当前位置:文档之家› 碳纤维纳米圆盘电极和金超微电极的制备

碳纤维纳米圆盘电极和金超微电极的制备

碳纤维纳米圆盘电极和金超微电极的制备
碳纤维纳米圆盘电极和金超微电极的制备

纳米碳纤维及其应用

功能材料论文:纳米碳纤维及其应用 学校:上海电力学院 班级:应用化学110103 姓名:赵立 学号:ys1110122026

纳米碳纤维及其应用 摘要:作为一种新型碳基纳米材料,纳米碳纤维由于具有优异物理化学性能和可控微结构受到越来越多研究者的重视。本文主要介绍了纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能与应用。并讨论了纳米碳纤维的市场和发展前景。 关键词:纳米碳纤维;性能;应用;发展前景 一、前言 作为高性能纤维的一种,碳纤维既有碳材料的固有本征。又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。纳米碳纤维是当代纤维研究领域的前沿课题。也是一项多学科交叉、多技术集成的系统工程。 纳米碳纤维(Carbon Nanofibers 简称CNF)是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。纳米碳纤维的研究开始于1991年,日本科学家饭岛利用高分辨电子显微镜在石墨棒放电所形成的阴极沉积物中发现纳米碳纤维,自从发现了纳米碳纤维,它就引起了理论研究者以及工业应用者的兴趣。纳米碳纤维/聚合物基复合材料在世界范围内的研究工作刚刚起步,我国亦在进行跟踪研究。 从物理尺寸、性能和生产成本来看纳米碳纤维的构成是以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。纳米碳纤维的直径在50~200nm之间,但目前不少研究工作者把直径在100nm以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间[1]。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。CNFs除了具有CVD法碳纤维低密度、高比模量、高比强度、高导电、热稳定性等特性外,还具有缺陷数量非常少、长径比大、比表面积大、结构致密等优点。由于纳米碳纤维具有许多优异的物理和化学性质,因此可应用于电子器件、聚合物添加剂、储能材料、催化剂载体、电磁屏蔽材料、防静电材料、电磁波吸收材料等诸多领域。 二、制备 制备纳米碳纤维的三种主要方法以及特性是: (1) 基体法在石墨或陶瓷基体上分散纳米级催化剂颗粒的“种粒”,并在高温下通人碳氢气体化合物,热解后在催化剂颗粒上析出纳米碳纤维[2]。利用基体法可制备出纯度较高的纳米碳纤维,但由于超细催化剂颗粒的制备较为困难,且受从板温度和热解气体浓度不均及催化剂粒子在基板上分布不均等因素的影响,纤维生长疏密不匀,也很难得到直径较细的制品。此外,纳米碳纤维仅在有催化剂的基体上生长,产量不高,难以连续生长,不易实现工业生产。 (2) 喷淋法在苯等液体有机化合物中掺人催化剂,并将含催化剂的混合溶液在外力作用下喷淋到高温反应室中,制备出纳米碳纤维[3]。喷淋法可实现催化剂连续喷入,为工业化连续生产提供了可能,但催化剂与烃类气体的比例难以优化,喷淋过程中催化剂颗粒分布不

