当前位置:文档之家› 功放参数指标

功放参数指标

功放参数指标
功放参数指标

功放参数指标

关键字:功放参数指标

自从爱迪生在1877年发明留声机至今已有120多年了,由当年机械式录音/重播系统发展到现在的高科技数码系统,其中的进步可谓翻天覆地。不过在这120多年中的音响技术发展却是很不平均的,在发明留声机后的大约60至80年中,音响技术的发展是相当缓慢的不过也取得了一定的成果,例如录放音以电动方式取代了机械方式,开始采用多极真空管等等。使音响技术得以快速发展是在927年,美国贝尔实验室公布了划时代的负反馈(负回输,NFB)技术,声频放大器从此开始步入了一个新纪元。所谓高保真(High Fidelity)放大器,其鼻祖应该是追溯至1947年发表的威廉逊放大器,当时Willianson先生在一篇设计Hi Fi放大器的文章中介绍了一种成功运用负回输技术,使失真降至0.5%的胆机线路,音色之靓在当时堪称前无古人,迅即风靡全世界,成为了Hi Fi史上一个重要的里程碑。在威廉逊放大器面世后4年,即1951年,美国Audio杂志又发表了一篇“超线性放大器”的文章。第二年6月,又发表了一篇将威廉逊放大器超线性放大器相结合的线路设计。由於超线性设计将非线性失真大幅度降低,许多人硌起仿效,再次形成了一个热潮。超线性设计的影响时至今日21世纪仍然存在,可以说威廉逊放大器和超线性放大器标志著负回输技术在音响技术中的成熟。从那时候开始,放大器的设计和种类可谓百花争艳。技术的进步是前70年所望鹿莫及的。

放大器的的规格是衡量其性能的一个重要指标,当然另一个重要指标是以耳朵收货。常听发烧友说音响器材的规格没多大意义,许多测试数据优良的放大器其声音却惨不忍听。这话只说对了一半,首先这优良的数据一般是在产品开发阶段测试原型机时得出的。在大量生产阶段一般来说其性能都会打一定的折扣,视乎器材的档次而定。其次的就是目前的科技虽然使放大器性能获得很大改善,但要对20~20KHz的声频信号作出人耳无法察觉失真的放大,是一件极不容易的事,况且一般放大器的所谓性能规格只是给出寥寥几项数据,其中大多数只是在某些物定条件下测量的。根本不足以反映放大器的基本性能。

用以评定放大器的技术规格的方法分为动态和静态两种,静态规格是指以稳态下弦波进行测量所得的指标。这实际上是属於古典自动控制理论(Classical Control Theory)中的频率分析法。在二十世纪二三十的代便已开始使用。测试项目包括有频率响应,谐波失真,信噪比,互调失真及阻尼系数等。动态规格是指用较复杂的信号例如方波,窄脉冲等所测量得的指标,包括有相位失真,瞬态响应及瞬态互调失真等。动态测试实际上也类似工业自动控制系统中常见的瞬态响应测试,只不过工业测试常用的是阶跃信号(Step Signal)而音响测试则用缩短了的阶跃信号——方波。要大体上反映出放大器的品质,必须综合考虑动态测试和数据。至於人耳试听方面由於含有较多主观因素,在此不打算详加讨论。由於大部份厂商对其产品一般都只是给出少数参数应付了事,故此笔者希望藉此机会对一些较重要的音响器材规格作一番介绍,方便新进发烧友及一些非工程技术人仕对音响技术有更深入的领会。

频率响应

在众多技术指标中,频率响应是最为人们所熟悉的一种规格。一部分放大器而言。理论上只需要做到20至2万周频率响应平直就已足够,但是真正的乐音中含有的泛音(谐波)是有可能超越这个范围的,加上为了改善瞬态反应的表现,所以对放大器要求有更高的频应范围,例如从10 Hz~100 kHz等。习惯上对频率响应范围的规定是:当输出电平在某个低频点下降了3分贝,则该点为下限步率,同样在某个高频点处下降了3分贝,则定为上限频率。这个数分贝点有另外一个名称,叫做半功率点(Half Power Point)。因为当功率下降了一半

时,电平恰好下降了解情况分贝。有一点必须指出的是半功率点对某些电子设备及自动控制系统虽有一定的意义,但对音响器材就未必合适,因为人耳对声音的解析度可达到0.1分贝。所以有一些高级器材标称20至20K达到正负0.1分贝,这实际上经起标称10至50K+3DB 规格有可能更高。顺带一提的是,频应曲线图实际上是有两幅的,在控制工程中“波特图”(Bode Plot)。其中的幅频曲线图就是我们常见的频率响应图,另一幅叫做相频曲线图,是用来表示不同频率在经过了放大器后所产生的相位失真(相位畸变)程度的。相位失真是指讯号由放大器输入端至输出端所产生的时间差(相位差)。这个时间差自然是越小越好,否则会影响负回输线路的工作。除此之外相位失真也和瞬态响应有关,尢其是和近年来日益受到重视的瞬态到调失真有著密的关系。对於Hi Fi放大器而言,相位失真起码要在20~20KHz+-5%范围之内。

谐波失真

任何一个自然物理系统在受到外界的扰动后大都会出现一个呈衰减的周期性振动。举例来说,一根半米长两端因定的弦线在中间受到弹拨的话,会产生一个1米波长的振动波,称为基波(Fundemental),弦线除了沿中心点作大幅度摆动外,线的本身也人作出许多肉眼很难察觉的细小振动,其频率一般都是比基波高,而且不止一个频率。其大小种类由弦线的物理特性决定。在物理学上这些振动波被称为谐波(Harmonics)。为了方便区别,由乐器所产生的谐和波常被为泛音(Overtone)。谐波除了由讯号源产生外,在振动波传播的时候如果遇上障碍物而产生反射,绕射和折射时同样是会产生谐波的。

无论是基波或谐波本身都是“纯正”的正弦波(注:正弦波是周期性函数,由正半周和负半周组成,但决不能将其负半周称为负弦波!)但它们合成在一起时却会产生出许多厅形怪状的波形。图三:便是一个基波加一个二次谐波(频率高一倍,幅度小一半)所合成的一个波形。大家所熟悉的方波就是由一个正弦波基波加上大量的厅次(单数)谐波所组成,这也解释了为什么方波常常被用作测试讯号的原因。

放大器的线路充满著各种各样电子零件,接线和焊点,这些东西可多或少都会降低放大器的线性表现,当音乐讯号通过放大器时,非线性特性会使音乐讯号产生一定程度的扭曲变形,根据前述理论这相当於在讯号中加入了一些谐波,所以这种讯号变形的失真被为谐波失真。这就不难明白为什么谐波失真常用百分比来表示。百分比小即表示放大器所产生的谐波少,也就是说讯号波形被扭曲的程度低。由不同的物理系统所产生的谐波其成份也不相同。但都有一个共通点,那就是谐波的频率越高,其幅度越小。所以对音频放大器而言,使声音出现明显可闻失真的是频率最接近基波的二至三个谐波失真分量.

