拓 一、井田地质构造、老窑及水文地质条件对矿井开采的影响 二、矿井开拓 三、水平划分 四、大巷布置 五、采区划分及开采顺序 第四节井筒 一、主斜井 二、副斜井 三、回风平硐 第五节井底车场及硐室 一、井底车场形式 二、井底车场硐室

三、井底车场主要巷道和硐室支护

第三章大巷运输 第一节运输方式选择 一、运输方式 二、主要运输巷道断面、支护方式、坡度及钢轨型号 第二节矿车 一、矿车选型 二、矿车数量计算 第三节运输设备选型 一、设计依据 二、设计选型

第四章采区布置及装备 第一节采煤方法 一、采煤方法的选择 二、工作面设备选型 三、工作面支架与顶板管理方式 四、工作面回采方式 五、采煤工作面的循环数、年进度及工作面长度 六、采区及工作面回采率 七、生产时主要材料消耗指标 第二节采区布置 一、移交生产和达到设计生产能力时的采区数目、位置和工作面生产能力计算 二、采区尺寸、开采顺序及回采方式 三、采区巷道布置 四、采区车场、装车点及硐室 五、采区煤、矸运输、辅助运输及设备选择,采区通风和排水 第三节巷道掘进 一、巷道断面及支护形式 二、巷道掘进进度指标 三、掘进工作面个数及掘进设备配备 四、采掘比例关系和掘进率、矸石率预计 五、井巷工程量和移交生产时的三个煤量

矿井通风系统设计

课程设计说明书 设计题目: 矿井通风系统设计 助学院校: 理工大学 自考助学专业: 采矿工程 姓名: 自考助学学号: 成绩: 指导教师签名: 理工大学成人高等教育 2O 年月日

前言 矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排出各种粉尘及有毒有害气体,创造良好的气候条件,为井下作业人员提供安全舒适的工作环境。随着浅部矿产资源的日渐枯竭,矿产资源开采向纵深发展是必然的趋势。随着开采深度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。因此,矿井通风与安全的意义将更加重大。 80年代以来,随着煤矿机械化水平的提高,采煤方法和巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步。通风管理日益规化、系列化、制度化,通风新技术和新装备越来越多地投入应用,以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使矿井通风更好地为高产、高效、安全的集约化生产提高安全保障。 近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验、借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。为适应生产集中化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百座国有煤矿进行通风系统优化改造,配合一批有条件的生产矿井通过合并井田、扩大开采围、增加储量进行改扩建的任务。

青海煤业集团鱼卡煤矿矿井通风设计说明书(全)

青海煤业集团鱼卡煤矿矿井通风设计说明书 2013年元月

目录 (一)、矿井概况 (3) (二)、确定矿井通风系统和通风方式 (5) (三)、矿井总风量计算与分配 (6) 1、矿井需风量计算 (6) 2、矿井总风量的分配 (13) (四)、矿井通风总阻力计算 (14) 1、绘制通风网络图(附图1) 2、选择通风容易、困难时期线路 (15) 3、各段风阻计算(附表1) 4、总阻力计算 (15) 5、矿井等积孔计算 (15) (五)、选择矿井通风设备 (15) (六)、矿井通风费用概算 (18)