金纳米棒的制备简史(四)——晶种法

金纳米棒的制备简史(四)——晶种法 2016-04-13 12:44来源:内江洛伯尔材料科技有限公司作者:研发部 晶种法制备可控长径比金纳米棒 晶种生长法是目前制备金纳米棒最成熟的方法.Murphy小组在柠檬酸盐保护的情况下,用硼氢化钠还原氯金酸溶液,得到直径3.5 nm的球形金纳米粒子,然后精细调控生长条件,如最优化C16TAB(十六烷基三甲基溴化铵)和抗坏血酸的浓度,通过两步或三步晶种法制得了高长径比的金纳米棒,棒的产率大约为4%.随后,他们改进了这一方法,仅仅调节反应的pH值,就使高长径比金纳米棒的产率提高到90%.El-Sayed小组进一步改进了这种方法.他们用CTAB代替柠檬酸盐封端的金纳米粒子作晶种,克服了先前方法的一些缺点和限制(如形成非棒状,φ形纳米粒子以及大量的球形粒子).此外,在单组份表面活性剂体系中,通过调节生长溶液中银量即可得到长径比在1.5-4.5之间的金纳米棒.为获得长径比为4.6-10的金纳米棒,则需要N-十六烷基-N,N-二甲基苄基氯化铵(BDAC)和CTAB混合使用.在Murphy小组和EI-Sayed小组工作的基础上,人们又进行了一些改进和调整.主要集中在各种参数的变化,如晶种陈化时间,晶种浓度或生长溶液中金离子量与晶种的比例,温度,不同性质的表面活性剂等. Michael等用硝酸代替硝酸银,得到的金纳米棒尺寸均一,直径19-20nm,长度400-500nm,平均长径比21-23.他们认为,与硝酸造成的轻微pH变化相比,硝酸根离子的存在对棒的形成影响更大. Zijlstra等利用无晶种生长途径,在高达97°C的条件下制得了金纳米棒.与晶种生长法中晶种异处制备相反,此处的晶种原位生成.即在剧烈搅拌的情况下,往生长溶液中快速注入硼氢化钠,成核与生长会在5s 后发生. 尽管具体的制备方式有差异,但晶种生长法的基本原理可以表述为:制备出小尺寸的金纳米粒子作为晶种,然后生长溶液中的金离子在这些晶种上还原沿特定晶面生长得到金纳米棒.晶种法对设备的要求比较低,且反应温和,能扩大生产,是目前制备金纳米棒最成功的方法.

血红蛋白在纳米金修饰电极上的电化学研究(1)

第20卷第7期2008年7月化学研究与应用 Che m ical Research and App licati on Vol .20,No .7 July,2008   收稿日期:2007208209;修回日期:2008203209 基金项目:国家自然科学基金项目(20375008,20475001)资助;广东省科技攻关项目(2004B33301024,2005B10301041,2006B12401011)资 助;广东省自然科学基金项目(06108856)资助 联系人简介:程发良(19672),男,教授,主要从事生物电化学研究。Email:chengfl@dgut .edu .cn 文章编号:100421656(2008)0720872204 血红蛋白在纳米金修饰电极上的电化学研究 张 敏1 ,程发良 13 ,蔡志泉2,姚海军 1 (1.