厂商在标定产品的谐波失真时,通常只给出一项数据,例如0.1%等。可是由放大器所产生的谐波却并不是一项常数,而是一项与信号频率和输出功率有关的函数。图四表示出两台典型晶体管双声道放大器的谐波失真与讯号频率的关系曲线。图五则是一部输出为100W 的晶体管放大器谐波失真与输出功率的关系曲线。由图中可见,当输出功率接近最大值时,谐波失真急剧增加。因为晶体管在接近过载(Overload)的情况下会发生削波现象。将一个讯号的顶部齐平削去一块明显地是一种严重的波形畸变。谐波失真自然会大幅度增加。

谐波失真并非完全一无是处,胆机的声音之所以柔美动听,原因之一是胆机主要产生偶次谐波失真。即频率是基波频率2‘4’6‘8’…倍的谐波。因为谐波电平和频率成反比,所以2次谐波幅度大,影响也大,其余的由於幅度小,所以影响也大,其余的由於幅度小,所以影响轻微,虽然二次谐波技术上讲是失真,但由於其频率是基波的一倍,刚好是一个倍频程,也就是说右以和基波组成音乐上的纯八度。我们知道纯八度是最和谐,动听的和声。所以胆机声音甜美,音乐感丰富也就不难理解。在40年代时,有许多较“小型”的收音机故意加入相当程度的二次谐波失真。目的是制造“重低音”去取悦消费者。声音右能会很过瘾,但是和高保真的要求却是完全背道而驰。

讯号噪声比

讯号噪声比(Signal Noise Ratio)简称讯噪比或信噪比,是指有用讯号功率与无用的噪声功率之比。通常贝计量,因为功率是电流和电压的函数,所以讯噪比也可以用电压值来计算,即讯号电平与噪声电平之比值,只是计算公式稍有不同。以功北率计算讯噪比:S/N=10 log 以电压计算讯噪比:S/N=10 log 由于讯噪比和功率或者是电压成对数关系,要提高讯噪比的话便要大幅度地提高输出值和噪声值之比,举例来说,当讯噪比为100dB时,输出电压是噪声电压的一万倍,以电子线路来说,这并不是一件容易的事。

一台放大器如有高的讯噪比意味着背景宁静,由于噪声电平低,很多被噪声掩盖着的弱音细节会显现出来,使浮音增加,空气感加强,动态范围增大。衡量放大器的讯噪比是好或者是坏没有严格的判别数据,一般来说以大约85dB以上为佳,低于此值则有可能在某些大音量聆听情况下,在音乐间隙中听到明显的噪音。除了讯噪比外,衡量放大器噪音大小也可以用噪声电平这个概念,这实际上也是一个用电压来计算的讯噪比数值,只不过分母是一个固定的数:0.775V,而分子则是噪声电压,所以噪声电平和讯噪比的分别是:前者一个绝对值,后者则一个相对数。

在许多产品说明书中的规格表数据后面,常常会有一个A字,意思是A-weight,即A计权,计权的意思是指将某个数值按一定规则权衡轻重地修改过,由于人耳对中频特别敏感,所以如果一台放大器的中频段讯噪比足够大的话,那么即使讯噪声比在低频和高频段稍低,人耳也不易察觉。可见如果采用了计权方式测量讯噪比的话,其数值一定会比不采用计权方式为高。以A计权来说,其数值会较不计权高约会分贝。

互调失真

顾名思义,互调失真(Intermodulation Distortion)是指由於讯号互相调制所引起的失真,调制一词本来是指一种在通讯技术中,用以提高讯号传送效率的技术。由於含有声音、图像,文字等的原始讯号“加进”高频讯号里面,然后同志将这个合成讯号发送出去。这种将高低频相“加”的过程和方式称为调制技术,所合成的讯号称为调制讯号。调制讯号除保留高频讯号的主要特征外,还包含有低频讯号的所有信息。产生互调失真的过程实质上也是一种调制过程,由於一个电子线路或一台放大器不可能做到完全理想的线性度,当不同频率的讯号同时进入放大器被放大时,在非线性作用下,每个不同频率的讯号就会自动相加和相减,产生出两个在原讯号中没有的额外讯号,原讯号如有三个不同频率,额外讯号便会有6个,当原讯号为N个时,输出讯号便会有N(N-1)个。可以想像的是,当输入讯号是复杂的多频率讯号,例如管弦乐时,由互调失真所产生的额外讯号数量是多么的惊人!

由於互调失真讯号全部都是音乐频率的和兴差讯号,和自然声音完全同,所以人耳对此是相敏感的,不幸的是,在许多放大器中,互调失真往往大於谐波失真,部份原因是因为谐波失真一般比较容易对付。

虽然互调失真和谐波失真同样是由放大器的非线性引起,两者在数学观点上看同样是在正浞导号中加入一些额外的频率成份,但它们实际上是不尽相同的,简单的说,谐波失真是对原讯号波形的扭曲,即使是单一频率讯号通过放大线路也会产生这种现象,而互调失真却是不同频率之间的互相干扰和影响,测量互调失真远比测量谐波失真复杂,而且至今尚未有统一的标准。

瞬态互调失真

瞬态互调失真(Transient Intermodulation Distortion),得称TIM失真。是什么时候被发现的笔者搞不清楚,但是TIM测量方法则迟至70年代才公开发表。由於瞬态互调失真与负回输密切相关,所以在讨论瞬态互调失真时就需要先从负回输说起。负回输(Negative Feedback)是一种广泛应用於各类工程技术领域,简音而实用的控制技术,负回输本来是属於控制技术中的闭环控制(Close Loop Control)系统的一个环节,但因为应用广泛,所以常常被用作闭

环控制的代名词。负回输实际上是一种普遍存在於人们日常生活中的自然规律,举例来说,当我们驾驶汽车的时候,如果发现汽车偏离得驶路线,我们就会向相反方向扭动方向盘,使汽车驶回正确路线。在这里我们的眼睛就是充当负回输通道的作用,负责把输出值(汽车得驶方向)回馈给挖掘器(大脑),然后控制器将输出值和设定值(正确方向)互相比较(相减),然后根据比较后的误差,发出修正讯号(扭方向盘)去纠正由此可见,负回输的作用是将输出值倒相(变为负数),随后将之回馈至输入端,和设定值相减,得出误差讯号,然后控制器就会根据误差大小作出修正。

在电子放大线路中,由於零件的对称,温度的变化,噪音的干扰以及其他种种原因,使读号的被放大的同时,无可避免地被加入各种各样的失真,而负回输则能有效地降低这些失真。举一个简单的例子来说,如放大器在放大一个正弦波讯号时,加入了一个失真的方波讯号,这个正弦加方波的讯号会被负回输线路反相,然后加馈至输入端,和原来的正弦波相减,使原来的讯号幅度变小之除还含有一个相反的方波,这个新的讯号在经过放大器时同样会被再次加入一个失真的方波讯号,由於讯号里面已有一个相反的方波,这样正反方波便会互相抵消,使输出讯号只含有正弦波,这就明显地降低了失真。不过负回输的缺点也是很明显的,因为负回输令输入讯号和回馈的输出讯号相减,降低了讯号电平,如果要使输出讯号相沽,降低了讯号电平,如果要使输出讯号被放大到足够的强度,放大器的放大率(增益)便要加大,所幸的是这并非难事,尢其是晶体管机。如果我们将负回输量加大,使输出讯号降低到和输入讯号电平相同的程度,即完全没有放大,这种放大器线路有一个特殊的名称,叫缓冲放大器(Buffer Amplifier)。虽然讯号没有被放大,但因为放大器一般都是输入阻抗高,输出阻抗低。所以缓冲放大器常被用作阻抗匹配之用。