一、矿井概况 1、地理位置 青海省能源发展集团鱼卡公司属于国有制企业。位于青海省海西州大柴旦镇镜内,地界属于大柴旦镇管辖,距该镇50Km。青(海)—新(疆)公路(315国道)从鱼卡井田北侧通过,距矿井3.0Km;格(尔木)——柳(园)公路从井田东侧经过,距矿井约5.0Km;矿区东南距青藏铁路锡铁山火车站120Km (格尔木公路相通),交通比较便利。本区地理位置为东经94°52′40"—94°55′28",北纬38°00′36"—38°02′24"。 2、井田境界 鱼卡井田属于鱼卡矿区尕秀段区,位于绿梁山北侧的皱褶带中,该皱褶带是主要控制煤系地层的构造,为东西向较为平缓的复试断裂皱褶共存的构造,井田内两条逆断层F2和F4,处于井田的东部和背部,并作为井田的东部边界。区内钻孔揭露的底层从上而下有四系,第三系、侏罗系、石炭系、奥陶系、远古界地层。主要含煤层为侏罗系大煤沟地层,煤厚在70—130之间。共有七层,从上而下1—4为不可采煤层,5—6为局部可采煤层,只有7为井田内主要可采煤层。 3、储量 井田面积4.15km2,区内原探明储量13230万吨,其中煤7:12153万吨,煤6:801万吨,煤5:276万吨。动用资源储量(2003年10月为准)25.8万吨。合计保有资源储量13204,2万吨。青煤鱼卡公司90万吨/年矿井建设项目于2007年5月竣工建成,5月22日投入试生产。 本区一井田90万吨/年矿井,经省发改委批准于2003年开工,2007年5月22日投入试生产,设计年产90万吨,2007年5月22日进入试生产阶段,在此期间,各项技术、经济指标均达到规范要求。2008年5月22日经过竣工验收,顺利进入正常生产阶段,至目前按设计生产能力正常生产。 4、开拓及采煤方式

淮北矿业集团石台煤矿初步设计采矿工程毕业设计论文

淮北矿业集团石台煤矿初步设计 摘要 本设计的井田面积为20.1平方千米,年产量120万吨。井田内煤层赋存比较稳定,煤层倾角8-22°,平均煤厚3.48m,整体地质条件比较简单,在井田范围南部和中央均有断层发育。瓦斯和二氧化碳含量相对不高,涌水量也不大。根据实际的地质资料情况进行井田开拓和准备方式的初步设计,该矿井决定采用三立井上山开采,煤层分采区上山联合布置的开拓方式,设计采用综合机械化一次采全高回采工艺,走向长壁采煤法,用全部跨落法处理采空区。并对矿井运输、矿井提升、矿井排水和矿井通风等各个生产系统的设备选型计算,以及对矿井安全技术措施和环境保护提出要求,完成整个矿井的初步设计。矿井全部实现机械化,采用先进技术和借鉴已实现高产高效现代化矿井的经验,实现一矿一面高产高效矿井从而达到良好的经济效益和社会效益。 关键词:立井、走向长壁、一次采全高、综合机械化、高产高效

Abstract These designed allotment area for 20.1 square kilometers,Yearly Output 120 trillion. Allotment intrinsically ocurrence of coal seam compare stabilize,coal seam pitch 8-22acid,average coal thick 3.48m,integrally nature condition compare simplicity,at allotment scope east normalizing function of the stomach and pleen center equal have got dislocation upgrowth. Both methane and carbon dioxide content relatively do not high, and neither do inflow of water no large either. On the basis of Preliminary Design,said shaft opt in adopt three vertical shaft fluctuate mountain exploitation,coal seam grouping band region fluctuate mountain co- disposal 'mode of opening,design adopt comprehensive mechanization full-seam mining stopper art,Alignment longwall method,treat goaf with whole straddle alight law from actual geologic information instance proceed allotment exploit and stand-by mode. The Preliminary Design of the both combine versus mine haul, shaft exaltation, shaft drain and ventilation of mines isopuant systemic equipment lectotype count,as well as versus shaft technical safety measures and environmental protection claim,complete wholly shaft. Both shaft whole realize mechanization,adopt advanced techniques and use for reference afterwards realize high yield highly active modernization shaft 'experience,realize one mine not both high yield highly active shaft thereby run up to favorable economic benefit and social benefit. Keywords: Vertical shaft, Alignment long wall , full-seam mining, comprehensive mechanization, high yield highly active.