东莞理工学院生物传感器研究中心,广东 东莞 523106) (2.东莞理工学院城市学院,广东 东莞 523106) 关键词:纳米金;牛血红蛋白;化学修饰电极 中图分类号:O65711 文献标识码:A 氧化还原蛋白在电极上的直接电化学研究不但能获得有关蛋白质和酶的热力学和动力学性质等重要信息,为开发新型生物传感器和生物反应器提供理论指导,而且对了解它们在生命体内的电子转移机理和生理作用机制具有重要意义。 血红蛋白(Hb )是以血红素为辅基的蛋白质,在生物体中的主要功能是运输O 2。由于它的三维结构已经确定,所以常常用作研究蛋白质的结构 与功能关系的模型物[1,2] 。HB 分子庞大,电活性中心血红素被四条肽链包围而不易暴露,且在常规电极上强烈吸附和变性,使得它在一般固体电 极上的电子传递困难,需要借助媒介体[3] 、促进剂[4]或特殊电极材料[5] 促进电化学反应。 金属纳米粒子由于具有与其颗粒大小相关的 特殊性质[6] ,如表面效应、体积效应、量子尺寸效应等,从而产生不同于相应块体材料的电学、光学、磁学和催化性能,逐渐为电分析化学领域广泛 关注[7] 。文献曾报道了纳米金用于测定儿茶酚[8]、去甲肾上腺素[9]、葡萄糖[10211]等物质。本文利用电化学沉积法制备了纳米金修饰电极,利用该修饰电极测定了血红蛋白,实验结果表明:纳米 金具有良好的生物共容性[12] ,且纳米金较大的比表面积增强了血红蛋白在电极表面的吸附,显著提高了血红蛋白的电化学响应,实现了血红蛋白的直接电化学。 1 实验部分 111 试剂和仪器 牛血红白蛋白(国产,储备液在4℃条件下保存);氯金酸(HAuCl 4?3H 2O );实验用缓冲溶液为012mol/L Na Ac -HAc,pH 值采用混合不同比例的Na Ac 和HAc 溶液调整;实验所需的其余试剂均为分析纯;实验用水为二次蒸馏水;所有实验均在室温下进行。 P ARST AT2273电化学综合测试系统;电化学实验采用三电极体系:工作电极为裸玻碳电极(GCE )或者纳米金修饰电极(NG/GCE ),参比电极为饱和甘汞电极,对电极为铂电极;赛多利斯电子天平BS124S (北京赛多利斯仪器有限公司);超声波清洗器(昆山市超声波仪器厂);电子pH 计H I 98101(北京哈纳科仪科技有限公司)。112 修饰电极的制备金溶胶的制备参照文献[13] 。将玻碳电极先用金相砂纸抛光,然后依次用110、013μm 的A l 2O 3在麂皮上抛光至镜面,再移入超声水浴中清洗,最后依次用1∶1乙醇、1∶1HNO 3和蒸馏水超声清洗。把经过预处理的玻碳电极,用氮气吹干,置于金溶胶中于+115V 下电沉积2h 即可,标记为NG/GCE ,置于NaHc -HAc 缓冲溶液中备用。113 实验方法 电化学实验均在50mL 电解池中进行,用上述三电极系统,测定电化学曲线。测试前需向溶液中通氮气20m in 以上,以除去溶液中的溶解氧。所有实验均在室温下进行(约25℃)。