既然负回输能有效地降低失真,但为会么又会引起瞬态互调失真呢?原来问题出在时间上,其中又以晶体管机最为严重。和真空管相比,晶体管有坚因耐用,体积小,重量轻放大率高等优点,其缺点是工作特性不稳定,易受温度等因素影响而产生失真甚至失控。解决办法之一是采用高达50至60dB左右的深度负回输。反正晶体管的放大率很高,牺牲一些无所谓,由於采用了大深度的负回输,大幅度减少了失真,所以晶体管机很容易获得高超的技术规格。不过麻烦也就因此而起,为了减少由深度负回佃所引起的高频寄生振荡,晶体管放大器一般要在前置推动级晶体管的基极和集电极之间加入一个小电容,使高频段的相位稍为滞后,称为滞后价或称分补价,可是无论电容如何细小,总需要一定时间来充电,当输入讯号含有速度很高的瞬态脉冲时,小电容来不及充电,也就是说在这一刹那线路是处於没有负回输状态。由於输入讯号没有和负回输讯号相减,造成讯号过强,这些过强讯号会讼放大线路瞬时过载(Overload)。因为晶体管机负回输量大,讯号过强程度更高,常常达到数十倍甚至数百倍,结果使输出讯号削波(Clipping)。这就是瞬态互调失真,因为在晶体管线路最多出现,所以也被称为“原子粒”声。

顺带一提的是,这种负回输时间延迟问题在工业控制系统中也常常遇到,称为纯延迟(Dead Time)问题,其起因绝大部份是因为感应器(Sensor)安装位置太远。例如在一个恒温热水器中,瘟度探测被安装在远离发热顺的位置,结果是当探测器感应到水温足够时,在发热器附近的水温早就已经过热了。这样的控制结果必然是水温在过热和过冷之间大幅摆动,称为控制超调(Overshoot)或系统振荡。纯延迟至今仍然是困扰自动控制技术的一大难题,有关解决方法的论文由五十年代至今少说也有上千篇,但始终找不到一个简单而行之有效的办法。

虽然负回输出现时间延迟不好对付,但要解决也不是没有办法,我们可以干脆让它出现,或即使其出现也不至於造成太大的破坏,方法有多种,例如只用小量大环路负回输,这样即命名出现负回输时间延迟,输入讯号也不至於过强。所减少的负回输量则由只跨越1个放大级的局部负回输代替,,局部负回输路径短,时间快,不易诱发瞬态互调失真。真空管工作稳

定,不一定要用大深度负回输抑制失真,况且其失真多数是人耳爱听的偶次谐波失真所以胆机没有一般所谓的“原子粒”声。至於其他用於线路设计上防范瞬态互调失真的方法,因涉及较多枯燥的理论,这里就不一一介绍了。

除了在线路设计上防范瞬态互调失真外,发烧友还可以采取另一项措施去减少瞬态互调失真,那就是尽量利用各种屏蔽和滤波措施去减少各种高频干扰讯号进入放大器,虽然这些讯号有许多是属於人耳听不见的射频干扰,但因为其频率很高,极易诱发瞬态互调失真,令输入级过载,使音乐讯号得不到正常的放大。

转换速率

瞬态互调失真除了由放大器大环路负回输的时间延迟引发外,放大器速度不够快也是一个重要的原因,如果放大器的速度够快的话即使在同样负回输条件下,瞬态互调失真度也可以降低。放大器的速度是一个通俗的形容,正确的说法应该是指放大器的瞬态响应能力(Transient Response)。在控制理论中,瞬态响应和频率响应是衡量系统性能的两大方法。它们的优点是不需经详细了解整个系统的详细数学模型,只需要根据系统对特定输入讯号的响应曲线介可估算出系统对特定输入讯号的响应曲线便可估算出系统的特性,从而作出补偿或改善。但相反来说,如果我们知道某个系统的数学模型,也可以不经测试就估算出该系统的响应模式。对于精确度要求不高的系统,我们可以选择性地采取瞬态响应法或频率响应法去评估系统性能,而对于要求高的系统,两者都必须加以考虑。作瞬态应测试时常用的讯号是单位阶跃函数(Step Signal)和单位脉冲函数(Impulse)。为方便起见,放大器测试多用前者的特殊形式:方波/。一个较为理想的方波含有一个速度极高的电压上升沿和降沿,用来测试放大器的瞬态响是非常合适的。

衡量放大器的响应速度一般是用电压转换速率(Slew Rate,台湾称“回转率”)。其定义是在1微秒时间里电压升高幅度,如果以方波测量的话则是电压由波谷升至波峰所需时间,单位是V/u s,数值愈大表示瞬态响应度越了,高性能放大器的转换速率一般都可以做到25V/u s 以上。

提高瞬态响应度最简单接的办法是选用高频特性好的零件。也可以用适当的环路负回输来改善,这似乎是一个自相矛盾的做法,但事实不然,瞬态互调失真只是当讯号速度超过放大器的瞬态响应能力范围之外才会发生。

除了瞬态互调失真外,过快的讯号也会产生另一种失真现象,叫做铃振(Ringing),两者的本质相同。当输入讯号速度快而幅度小时,首先出现的是铃振现象,只有当这个讯号的速度快至某个程度时才会出现瞬态互调失真,然而当讯号速度快兼幅度大时,铃振没有发生便已进入瞬态互调失真状态。最容易引发铃振现象的讯号就是各种各样的速度快但幅度小的高频干扰噪音,这就是为什么音响设备要有完善的抗干扰措施的原因之一。

界面互调失真(Interface Intermodulation Distortion)

界面互调失真算是一个较新和较少人提及的放大器规格。和下面将要提及的阻尼系数一样,除了和放大器线路有关外,和扬声器也有很大关系。所以在介绍这两项规格前,先简单地说一说扬声器有关这方面的特性。

目前的音响扬器绝大部分都是采用电动式原理的动圈式喇叭,其结构包括一个用作产生磁场的永久磁铁及一人音圈。从构造上来说动圈式扬声器属於一种特殊形式的直流马达,因为音圈只需要来回运动而不是旋转,所以不需使用直流马达上常见的炭刷和换向器(俗称“铜头”)无论是交流马达或是直流马达,都是具有可逆性的,即在某种条件下可当作发电机来使用。直流马达在结构上和直流发电机没有差别,尤其是永久磁钱式直流马达,只要能够使它的转轴转动,就可在其接线端上产生出一定的电压。对动圈式扬声器来说,只要我们用手按压振膜,就一定会在接线端上产生电压,大小则视乎按压的速度和幅度而定。