2019煤矿矿井供电设计

新临江煤矿(水井湾矿井) 供电设计 (一)矿井电源 设计矿井采用两回电源线路供电,一回、二回电源来自大竹木头变电站不同电源母线端,电压10kV ,供电距离2km ,采用一趟LGJ-3×70型架空线路输送至地面变电所。 (二)电源线路安全载流量及电压降校核 1、按经济电流密度选择电源线路截面 全矿计算电流: ) (A 17.699 .01032 .1078=??= I 14.6015 .117.69===J I A n e 2mm 来自大竹县木头变电站的不同母线段导线型号均采用LGJ-3×70。 2 mm <702 mm ,满足供电要求,并留有余地。 式中:矿井最大有功负荷。 2、按长时允许负荷电流校验电缆截面 线路LGJ-3×70允许载流量:环境温度为25℃时为275A (查表),考虑环境温度40℃时温度校正系数,则Ix=275×=(A ) Ix=>I= 3、电源线路压降校核 供电线路LGJ-3×70/10kV 单位负荷矩时电压损失百分数:当cos ∮=时为%/(查表) 则电源线路电压降为:△U 1%=×2×%=%<5% 式中:电源线路长取2km 。 来自大竹县木头变电站不同母线段两回电源线路电压降均符合要求。 (三)电力负荷 1、矿井采用机械化采煤,投产时期即为最大负荷时期。机电设备布置及使用情况统计详见表10-1。 设备总台数 47台 设备工作台数 36台 设备总容量 设备工作容量 有功负荷 无功负荷 视在功率 功率因数 按补偿后功率因数达到约,则所需补偿电容容量为 ??? ? ??---=1cos 11cos 1202??P Q ??? ? ??-?--?=195.095.01 182.082.012.1078Q = 考虑到电容易的配置及矿井负荷的变化情况,变电所电容易室安装BFMR11-420-3W 型高压电容自动补偿装置2套,补偿无功功率420kvar 。补偿后: 无功功率: 视在功率:

矿井通风设计范例.

4 矿井通风 4.1 通风系统 4.1.1 通风系统 4.1.1.1 通风方式和通风方法 根据煤层赋存条件,矿井采用平硐开拓,根据矿井开拓方式,本矿井走向较短,只有一个采区的走向长度,采用分列式通风方式,抽出式通风方法,采煤工作面利用全矿井负压通风,采用“U”型通风方式,掘进工作面采用局部通风机压入式通风。 4.1.1.2 通风系统 根据矿井开拓部署,该矿为平硐开拓方式,主平硐、副平硐和后期排水进风行人平硐进风,回风平硐回风。 矿井初期主要通风线路为: 主平硐/副平硐→+1690m水平运输巷/+1690m双龙炭运输巷 /+1728m运输巷/+1728m双龙炭运输巷→+1690m运输石门/+1728m运输石门→一采区轨道上山/一采区行人上山→+1756m运输石门→11011工作面运输巷→11011采煤工作面→11011工作面回风巷→回风石门 →+1798m正炭回风巷→总回风斜巷→+1788m总回风巷→回风平硐→ 地面。 矿井后期主要通风线路为: 主平硐/副平硐/排水进风行人平硐→+1690m水平运输大巷/+1728m运输巷和通风行人斜巷/+1630m排水行人巷→二采区轨道上山/二采区行人上山→+1548m水平运输巷→三采区轨道上山/三采区行人上山→区段运输石门→23013工作面运输巷→23013采煤工作面→23013工作面回风巷→区段回风石门→三采区回风上山→回风暗斜井→总回风斜巷→+1788m总回风巷→回风平硐→地面。

矿井初期开采一采区时为通风容易时期,后期二、三采区同采时为通风困难时期。通风系统图(初、后期)和通风网络图(初、后期)详见图C1795-171-1(修改)、C1795-171-2(修改)。 4.1.1.3 井筒数目、位置、服务范围及时间 矿井开采一采区时有3个井筒,即:主平硐、副平硐和回风平硐,主平硐、副平硐进风,回风平硐回风。矿井二、三采区开采时4个井筒,即主平硐、副平硐、排水进风行人平硐和回风平硐。主平硐、副平硐和排水进风行人平硐进风,回风平硐回风。各井筒均位于井田东部。主平硐为改造利用原基地一号井主平硐;副平硐为改造利用原基地一号井副主平硐;回风平硐为改造利用原基地一号井回风平硐;排水进风行人平硐为改造利用原顺风煤矿主平硐。矿井回风平硐井口坐标为:X=3278284,Y=18267648,Z=+1788.867,服务于全矿井生产期间。 通风系统(初、后期)详见图4-1-1、4-1-2; 通风网络(初、后期)详见图4-1-3、4-1-4。