多孔纳米碳纤维的制备及其在超级电容器中的应用研究

多孔纳米碳纤维的制备及其在超级电容器中的应用研究3 牛 强,张孝彬,程继鹏,刘 芙,周胜名,聂安民,谭俊军,崔白雪,周丽娜(浙江大学硅材料国家重点实验室,浙江杭州310027) 摘 要: 利用溶胶凝胶燃烧法制备了碱金属氧化物掺杂的铜催化剂,并使用这种催化剂在不同的温度、掺杂比例下通过热CVD法合成出了具有多孔分叉结构的纳米碳纤维。通过TEM、HR TEM、B ET和激光拉曼光谱等手段对产物进行表征,显示这种纳米碳纤维的比表面积可高达1162m2/g,远高于普通的碳电极材料,并且具有非常丰富的中孔结构,克服了常规碳纳米纤维在应用中表现出的相对有效利用面积不大,比电容不高等缺陷,具备做电极材料的潜力。在将其应用于超级电容器电极材料后,利用二次电池测试仪及电化学工作站对其进行了循环伏安曲线及恒流充放电曲线的测试,结果显示这种纳米碳纤维具有良好的电化学电容行为,电极的可逆性良好,并且比电容值高达203F/g。这些发现将有助于碳纳米材料可控制备的研究,并且提供了一种有一定应用潜力的超级电容器电极材料。 关键词: 化学气相沉积;碱金属;多孔纳米碳纤维;超级电容器 中图分类号: O613.71文献标识码:A 文章编号:100129731(2009)022******* 1 引 言 超级电容器是近年来出现的一种介于传统电容器和电池之间的新型储能元件,它的能量密度大,比充电电池功率密度高,而且可快速充放电,使用寿命长,是一种新型、高效、实用的能量存储装置,在一些情况下能代替电池,并且在大功率,大电流器件等的应用领域十分广泛的应用前景[1,2]。 提高超级电容器性能的关键是寻找合适的电极材料,目前研究较多的有碳材料、金属氧化物和导电聚合物等单一电极材料以及复合电极材料。综合制备工艺,成本因素以及性能表现,我们把研究重点放在了新型的碳纳米纤维上[3]。 常规碳纳米纤维在应用中却表现出相对有效利用面积不大,电容质量比不高等缺陷。所以,将纳米碳纤维用于超级电容器的关键就是设法使它具有特殊的结构[4~6]。这里我们制得了一种具有多孔分叉结构的纳米碳纤维,证明此纤维具有优异的电化学储能性,十分适于作为超级电容器的电极材料。具体来说,我们利用特殊的碱金属氧化物掺杂制得了新型的催化剂,继而利用热CVD合成出的这种多孔纳米碳纤维在具有常规碳纤维的优异性能的同时,还具有非常丰富的中孔,较高的比表面积[7~10]。并且在将其用作超级电容器电极材料后的各项测试中,表现出良好的电化学电容行为。这些发现将有助于碳纳米材料可控制备的研究,并且提供了一种有一定应用潜力的超级电容器电极材料。 2 实 验 2.1 催化剂的制备 本实验中所用的催化剂采用简单的燃烧法制得。将KNO3,Cu(NO3)2?3H2O和Mg(NO3)2?3H2O 按n(K)∶n(Cu)∶n(Mg)=0.3∶1∶2的摩尔比混合,并添加柠檬酸作为助燃剂,在蒸馏水中混合溶解形成透明溶液。将溶液转移至瓷舟,并置于500℃的马弗炉中,溶液迅速燃烧,待完全燃尽后,取出石英舟,冷却至室温。最后将泡沫状的燃烧物研磨成粉末,即得到制备多孔分叉纳米碳纤维的催化剂。 2.2 多孔纳米碳纤维的制备 将炉温升至675℃,以600ml/min的速度通氮气5min,排除生长炉中石英管内的空气,接着按v(C2H2)∶v(N H3)∶v(N2)=100∶300∶200的比例,以600ml/min的速率通入3种气体的混合气,当气流和温度稳定后,将0.2g催化剂均匀铺在石英舟上,推至生长炉中段恒温区进行生长。反应30min后停止,在氮气氛围下冷却至室温,并收集黑色产物即为制备所得多孔纳米碳纤维。 2.3 多孔纳米碳纤维电极超级电容器的制作 首先将纳米碳纤维粗产物进行纯化处理以除去产物中的催化剂残余:以v(HNO3)∶v(H2SO4)=3∶1的体积比配制酸溶液,将纳米碳纤维粗产品浸泡入酸溶液中,超声波振荡5h后取出,置入离心机中反复离心、清洗至p H值约为7,再放入恒温烘箱中以95℃的温度恒温干燥。 以9∶1的质量比将纳米碳纤维与聚四氟乙烯(P TFE)=9∶1的质量比,在纳米碳纤维中加入P T2 FE乳液混合均匀,加蒸馏水调至乳胶状,均匀地涂覆在泡沫镍极片上,置于恒温干燥箱中在80℃下恒温干 413功 能 材 料 2009年第2期(40)卷 3基金项目:国家自然科学基金资助项目(50571087) 收到初稿日期:2008207221收到修改稿日期:2008209227 通讯作者:张孝彬 作者简介:牛 强 (1984-),男,陕西西安人,在读硕士,师承张孝彬教授,从事碳纳米材料的研究。