由于损耗和非线性化的影响,扬声器不可能对由放大器输出的全部电能加以利用而会有剩余

电能产生,另外由于振膜的机械惯性原因,在音圈中也会产生多余电能。由前者所产生的问题稳为界面互调失真,而后者则会使扬声器的低频控制力变差。

界面互调失真和扬声器内阻及负回输线路有关。当放大器输出的电能无法全部转变为机械能量时,多余的电能就必定会在扬声器线圈中产生出额外的反电势(Back emf),这个反电势会由喇叭线回馈至放大器的输出端,然后依放大器内阻的大小形成一个电压,这个电压会被负回输线路反馈至输入端,和输入讯号打成一片。使中低频声音混浊,分析力和层次感大减。要降低界面互调失真,关键之处是要降低负回输量和放大器内阻(即提高阻尼系数)。有许多Hi-End晶体管放大器正是采用这种原则进行设计的。除此以外,双线接驳也是另类改善途径,因为分开的高低音线路使低频端的反电势不会对高频讯号产生影响,从而改善音质。

阻尼系数(Damping Factor)

阻尼系数的扬声器阻抗和放大器输出阻讥之间的比例。顾名思义,阻系数是表示对某一个过程中进行变化的物理量加以抑制的程度。以扬声器来说,要抑制的是扬声器振膜在没有电讯号输入的情况下所作的惯性振动,简单地说这是一个制动动作。扬声器的振膜是不能用机械阻尼方式来制动的,所能使用的只是电磁方式的阻尼。而这种方式要求系统必须尽量处於发电机状态。

前面的讨论曾提及扬声器会很容易进入发电机状态,当输入电读号消失后的一瞬间,扬声器振膜在惯性作用不还在振动。这种振动会在音圈中产生出一个感应电压,这时如果放大器输出阻讥低的话,就相当於在扬声器端子上并接一个很小的电阻,音圈上的感应电压就会驱使一个较大数值的电流流经放大器的内阻邮局就是说扬声器此刻变成电源,而放大器的功率输出级线路却变成负载。根据电磁感应定律,这个电流是音圈在永久磁铁的磁场中振动所产生的,所以这个音圈电流就必定会产生一个和振动方向相反的力去抵消振动。放大器的内阻越小,电流就越大,抵消惯性振动的作用也就越强。由於这个电流的能量是会在电阻上变成热量消耗掉,所以这种制动方式在电机控制技术中称为“能耗制动”(Dynamic Bracking)。扬声器在重播低频时的振幅最大,所造成的惯性振动也最严重,不加以抑制的话会使低频控制力变差,缺乏力度、弹性和层次感,但过份抑制则会使声音变乾。

胆机因为有输出火车的线圈电阻存在,阻尼系数大极有限,相反地,晶体管机采用多管并联系等方法可轻易将阻尼系数提升至一百几十,甚至达到数百。不过可异一个阻巴系数的要求,这也就造成了不同的扬声器和放大器之间会有各种不同音色的配搭。

对采用了大一半路负回输的放大器来说,阻尼系数并不是唯一会对扬声器进行刹车的工具,因为扬声器的惯性振动电流流经放大器的输出内阻时,将会产生某个数值的电压,负回输线路即时将之反馈至输入端,令放大线路以为出现了一个不该出现的失真电压,马上产生一个反相的讯号加以抵制。这可是一种最强力的马达电制动方式,称为“反接制动”(Plugging)。不过也是一种最少使用的方式,因为令一台马达突然反转会产生巨大的机械冲击力而损坏机器,但扬声器本来就是设计成不断前后运动的装置,所以这种方法理论上完全没有问题,然而实际上却常常出问题,麻烦又是来自负回输。

扬声器不是麦克风,由振膜振动产生的电压,不会像麦克风寻样准确,所以放大器生的抵消电压也不可能做到完全和振动大小相等,方向相反。结果是使抑制过程出现不稳定,低频不是圆滑而迅速地减少,这个过程其实和界面互调失真的过程非常相似。某些原子粒放大器的低频控制力还不如胆机,原因也就在於此。

衡量放大器性能还有一些其他的规格,这篇文章所提及的只是些较多发烧友关注,加上经常出现争议的规格。笔者决不是什么专家,只是因为工作时往往需要同时兼顾电机和电子甚至机械方面的技术原理,头痛之馀发觉在发烧领域中有许多的技术或问题,现象等等,其实都是一些在其他工程技术领域早已被人了解和认识的东西,其本身并不深奥和神秘,只是不同行业解释方法不同而令人摸不着头脑,这篇文章当试用一些具体的比喻解释和区别一些常令

人混肴的规格。希望一些非工程人仕的发烧友能有更清晰的概念。

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

音响参数分析及图片大全

音响 扬声器材质与尺寸 低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(也有部分设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。 通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。 挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。 低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种。 纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好。 防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳。 羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力。 PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中。 扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。 音箱: 有源和无源 有源音箱(ActiveSpeaker)又称为“主动式音箱”。通常是指带有功率放大器的音箱,如多媒体电脑音箱、有源超低音箱,以及一些新型的家庭影院有源音箱等。有源音箱由于内置了功放电路,使用者不必考虑与放大器匹配的问题,同时也便于用较低电平的音频信号直接驱动。

功放部分指标检测方法

一、功放的基本概念 功放全称功率放大器,英文缩写为PA,使用场所多,例如直放站。 二、需要使用到的主要仪表 1.信号源:提供射频信号的作用。 2.频谱仪:检测射频信号,读取射频信号值的作用,内带衰减器。 3.网络分析仪:测试端口驻波比时会用到该仪表,内带信号源。 三、需要用到的测试配件 1.衰减器:起到减少信号的作用,保护频谱仪,一般选用衰减为-40dBm的就合适。 2.校准件:它分母头和公头,分别包含open/closed/BB。由于频率的不同、扫描点的不同、 输入射频信号大小的不同,在每次网络分析仪,都要用校准件校对网分。 3.隔直器:起到隔开直流电压的作用,保护信号源和频谱仪,一般在信号源以及频谱仪的 端口上分别安装一个。 4.隔离器:起到使射频信号单方向导通的作用,保护信号源,一般在信号源上安装一个。 5.同轴电缆:射频信号的载体。 四、PA的部分指标的定义 1.端口驻波比:是指到PA的输入输出端口的信号,输入的与反射的信号比。 2.最大输出功率:指模块的最大输出功率。 3.增益:是指模块在线性范围内的放大倍数。 4.增益调节精度:测试ATT的衰减与实际下降的功率是否误差过大。 5.增益平坦度:也称带内波动,检测模块的输出功率在整个频段内的波动有多大。 6.互调:开双信号时,检测模块的三阶互调是否能满足要求。 五、PA的部分指标的检测方法 1.端口驻波比:先校准网分,校准时,分别设置起止频率、扫频点、输出功率(一般为10dBm),设置完毕后按提示用open/closed/BB 三种校准件开始校准。校准完毕后,B B头不取,按marker键,查看校准情况,一般小于1.02 就算合格。测PA输入端口时,模块需通电测试,输出接大功率的负载。测输出端口时,模块不需要通电,输入端口接2W或5W 的小负载。一般情况下,PA的端口驻波比要求<1.3就算合格。 2.最大输出功率:测试前,需校线。校线顺序为先校信号源再校频谱仪的线或先校频谱仪再校信号源的线,两种方法都可以。现以现校信号源为例来说明。首先按隔直器、隔离器、同轴电缆的顺序将此接入到信号源上,注意隔离器有方向性。再把电缆的另一头通过N型转接头与频谱仪相接。开始设置仪表,以DCS的上行PA为例,将信号源、频谱仪的频率设置为1733MHz(起止频率为1710~1755MHz,中心频率为1732.5MHz,但实际设置为1733MHz即可)。信号源的校准功率和输出功率以及频谱仪的校准功率都设置为0dBm,开信号。调节频谱仪的显示,读取数值。例如频谱仪显示为-0.56dBm。关信号,然后将信号源的校准功率设置为-0.56dBm,输出功率依然设置为0dBm,再开信号,观察频谱仪的数值,应为0dBm,否则未校成功。开始校准频谱仪,首先按隔直器、同轴电缆、衰减器、同轴电缆的顺序将此接入到频谱仪上,注意衰减器有方向性。同轴电缆的另一头用SMA转接头与信号源上的电缆相连。信号源输出功率设置为0dBm,开信号。调节频谱仪的显示,读取数值。例如频谱仪显示为-42.62dBm。关信号,然后将