矿井通风设计说明书

矿井概况 一、矿井位置与交通 渑池县九六八煤矿位于渑池县坡头乡不召寨村北500m,南距县城12km,有简易公路与县城相通,连霍高速公路、310国道、陇海铁路、南闫公路从县城穿过,交通便利。本井田走向长2275m,倾斜宽约1570m,井田面积3.889km2。 二、煤层储量 根据河南省国土资源厅2007年3月6备案的《河南省渑池县九六八煤矿资源储量核查报告》矿产资源储量评审备案证明,矿井资源储量 1438.4万t,累计动用资源储量97.9万t,保有资源储量1340.5万t,可采储量759万t.采矿许可证批准开采煤层为:二1煤层,矿井服务年限为14.6年。 三、水文、地质 矿井水文地质类型:简单。 矿区地表迳流主要为洪流,由于排泄较畅,隔水层较厚,一般情况不会直接进入矿井。 开采二1煤层时进入矿井的地下水,主要来自顶板直接充水含水层。奥陶系灰岩水与太原组灰岩水在断层破碎带附近、底板隔水层厚度较薄等地段有可能涌入到矿坑,因此我矿对防治水工作做了大量工作,先后进行了物探和底板加固工作,矿井正常涌水量83m3/h,最大涌水量115 m3/h,井田内上部有老空区已通过中国地质总局瞬变

电磁查清,故在采掘过程中我矿坚持“有掘必探,先探后掘”的探放水原则。 四、开采技术条件 我公司开采的二煤层经2014年2月27日洛阳正方圆重矿机械检验技术有限责任公司检验结果煤层不易自燃,自然倾向分类为Ⅲ级。 根据2013年4月义煤煤业集团股份有限公司瓦斯研究所编制完成的《渑池县九六八煤业有限公司二1煤层瓦斯基础参数测定报告》,对九六八煤业公司二1煤层瓦斯含量、瓦斯压力(间接)、瓦斯放散初速度、煤的吸附常数、煤的坚固性系数和工业分析等参数的测试结果,实测煤层瓦斯含量在2.72m3/t~4.17 m3/t之间,最大值为4.17 m3/t,煤样瓦斯含量的平均值为3.29 m3/t。根据河南省瓦斯治理研究院有限公司2013年9月3日瓦斯等级鉴定结果,矿井绝对涌出量 0.7 m3/min,相对涌出量3.78 m3/t. 五、矿井开拓开采系统 1、矿井井筒布置:矿井采用三立井上、下山开拓,即:主井、副井和风井。 2、井筒主要功能:主立井担负提煤、进风兼做安全出口;副立井担负升降人员、材料入井和提升矸石等任务,兼做安全出口;风井为专用回风井。 3、水平划分、采区布置 矿井设一个水平开采,标高为+340m;矿井划分二个采区,即:12采区和22采区。

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

矿井建设初步设计说明

第一章概况 第一节目的任务 为加强煤炭资源开发利用的宏观调控,全面提高煤炭资源开发利用水平,改善矿井安全生产环境,进一步提高矿井生产能力和技术水平,做到合理利用和有效保护资源,进行煤炭资源整合已势在必行。根据省煤矿企业兼并重组整合工作领导组晋煤重组办发【2009】108文批复精神,由主体企业无烟煤矿业集团有限责任公司将####县龙潭沟煤矿、####家村煤矿等二座煤矿及新增区兼并重组整合为一个矿井,整合后的矿井名称为############煤业有限责任公司。其中####家村煤矿整合后不在############煤业有限责任公司井田。2009年12月22日省国土资源厅颁发的C9873号采矿许可证,批采10号煤层,整合后生产能力为45万t/a,为了满足矿井改扩建初步设计的需求,矿方委托克瑞通实业补充勘探并编制《############煤业有限责任公司兼并重组整合矿井地质报告》。 编制报告依据的有关文件及主要地质依据: 1、《中华人民国矿产资源法》; 2、《省矿产资源管理条例》; 3、《煤、泥炭地质勘查规》(DZ/T0215-2002); 4、晋煤规发[2010]177号文《省兼并重组整合矿井地质报告编制提纲》; 5、2009年9月21日国家安全生产监督管理总局令第28号颁发的《煤矿防治水规定》。 报告的主要地质任务、技术要求:

1、详细查明井田及周围较大的构造形态的发育情况,查明断层、褶曲的性质、延伸方向及长度,评价井田的构造复杂程度。 2、详细查明含煤地层特征,查明组及组可采煤层的层数、层位、厚度、结构及可采情况。 3、详细查明井田各可采煤层的煤质特征,确定煤类、化学组成、工艺性能,评价其工业利用方向。 4、详细查明井田的水文地质特征,评价水文地质条件类型,预计矿井涌水量。 5、详细查明井田工程地质岩组划分特征,煤层顶底板岩性及力学性质,说明工程地质条件复杂程度。 6、查明老窑、采空区及生产矿井的开采情况,查明采(古)空区围及其积水量、积气、火区情况。 7、详细查明瓦斯、煤尘、煤的自燃、地温等基本情况,并对整合后矿井的环境地质预测评价。 8、估算各可采号煤层资源/储量。 第二节位置及交通 一、位置与围 ############煤业有限责任公司位于####县川镇太寨、寺头村一带,行政区划隶属####县川镇管辖。其地理位置为东经:111°31′50″-111°33′11″,北纬34°53′37″ -34 °54′58″。 2009年12月22日省国土资源厅颁发的C49873号采矿许可证批复############煤

煤矿开采毕业设计讲解

前言 一、概述 山西陆合集团基安达煤业有限公司位于洪洞县西北30km的山头乡沙洼里村一带,行政区划属山头乡管辖。 根据山西省煤矿企业兼并重组整合工作领导组办公室文件,晋煤重组办发【2009】76号“关于临汾市洪洞县煤矿企业兼并重组整合方案的补充批复”,山西陆合集团基安达煤业有限公司由山西洪洞鼎盛达煤业有限公司、山西洪洞曹五号煤业有限公司、山西洪洞恒博煤业有限公司、山西洪洞盛洋煤业有限公司、山西海安煤业有限公司、山西天利赵城煤业有限公司、山西固滦煤业有限公司、山西洪洞淼源煤业有限公司、山西洪洞华辉煤业有限公司等九座矿井整合而成,整合后井田面积15.6413km2,生产能力为120万t/a。 2012年11月22日山西省国土资源厅为该矿颁发了《采矿许可证》,批准开采2-11号煤层,生产规模120万t/a,井田面积15.6413km2。

第一章井田概况 1.1 井田自然概况 山西陆合集团基安达煤业有限公司位于洪洞县西北30km的山头乡沙洼里村一带,行政区划属山头乡管辖,井田与赵(城)—克(城)县级公路相连,东距大运二级公路26km,距南同蒲铁路洪洞站30km,交通较为便利。井田位于吕梁山脉东麓,为侵蚀中山地貌。井田范围内沟谷纵横,梁岭绵延,地形比较复杂。地表水属黄河流域汾河水系,地表多为沟谷,雨季汇集雨水沿沟谷流入汾河后再汇入黄河。按照GB18306-2001《中国地震动参数区划图》,地震基本烈度为8度,地震动峰值加速度为0.20g。 1.2 矿井地质概况 一、地层及地质构造 1.地层 山西陆合集团基安达煤业有限公司(煤矿)位于霍西煤田霍州矿区。在井田范围内出露的地层由老至新为:奥陶系中统峰峰组、石炭系中统本溪组、上统太原组、二叠系下统山西组与下石盒子组、上统上石盒子组及第四系中更新统。 2.含煤地层 本区含煤地层为石炭系上统太原组、二叠系下统山西组。太原组内主要可采煤层为下段内的11号煤层,10号煤层为零星可采。山西组上部所含3号煤层为井田主要可采煤层,2 、3下号煤层不稳定,不可采。 3.井田地质构造 山西陆合集团基安达煤业有限公司位于霍西煤田西南部,在区域构造上处于祁吕弧东翼外带的西缘,在南王家坪至马家庄和吉家庄至山头区域大断裂西侧,居克城碾子腰向斜中的王家庄向斜中段,区域构造走向北北

相关主题
文本预览
相关文档 最新文档