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

利用金纳米粒子修饰电极检测甲胎蛋白含量

利用金纳米粒子修饰电极检测甲胎蛋白含量 2016-06-25 12:18来源:内江洛伯尔材料科技有限公司作者:研发部 免疫电极的组装过程 甲胎蛋白(α-1-fetoprotein, AFP)是胚胎发育早期的一种主要血清蛋白, 成 人由肝细胞产生, 含量极微. 血清中AFP的升高对原发性肝癌诊断具有重要意义. 目前AFP的检测方法主要有酶联免疫吸附分析法(ELISA)、放射免疫测定法(RIA)、间接血凝法、琼脂双扩散法等.这些方法灵敏、可靠, 但大多需要对抗原或抗体进行酶标记或放射标记, 具有放射性危害, 操作繁琐, 且需要昂贵的仪器. 近年来有报道采用电化学方法与免疫反应结合检测AFP, 该法所需设备简单、成本低廉,但目前研究较多的工作是利用电子媒介体对电流的扩大信号, 研制成测定AFP的免疫传感器, 而对于无试剂型安培免疫传感器的研究尚少见报道. 西南大学化学化工学院袁若等人利用自组装技术和静电吸附作用, 将甲胎蛋白抗体(anti-AFP)固定在多层辣根过氧化物酶/纳米金及L-半胱胺酸修饰的 金电极表面, 制备出用于检测甲胎蛋白抗原(AFP)的无试剂型免疫传感器. 通过交 流阻抗技术、循环伏安法和计时电流法考察了电极的电化学特性, 并对该免疫传感器的作用机理及性能进行了详细的研究. 用计时电流法测得AFP的线性范围为 1.0~10.0和10~200 ng?mL-1, 检出限为0.5 ng?mL-1. 实验结果表明, 该方法提高了抗体的固定量, 增强了传感器的灵敏度和稳定性, 且该传感器响应迅速、选择性好, 血清中常见抗原不干扰测定. 将其用于临床血清检验, 与放射免疫测定法(RIA)的符合率为86.7%.

电化学 纳米金修饰电极检测VC和尿酸

Published:April 02,2011 LETTER https://www.doczj.com/doc/6317645590.html,/ac Electrochemical Sensing Using Quantum-Sized Gold Nanoparticles S.Senthil Kumar,Kyuju Kwak,and Dongil Lee* Department of Chemistry,Yonsei University,Seoul 120-749,Korea b Supporting Information R ecent advances in the synthesis of ultrasmall gold nanoparticles protected with organothiolate (SR)have opened the possibility to synthesize stable,atomically monodisperse gold nanoparticles.1à4Au 25(SR)18,Au 38(SR)24,and Au 144(SR)60are the examples of the quantum-sized gold nanoparticles that exhibit discrete electronic states and quantum con ?nement e ?ects.5,6These nanoparticles have received considerable attention recently because of their unique size-dependent electrochemical,optical,and catalytic properties.1à9Much progress has been made toward understanding their structures and fundamental physical and chemical properties.For example,electrochemical and optical study of the Au 25nanoparticles has revealed that Au 25has the highest occupied molecular orbital (HOMO)àlowest unoccupied molecular orbital (LUMO)gap of ca.1.33eV,representing the molecule-like property.5However,the technological application of such nanoparticles is still scarce.7à9It will be of great interest to utilize these functional materials in technolog-ical areas such as nanoelectronics,optoelectronics,and sensors since these nanoparticles could exhibit unique properties that di ?er sub-stantially from the corresponding atoms and bulk materials.Herein,we report the ?rst utilization of the quantum-sized Au 25nanoparticles in electrocatalysis and electrochemical sensing. The sol àgel technique has been used to immobilize gold nanoparticles to form a modi ?ed electrode.10à12Gold nanoparticles employed for electrochemical sensing thus far were,however,redox inactive nanoparticles with core diameters usually larger than 3nm and,thus,they were entrapped into the sol àgel network along with redox mediators or redox enzymes.10à12The sol àgel matrix provides stability to the redox mediator or the enzyme that interacts selectively with the target analyte,and the gold nanoparticles act as tiny con-ductors.In the present study,the unique electrochemical properties of Au 25nanoparticles o ?er particular virtues for the