功放机指标测试方法概要

文件名称:功放机电性能测试方法指引 文件编号:TPPEAV201105090001 版本号:A0版 受控状态: 是□否□ 拟制: 批准: 日期: 注: 1.目的 ——使QC岗位所有人员能按标准进行岗位操作,以便满足岗位能力要求;——使各岗位QC操作方法统一,避免操作方法不规范导致失误。 2.适用范围 ——使用于本厂所有质量管理人员及在岗QC。

功放机电性能测试方法指引 一、各声道额定输出功率测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器失真测试仪 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(以主声道为例,其它声道测试方法同) a.将主音量逐步加大,看示波器上的波形有0.7%失真为宜,然后读出 双针毫伏表各指针此时所得到的伏度数;(要求主高音、低音、平 衡居中) b.此时双针毫伏表上各指针所得到的伏度数即为主声道额定输出伏度 (毫伏表上有两个读数具体到主左、右声道时可根据接仪器时的接 线而定); c.具体的输出功率再进行换算,我们在生产中只测出各声道额定输出 伏度即可; d.名词解释额定输出功率:也叫最大不失真输出功率,将被测功 放机置于~220V电压、8Ω负载、1KHz/500mv正弦波信号下将 音量逐步加大,看示波器上的波形有0.7%失真时读出双针毫伏表 各指针此时所得到的伏度数,然后进行换算所得到的功率。

e.毫伏表的量程根据各声道的输出功率而定,这样能准确反映测量值, 误差小,同时避免损坏仪器。 二、主左、右声道串音测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(要求主高音、低音、平衡居中) a.将主声道置于额定输出功率,读出左声道现在的dB数,记为L1【此 时L1的dB数计算方法为:若毫伏表在“30V/+30dB”档位,毫伏表 显示的左声道指针在-7dB,那么L1的读数为+30dB+(-7dB) =23dB】; b.然后拔掉左声道的输入信号,此时毫伏表上左声道的指针读数基本 为0,再逆时针旋转控制左声道的毫伏表量程钮,直到能读取毫伏 表左声道指针显示dB数为宜,此时的读数记为L2【此时L2的dB 数计算方法为:若毫伏表在“100mv/-20dB”档位,毫伏表显示的左 声道指针在-8dB,那么L2的读数为-20dB+(-8dB)= -28dB】; c. L1的绝对值加L2的绝对值即为右声道串左声道的声道串音(R/L) 【按a 、b两点给出的数据计算R/L=23 dB的绝对值+(-28dB) 的绝对值】;

运算放大器_参数详解

运算放大器参数详解 技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。 历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:

测量放大器实验报告

目录 摘要 (1) Abstract (2) 1. 设计准备 (3) 1.1 引言 (3) 1.2 Multisim简单介绍 (3) 2. 测量放大器原理图设计 (5) 2.1 设计任务及要求 (5) 2.2 设计原理 (5) 2.3 设计方案及实现 (7) 2.3.1 方案1及电路图 (7) 2.3.2 方案2及电路图 (8) 2.3.3 方案3及电路图 (9) 2.3.4 方案4及电路图 (9) 2.4 比较后选择的方案及合适器件 (13) 2.5 部分功能电路 (10) 3. 电路的仿真、测量波形及实物图 (13) 3.1 电路的仿真 (13) 3.2 测量波形 (15) 3.2.1输入差模信号 (19) 3.2.1输入共模信号 (20) 3.3 实物图和调试波形图 (20) 3.3.1实物图 (20) 3.3.1调试波形图 (21) 4. 设计过程的问题和解决办法........................................................................ . (19) 4.1 元器件的选择............................................................................................... .19 4.2 实验发现的问题和解决方法....................................................................... .19 5. 元器件清单............................................................................................................ .21 6. 小结........................................................................................................................ .22 7. 参考文献................................................................................................................ .23

纯后级功放(660W)招标参数 模板

纯后级功放(660W) (1)设有RCA插口,XLR插口,非常适用大、中、小型公共场合广播使用 (2)设有100V、70V定压输出和4~16Ω定阻输出 (3)输出音量可调节 (4)4、5单元LED工作状态显示:电源“POWER”、信号“SINGNAL”、消顶“CLIP”、保护“PROT”、高温“TEMP”, 便于观察机器工作情况 (5)具有完善的输出短路保护和超温保护功能 (6)散热风扇温控启动 (7)额定输出功率 660W (8)输出方式 4-16 ohms(Ω)定阻输出, 660W 70V(7.4 ohms(Ω)) 100V(15.1 ohms(Ω))定压输出 (9)线路输入 10k ohms(Ω) < 1V ,不平衡 (10)线路输出 10k ohms(Ω) 0.775V (0 dB) ,不平衡 (11)频率响应 60 Hz ~ 15k Hz (± 3 dB) (12)非线性失真THD <0.5% at 1kHz,1/3的额定输出功率 (13)信号噪声比S/N >70 dB (14)阻尼系数 200 (15)电压上升率 15V/uS (16)输出调整率 < 3 dB,从无信号静态工作状态到满负荷工作状态 (17)功能控制音量调节一个,电源开关一个 (18)冷却方式 DC 12V FAN温控风冷方式 (19)指示灯电源:‘POWER’,消顶:‘CLIP’,信号:‘SINGNAL’,保护:‘PROT’,高温:‘TEMP’ (20)保护 AC FUSE×15A AC FUSE×1,负载短路,温度过高 (21)电源线 (3×1.5 mm2)×1.5M (标准) (22)电源 AC 220V ± 10% 50-60Hz (23)电源消耗 485W 620W 880W (24)机器尺寸约89(H)×483(W)×366(D) mm (25)包装箱尺寸约185(H)×520(W)×435(D) mm (26)净重约19.74kg (27)毛重约21.36kg