development of the modi ?ed electrode in which Au 25can serve as an electronic conductor as well as a redox mediator.Highly monodisperse,hexanethiolate-pro-tected Au 25nanoparticles (Au 25)were synthesized and characterized as [Au 25(SC 6H 13)18]à(see Supporting Information for experimental details).Au 25nanoparticles were entrapped into the sol àgel network by the hydrolysis of ethyltrimethoxy silane according to a literature procedure 13with slight modi ?cation.In a typical procedure,Au 25solution (10mg in 0.2mL of CH 2Cl 2)was mixed with 0.1mL of water containing 25%(v/v)glutaraldehyde and 0.2mL of ethyltri-methoxy silane,and the mixture was sonicated for 30min.The resulting homogeneous solution was subsequently stored at room temperature for 2h.10μL of this mixture was then dropcast on the surface of a glassy carbon electrode (GCE,3mm diameter)and allowed to dry overnight at room temperature to form the modi ?ed sol àgel electrode (Au 25SGE).The Au 25SGE was then washed thoroughly with water and used as a working electrode.Scheme 1depicts the cartoon of Au 25SGE 14with the Au 25entrapped in the sol àgel network. The square wave voltammogram (SWV)of Au 25in CH 2Cl 2shown in Figure 1A displays the redox characteristics of Au 25;three sets of well-de ?ned redox peaks with formal potentials at 0.62,0.31,and à1.33V vs Ag wire quasi-reference electrode (AgQRE)can be assigned to Au 251t/0,Au 250/1àand Au 251à/2àredox couples,respectively.1Cyclic voltammogram (CV)of the Au 25SGE in 0.1M KCl (Figure 1B)also shows well-de ?ned and reversible redox peaks with formal potential at 0.34V vs Ag/AgCl corresponding to Au 250/1àcouple.The redox peaks of Au 251t/0couple are not well-resolved,and they appear as a small shoulder around 0.43V.The reason for this behavior is unclear at this time.It could re ?ect the fact that small peak spacings between Au 251t/0and Au 250/1àcouples are expected when the dielectric constant of the medium is higher.5It could also be due to the fact that limited charge-compensating counterions are available in the sol àgel network for Au 251t/0upon the ?rst oxidation (Au 250/1à)reaction,as has been observed in the voltammogram of a Langmuir monolayer of similar particles.15The ?rst oxidation (Au 250/1à)appears,however,to be very stable and reproducible;the peak potentials and peak currents of the Au 25SGE Received:February 14,2011Accepted:April 2,2011ABSTRACT:This paper describes the electrocatalytic activity of quantum-sized thiolate protected Au 25nanoparticles and their use in electrochemical sensing.The Au 25?lm modi ?ed electrode exhibited excellent mediated electrocatalytic activity that was utilized for amperometric sensing of biologically relevant ana-lytes,namely,ascorbic acid and uric acid.The electron transfer dynamics in the Au 25?lm was examined as a function of Au 25concentration,which manifested the dual role of Au 25as an electronic conductor as well as a redox mediator.The electron transfer study has further revealed the correlation between the electronic conductivity of the Au 25?lm and the sensing sensitivity.

纳米活性炭纤维

纳米活性炭纤维 随着人口的増长和城市化的加速,有机物的污染越来越严重。都市生活污水量的不断増加,使有机污染物增加,而且工业废水中排放的有机物的总量上升。化工、冶金、炼焦、轻工等行业是有机污染的主要来源。这些行业排出的有机物不仅数量多,而且有有害和有毒的物质,对环境造成极大危害。 活性炭纤维(ACF)以它优异的吸附、脱附性能已在有机废水处理中广泛应用。如有机化工中含氯仿废水、制药厂高浓度废水、页岩油干馏废水、农药废水、炼油厂废水、多氯联苯、甲苯废水、苯齡废水、有机染料废水、己内酰胺废水等。 理化性能 ACF最显著的特点是具有很大的比表面积和丰富的微孔,徼孔的体积占总孔体积的90%以上,微孔直径小且直接开口于纤维表面,因而具有吸附容量大、吸附效率高、吸附和脱附速度快等优点,ACF表面也含有大量的有机基团,具有强的氧化还原反应能力。 纳米活性炭纤维比表面积和吸附容量大。微孔的孔径分布范围窄,再生性能大大优于颗粒状活性炭。活性炭纤维中以微孔为主,孔径小,对低浓度物质的吸附性能尤为突出,颗粒状活性炭在甲苯浓度低于0.01%时已基本失去吸附能力,而活性炭纤维在甲苯浓度低于0.001%时仍有良好的吸附效果。 工艺技术 操作过程 生产活性炭纤维(ACF)用的有机原纤维有:纤维素系、酚醛系、聚丙烯腈系、沥青系、聚乙焼醇系、苯乙焼源烃共聚系和木质系等,工业上所使用的主要是前4种原料。 在制造ACF之前,有机原纤维一般要经过低温200~400°C在空气中进行几十分钟乃至几小时的不熔化处理,随后进行(炭化)活化处理,也可以炭化和活化同时进行。活化方法主要包括物理活化、化学活化。用C02为活化介质,在惰性气体如氮气的保护下,处理温度一般在600~1000°C。具体的处理过程根据原材料和实际要求的不同而有所差异。 ACF的制造工艺过程,因原料和产品性能不同而异,但通常都要经过预处理、炭化和活化三个阶段。 预处理的目的,随原料纤维不同而异。对聚丙烯腈纤维和沥青纤维而言,为使原料纤维不熔化,即在炭化过程中不熔融变形,继续保持纤维形状,可采取预氧化稳定处理,使聚丙烯腈和沥青分子形高聚物而提高其热稳定性。而黏胶纤维预处理的目的患是高原料纤维的热氧稳定性、控制活化反应特性,以达到改善活性炭纤维的结构、性能并提高产品的得率。为此,采用无机盐溶液浸渍的方法;常用的浸渍剂为磷系或氯系化合物溶液,如磷酸、偏磷酸、焦磷酸及氯化锌等。酚酵树脂系纤维因不存在软化点,无需作不熔化处理,即可炭化和活化。

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

电沉积纳米金的读书笔记

[1]吉玉兰, 王广凤, 方宾. 纳米金/单壁碳管修饰玻碳电极对黄芩苷的电催化作用及快速检 测[J].2010, 6(6): 11-12. NG/GCE电极的制备 将l mg酸化的SWNT分散在5 mL DMF中,超声振荡至溶液均一。玻碳电极先在0.05 μm A2O3上抛光,然后分别在无水乙醇和二次蒸馏水中各超声清洗l min,晾干后,用微量进样器取10.0μL上述SWNT分散液滴加在玻碳电极表面,晾干,即得SWNT/GCE。将SWNT/GCE用二次水冲净置于0.1 mg/mL HAuCl4中,以扫速50 mV/s,于1.2~-0.6 V范围连续扫描5圈,取出用水反复冲净,晾干得NG/SWNT/GCE。 [2]张英,袁若,柴雅琴等. 纳米金修饰玻碳电极测定对苯二酚[J]. 西南师范大学学报, 2002, 6(31):87-90. NG/GCE电极的制备 将玻碳电极分别用0.1 μm和0.03 μm A12O3。粉末抛光成镜面,二次水冲洗,依次用(1+1) HNO3,无水乙醇和二次水超声清洗5 min,取出后用二次水冲净置于1 mg/mL HAuCl4中,以饱和甘汞电极(SCE)为参比,铂丝为对电极,于-0.2 V下保持60 s,取出后用二次水反复冲洗,得NG/GCE修饰电极,悬在pH为7.0的PBS上方保存备用。 NG/GCE修饰电极的性能 图1(a)是裸GCE和NG/GCE修饰电极在 5.0 mmol/L Fe(CN)63-/4- + 0.1 mol/L PBS(pH=7.0)中的循环伏安图.从图中可以看出,Fe(CN)63-/4-在NG/GCE修饰电极上峰电流明显增加,并且氧化还原峰电位差值减小,这主要是因为:NG使GCE电极的表面粗糙度和有效面积增加以及带正电荷的NG叫同带负电荷Fe(CN)63-/4-有较强的静电作用,使氧化还原发应更容易发生.图l(b)是裸GCE和NG/GCE修饰电极在5.0 mmol/L Fe(CN)63-/4-+0.1 mol/L PBS(pH=7.0)中的交流阻抗图,由图可知,NG/GCE电极膜的阻抗比裸GCE小很多,这说明NG能很好地增强电子的传输. [3]朱强,袁若,柴雅琴等.以纳米金为介质的无标记电流型甲胎蛋白免疫传感器的研 究[J]. 西南师范大学学报, 2002, 2(32):82-90.