小型功率音频放大器LM386的性能测试试验报告

BY:华中师范大学电信专业DYLAN 小型功率音频放大器LM386的性能测试试验报告 1、试验目的: 1.熟悉焊接工艺。 2.熟悉测量的理解和仪器的使用。 3.增强对电路的理解。 4.熟悉电路的调试以及电路参数的测量。 2、试验原理: LM386的封装形式为塑封8引线双列直插式和贴片式。,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。即在不接外接电路的情况下电压增益为20倍。但在1脚和8脚之间增加一只外接电容,便可将电压增益调为任意值,当外接电容20uf 时电压增益为最大200。 LM386引脚图 3、电路分析 1.第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,

为双端输入单端输出差分电路。 根据电路图得前级差分放大电路增益: 1 211)////(A be b l ce ce u r R R r r +-=β 若l R 远远小于21//r ce ce r ,则 1 1A be b l u r R R +-≈β 所以使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 2.第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。 3.第三级中的T8和T9管复合成PNP 型管,与NPN 型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。 4.引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电。输出端(引脚5)应外接输出电容后再接负载,主要是用来滤去一些杂波。 5.电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,能够起到稳定电压的作用,从而使整个电路具有稳定的电压增益。

关于功放测试的概念

通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,此时输入功率定义为输入功率的1dB压缩点。为了防止接收机过载,从干扰基站接收的总的载波功率电平需要低于它的1dB压缩点。 放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。随着输入功率的继续增大,放大器渐渐进入饱和区,功率增益开始下降,通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。 为什么放大器会产生三阶交调? 如果有两个频率相近的微波信号和本振一起输入到混频器,由于混频器的非线性作用,将产生三阶交调。当两个或多个干扰信号同时加到接 收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。由此形成的干扰,称为互调干扰。互调干扰和交调干扰一样,主要产生在高放和变频级。 在射频或微波多载波通讯系统中,三阶交调截取点IP3(Third-order Intercept Point)是一个衡量线性度或失真的重要指标。交调失真对模拟微波通信来说,会产生邻近信道的串扰,对数字微波通信来说,会降低系统的频谱利用率,并使误码率恶化;因此容量越大的系统,

要求IP3越高,IP3越高表示线性度越好和更少的失真。本主要介绍了三阶交调截取点(IP3)测量方法。 2.计算三阶交调截取点 IP3通常用两个输入音频测试,这里所指的音频与我们在低频电子线路的音频有区别,实际上是两个靠的比较近的射频或微波频率,当两个或多个正弦频率正好落在放大器的带宽内并通过一个非线性放大时,其输出信号将包括各种频率分量。三阶交调分量2F1-F2,2F2-F1是非线性中三次方项产生的,由于落在带宽内,是我们主要关注的非线性产物 频谱仪 1. VBW:显示带宽-在测试时能看到更宽的频率范围,如果要 观测的信号更精细,则需要减少; RBW:分析带宽;比如,测试CDMA的功率,既不能太大, 也不能太小,应该与信号的带宽相对应;还有测试链路噪 声等,也需要对RBW有一定的要求。 2. RBW,分辨率带宽,有人也叫参考带宽,表示测试的是多 大带宽的功率,如测试一GSM 2W干放满功率单载波输出 时,RBW设为100KHz时测得30dBm,设为200KHz测

功率放大电路的仿真测试实验报告

电子与信息工程系模电实验 实验日期: 2016.4.15 班级:2015级应用物理学实验名称:功率放大电路的仿真测试姓名: 实验成绩:学号: 一、实验目的 (1)了解OTL、OCL功率放大器的基本工作原理和参数测试。 (2)对比分析OTL功率放大器和OCL功率放大器的性能差异。 二、原理与说明 功率放大器根据功放管平均导通时间的长短(或集电极电流流通时间的长短或导通角的大小),分为以下4种工作状态。 (1)甲类工作状态:甲类工作状态下,在整个周期内晶体管的发射结都处于正向运用,集电极电流始终是流通的,即导通角A等于180°。 (2)乙类工作状态:乙类工作状态下,晶体管的发射结在输入信号的半周期内正向运用,在另外半个周期内反向运用,晶体管半周期导电半周期截止。集电极电流只在半周期内随信号变化,而在另半个周期截止,即导通角A等于90°。 (3)甲乙类工作状态:它是介于甲类和乙类之间的工作状态,即发射结处于正向运用的时间超过半个周期,但小于一个周期。即导通角A大于90°小于180°。 (4)丙类工作状态:丙类工作状态:丙类工作状态下,晶体管发射结处于正向运用的时间小于半个周期,集电极电流的时间不到半个周期,即导通角A小于90°。

图4.4.2 OCL功率放大器原理图 4.4.3为单电源供电互补推挽功率放大器。 三、实验内容 1.OCL功率放大器测量

1)按照图4.4.2所示输入自 己的OCL实验电路。并测量晶体管的静态工作,判断器件工作状态。 表格1.1.1 开关闭合开关断开 Q1 Q2 Q1 Q2 I B12.012pa 12.012pa 55.511na 1.691na I C1201ma 1.201ma 1.201ma 1.201mna U CE12v 12v 12v 12v 2)调节信号源输出为3V(峰 值),在开关J1闭合和断开条件下,用双踪示波器观察输入输出波形。 J1断开时: J1闭合时:

功率放大器测试基本常识

功率放大器测试基本常识 一、功率放大器常用测量的仪器: 1.音频信号发生器, 2.毫伏表, 3.示波器, 4.失真仪, 5.负载, 6.信号扫 频仪, 7.万能表, 8.高压测试仪, 9.电阻测试仪。 二、测量仪器连接方式: 三、测试项目: 1.AC 电压测试:单位:V (交流电压) 根据出货地点不同而设定的电压:117±5 V 、220±5 V 。 老化实验时必须提升原电压的10%作为测试电压。 2.DC 电压测试:单位:V (直流电压) 根据各机器要求不同而设定的电压,如±10V 。 3.ID 测试:单位:mv ID 为功率放大器的静态电流之简称。 测试时用万用表200MV 挡,测水泥电阻的两端(发射极对地),标准值为 5MV 或按工程要求。 4.灵敏度测试:(信号强度) 单位:mv 输出额定电压时所须的信号强度:(专业机型)卡侬座700—800 mv ,莲花 音频信号发生器 信号扫频仪 被测产品(功率放大 器) 负载箱 失真仪 毫伏表 示波器 转换器 IN OUT 并联 并联 + - + + - - + + + - - - + - - + + - ~ ~ ~ ~ - -

座400—500 mv或按工程要求。 5.分离度、串音测试:单位:dB 输出额定电压时,两通道间的分离幅度,从一通道满功率输出测另一通道的dB数。标准值60dB。或按工程要求。 6.频响测试:(频率响应) 单位:dB 输出额定电压时,调小本通道VR,使输出衰减10dB,(或20 dB按要求)的电压为“0” dB,调节信号频率至低频和高频(20Hz----20KHz测试),并使信号源幅度不变(输入信号和原来一样),此时的输出与“0” dB相比较,变化在一定范围内±3 dB。 7.信噪比(S\N) 测试:单位:dB或mv 输出额定电压时,去掉信号后的电压,噪音和满功率信号的比值,90dB 以上、3mv以下或按工程要求。 8.额定功率测试:单位:W 2 信号强度和阻抗一定时的电压。功率(P)=电压(U)/阻抗(R)最大不失真的条件下。 9.失真度测试:单位:% 1KHz信号,输出额定电压时的失真度。0.5%以下或按工程要求。 10.动态失真测试:单位:% 输出额定电压时,先关本通道VR至最小,信号源按要求提升25或30dB, 再调大本通道VR,输出10V(例),或按工程要求的电压值,波形不切波,看失真。 11.容性电容测试: 输出额定电压时,把负载调至容性负载,看输出与额定输出相比较的值 应在一定范围内,并且波形无毛刺(振荡)现象。输出额定电压时所加

专业功放主要指标性能测试

专业功放(模拟)测试方法及主要性能指标 专业功放的基本测试方式和常用仪器 A、常用普通测试方式 工具仪器:双踪示波器(20M)、同步失真仪、毫伏表、音频信号发生器、功率负载 基本连接示意图如下: 各种测试仪器实物图: 负载信号发生器(上) 双踪示波器(下)毫伏表 使用此类方式的测试,连接简单、测试方便、比较直观,对输出波形可进行直观的观测。缺点测试精确度不高,误差较大。对参数要求精度很高的产品不适用。

B 、Audio precisionATS 专业音频分析仪测试方式 工具仪器:功率负载、Audio precisionATS(简称AP)及配套设备(电脑等) 连接示意图如下: Audio precisionA TS-2专业音频分析仪见下图: 下图是软件运行界面:

AP测试时使用的单位介绍 1、测试信号幅度时的单位及其定义为 单位定义换算 V (伏)基本单位 Vrms 有效值 Vp 峰值1Vp=1.414Vrms Vpp 峰峰值1Vp=2.828Vrms dBv (伏特分贝)以1V为零电平的分贝=20*log(V/1V) dBu (电压分贝)以0.7746V为零电平的分贝=20*log(V/0.7746v) dBm (毫瓦分贝)以600Ω1mW为零电平的分贝0dBm=1mW(600Ω阻抗) dBg 以发生器的值为零电平的分贝=20*log(V/发生器幅值)dBr (基准分贝)以基准为零电平的分贝=20*log(V/基准值)dBrinv dBr的反相=20*log(V/基准值) W (功率)电功率=V A=V2/R 2、相对量的单位 功能单位定义 THD+N Ratio % 100*(噪声+失真)/(信号+噪音+失真) THD+N Ratio dB 20log[(噪音+失真)/(信号+噪音+失真)] SMPTE/DIN % 100*失真/高频信号 SMPTE/DIN dB 20log(失真/高频信号) Crosstalk dB 20log(非工作通道/工作通道) Wow&Flutter % 100*(抖动频率分量)/(测量的频率) 3、频率单位 单位定义 Hz 基本单位 F/R (分频)是参考频率的倍数 dHz (deltaHz 差频)与参差频率相差的频率 Cent Octaves 八度音阶 Decades 与参考频率的对数值 %Hz (频率比)与参考频率的百分比 d% (差频比)减参考频率后与参考频率的百分比 MdPPM 减参考频率后与参考频率的倍数比 PPM 1kHz=1000PPM;1MHz=1PPM 4、相对以上单位的参考值设定

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

最新集成运算放大器参数的测试标准实验报告

电子科技大学微电子与固体电子学院标准实验报告 课程名称集成电路原理与设计 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点:微固楼335 实验时间: 一、实验室名称: 微电子技术实验室 二、实验项目名称:集成运算放大器参数的测试 三、实验学时:4 四、实验原理: 运算放大器符号如图1所示,有两个输入端。一个是反相输入端用“-”表示,另一个是同相输入端用“+”表示。可以是单端输入,也可是双端输入。若把输入信号接在“-”输入端,而“+”端接地,或通过电阻接地,则输出信号与输入信号反相,反之则同相。若两个输入端同时输入信号电压为V - 和V + 时,其差动输入信号为V ID = V - - V + 。开环输出电压V 0=A VO V ID 。A VO 为开环电压放大倍数。 运算放大器在实际使用中,为了改善电路的性能,在输入端和输出端之间总是接有不同的反馈网络。通常是接在输出端和反相输入端之间。 图1 运算放大器符号 本实验的重点在于根据实验指导书要求,对开环电压增益、输入失调电压、共模抑制比、电压转换速率和脉冲响应时间等主要运放参数进行测量。

五、实验目的: 运算放大器是一种直接耦合的高增益放大器,在外接不同反馈网络后,就可具有不同的运算功能。运算放大器除了可对输入信号进行加、减、乘、除、微分、等数学运算外,还在自动控制、测量技术、仪器仪表等各个领域得到广泛应用。 为了更好地使用运算放大器,必须对它的各种参数有一个较为全面的了解。运算放大器结构十分复杂,参数很多,测试方法各异,需要分别进行测量。 本实验正是基于如上的技术应用背景和《集成电路原理》课程设置及其特点而设置,目的在于: (1)了解集成电路测试的常用仪器仪表使用方法及注意事项。 (2)学习集成运算放大器主要参数的测试原理,掌握这些主要参数的测试方法。 通过该实验,使学生了解运算放大器测试结构和方法,加深感性认识,增强学生的实验与综合分析能力,进而为今后从事科研、开发工作打下良好基础。 六、实验内容: 1 .开环电压增益测量。 2 .开环输出电阻测量。 3 .输入失调电压测量。 4 .共模抑制比测量。 5 .电压转换速率测量。 6 .脉冲响应时间测量。 七、实验器材: (1)直流稳压电源一台 (2)数字双踪示波器*一台 (3)信号发生器一台 (4)实验测试板及连接线一套 (5)常见通用运算放大器IC样品一块 八、实验步骤: 1、首先熟悉数字双踪示波器和信号源的使用,根据指导书要求搭建各参数的测试电路。 注意所选电阻、电容的值,不能确定时要用万用表测量;在测试板上连接测试电路

功放电路性能指标及测试方法

1. 功放电路性能指标及测试方法 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、效率、频率响应、输入灵敏度、信噪比等项目指标为主。配备必要的仪器仪表主要有:音频信号发生器、音频毫伏表、示波器、失真度测量仪等。 (1)输出功率是指功放输送给负载的功率,以瓦(W )为基本单位。功放在放大倍数和负载一定的情况下,输出功率的大小由输入信号的大小决定,包括最大输出功率和额定输出功率两种。 额定输出功率:指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,通常测量时给功放输入频率为1KHz 的正弦信号,测出等阻负载电阻上的电压有效值o U ,此时功放的输出功率o P 可表示为 : 2o o =L U P R (4-1-4) 式中L R 为等效负载的阻抗。这样得到的输出功率,实际上为平均功率OAV P 。当输入信号幅度逐渐增大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 最大输出功率:在上述情况下不考虑失真的大小,给功放输入足够大的信号,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期功放产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。 2 L Uom Pom R (4-1-5) 其中,Uom 为放大器的最大输出电压有效值。 功放电路功率测量线路如图4-1-4所示,示波器用于监视波形失真之用,MV 表示音频毫伏表,L R 是负载电阻,O U 、I U 分别表示输出和输入信号电压。

功率放大器技术参数的测量

功放技术参数的测 一.常用测试仪器 信号源:GOOD WILL INSTRUMENT公司(固伟)GFG-8015G 宁波中策电子有限公司X010A 毫伏表:GOOD WILL INSTRUMENT公司(固伟)GFG-417B 宁波中策电子有限公司DF2173B 示波器:IWATSU ELECTRIC公司(日本)SS-7802A 失真仪:宁波中策电子有限公司DF4121A 二.频率响应的测量 术语:增益限制的有效频率范围 是指在振幅允许的范围内功放系统能够重放的频率范围,以及在此范围内信号的变化量,称为频率响应。 在该频率范围内,实际频响与所要求的频响的偏差不得超过规定限度。 1.将各仪器按上图所示方法连接(可不使用示波器),功放输出端接入一额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,从毫伏表读取电压值,使功放输出为 额定输出电压。 并以此为电压参考点。

3.缓慢调节信号源上的频率旋钮,从功放规定的频率下限至频率上限,其输出电压变化范 围不得超过±3dB。 4.若连接示波器,看观测输出电压波形。 三.失真度的测量 理想的放大器应该是把输入的信号放大后,毫无改变的还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。 1.将各仪器按上图所示方法连接,功放输出端接入额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,使功放输出为额定电压。 3.对失真仪进行相对电平(0 dB)校准。 4.测量失真度,读出并记录此测量值。 5.可使用示波器监测输出波形是否异常。 四.输入灵敏度的测量 输入灵敏度:功放在额定负载上,输出额定电压时的输入激励电压称为输入灵敏度。

OTL功率放大器实验报告

七OTL功率放大电路 一、实验目的 1.进一步理解OTL功率放大器的工作原理。 2.学会OTL电路的调试及主要性能指标的测试方法。 图7-1 OTL功率放大器实验电路 二、试验原理 图7-1所示为OTL低频功率放大器。其中由晶体三极管T1组成推动级,T2 ,T3是一对参数对称的NPN和PNP型晶体三极管,他们组成互补推挽OTL功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极 电流I c1的一部分流经电位器R W2及二极管D,给T2.T3提供偏压。调节R W2,可以使T2.T3得到适合的静态电流而工作于甲.乙类状态,以克服交越失真。静态时要求输出端中点A的电位U A=1/2U CC,可以 通过调节R W1来实现,又由于R W1的一端接在A点,因此在电路中引入脚.直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i时,经T1放大.倒相后同时作用于T2.T3的基极,U i的负半周使T2管导通(T3管截止),有电流通过负载R L,同时向电容C0充电,在U i的正半周,T3导通(T2截止),则已充好的电容器C0起着电源的作用,通过负载R L放电,这样在R L上就得到完整的正弦波. C2和R构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围. OTL电路的主要性能指标

1.最大不失真输出功率P om 理想情况下,P om=U CC2/8R L,在实验中可通过测量RL两端的电压有效值,来求得实际的P OM=U O2/R L。 2.效率=P OM/P E 100% P E-直流电源供给的平均功率 理想情况下,功率M ax=78.5%.在实验中,可测量电源供给的平均电流I dc,从而求得P E=U CC I dc,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3.频率响应 祥见实验二有关部分内容 4.输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i之值。 三、实验设备与器件 1.+5v直流电源5。直流电压表 2.函数信号发生器6、直流毫安表 3.双踪示波器7、频率计 8.晶体三级管3DG6×1(9100×1)3DG12×1(9031×1) 3CG12×1(9012×1)晶体二极管2CP×1 8欧喇叭×1,电阻器、电容器若干 四,实验内容 在整个测试过程中,电路不应有自激现象。 1。按图7-1连接实验电路,电源进入中串人直流毫安表,电位器R W2置为最小值,R W1置中间位置。接通+5V电源,观察毫安表指示,同时要手触摸输出级管子,若电流过大,或管子温升显著,应立即断开电源检查原因(如R W2开路,电路自激,或管子性能不好等)。如无异常现象,可开始调试。 1.静态工作点的调试 1)调节输出端中点电位U A 调节电位器R W1,用直流电压表测量A点电位,使R A=1/2U CC。 2)调整输出极静态电流用测试各级静态工作点 调节R W2,使T2、T2管的I C2=I C3=5-10mA。从减小义越失真角度而言,应适当加大输出极静态电流,但该电流过大,会使效率降低,所以一般以5-10mA左右为宜。由于毫安表是串在电源进线中,因此测量得的是整个放大器的电流。但一般T1的集电极电流I C1较小,从而可以把测得的总电流近似当作示末级的静态电流。如要准确得到末级静态电流,则可以从总晾中减去I C1之值。 调整输出级静态电流的另一方法是动态调试法。先使R W2=0,在输入端接入F=1KHZ 的正弦信号U i。逐渐加大输入信号的幅值,此时,输出波形应出现较严重的交越失真(注意:没有饱和和载止失真),然后缓慢增大R W2,当交越失真刚好消失时,停止调节R W2,恢复U i=0,此时直流毫安表计数即为输出级静态电流。一般数值也应在5-10mA左右,如过大,则要检查电路。 输出级电流调好以后,测量各级静态工作点,记入表7-1。 表7-1I C2=I C3=mA U A=2.5V

功率放大器性能指标测试

功率放大器性能指标测试 1、测试要求: 1.1电源为额定工作电压±2%,频率50H Z±1HZ 1.2测试信号标准频率:模拟:1KHZ,数字997HZ,超低音:30HZ (常用:80HZ,40HZ,100HZ) 1.3整机必须工作在以下状态: 1.3.1主音量电位器置最大 1.3.2如果有中置、环绕、超低音、音量置0dB 1.3.3音调电位器置中点。 1.3.4如果有等串响度,置于OFF位置。 1.3.5如果有声场处理器,置于关断位置。 1.3.6如果有其它滤波器,置于关断位置。 1.3.7接上额定负载,测试时用假负载,不允许用喇叭作负载。 1.3.8当测试卡拉OK功能时,把混响、延时、效果关最小位置。2 3、使用设备:双通示波器:HITACHI V-252 单针毫伏表:KIKUSUI AVM23

信号发生器:LODESTAR AG-2603AD 失真仪:ZD ZQ4121A 负载电阻:8?、4?、6?或额定负载。 4、失真限制的输出功率。 4.1测试目的:主要了解该机的输出功率是否达到额定功率。 4.2测量方框图:如图1 4.3输入信号:输入信号为标准参考频率,信号电平为额定源电动 势电平。 4.4测量步骤: 4.4.1按规定将被测样置于1.3状态,各通道接上足够功率的额 定负载电阻。 4.4.2调节主音量电位器,直到输出电压的总谐波失真达到额定 值,测量输出电压V 4.4.3失真限制的输出功率按下公式计算:P=V2/R(“V”为额定失真限制的输出电压;“R”为额定负载的阻值。) 5、信噪比: 5.1测量目的:主要考核整机在静态状态下,噪声输出电平是否 达到指标要求。 5.2测量方框图:如图1 5.3测量输入信号:信号频率为标准参考频率,信号电平为:额 定源电动势电平 5.4测量步骤:

相关主题
文本预览
相关文档 最新文档