纳米碳纤维复合电极在超级电容器中的应用

纳米碳纤维复合电极在超级电容器中的应用超级电容器作为重要的储能器件,具有功率密度大、充放电速度快、循环稳定等优势,在很多领域(如军事、混合动力汽车、电子移动设备等)有广阔的应用前景。如何在不降低功率密度和循环稳定性前提下提高超级电容器能量密度和倍率性能是其面临的主要挑战。 本论文从提高电极材料导电性能出发,采用静电纺丝技术制备了纳米碳纤维,重点研究了不同前驱体制备多孔纳米碳纤维及对其电化学性能的影响。碳纤维不仅作为支架负载活性材料,还作为良好的导电通道增强电子在复合材料中的传输。 这种一维结构也便于活性物质和电解液离子充分反应,从而提高电荷存储能力。具体研究内容如下:细菌纤维素具有超大的长径比可以得到高比表面积的纳米碳纤维,而它丰富的表面官能团,可以吸附大分子撑开致密的纤维,再利用冻干法保持纤维素的疏松的状态,最后经过碳化得到直径20-30 nm的超细纳米碳纤维。 实验通过吸附不同分子量大小的有机物调节碳纤维比表面积,最大可达 589.2 m2 g-1。电化学测试结果显示其比电容高达509 F g-1(0.5 A g-1),对称器件的能量密度可以达到7.7 Wh kg-1。 和普通碳纤维相比这种超细碳纤维比表面积增大,能量密度显著提高。但是纤维直径变细不仅导电性降低,影响了材料的倍率性能;还影响了其对活性材料 的负载。 为制备可控的纳米纤维,将聚丙烯腈(PAN)作为前驱体,利用静电纺丝法制备了直径大小可控的纳米碳纤维。为提高碳纤维的比表面积和导电性,在纺丝溶液中加入硝酸钴,既作为造孔的模板还能在碳化过程起到催化非晶碳转化成石墨

金纳米棒的制备

金纳米棒的制备 2016-05-02 13:05来源:内江洛伯尔材料科技有限公司作者:研发部 金纳米棒的制备由于贵金属在医学,光学及其他运用场景下发挥的作用与其形貌特征有很大的关系。以往对于金等贵金属主要是从制备纳米球形的方向入手,这是最简单,最容易控制成核及尺寸的,但是棒状金纳米材料在其优异的性能影响下,越来越的研究也开始了。人们发现金纳米棒的尺寸和晶体结构的差异对于应用有着显著的影响,对金纳米棒合成的有效调控直接决定着其后续应用研究的效果。 采用模板法,电化学法,种子生长法和无种子生长法对金纳米棒进行制备,采用TEM等对金纳米棒进行深入的研究发现:电化学合成的金纳米棒具有单晶结构,这是经典的银离子辅助合成金纳米粒子,在无银离子辅助条件下合成的金纳米棒具有五重孪晶结构,这与银离子辅助条件下合成的单晶结构差别很大。研究发现,一旦种子长到一定的尺寸,孪晶层积缺陷便会产生以降低体系的表面能。影响金纳米棒生长,行核的关键因素主要有表面活性剂,卤化物,溴化物,他们决定着金纳米棒粒子的行核机制和生长尺寸等。同样,对于制备的金纳米棒粒子来说,分离纯化也是一个重要的过程。目前合成出来的产物中还存在着一定程度的形状和尺寸多分散性,因此需要进一步纯化产物,目前常用的分离方法是离心分离,它的一个重要作用是除去溶液中未反应的原料,如过量的CTAB,此外离心还有助于进行形状分离与长径比分离,由于颗粒的直径对其沉降速率影响最大,因此直径越大越容易沉降。另外对于分离纯化高长径比的金纳米棒也是一个重要的过程,目前主要利用重力沉降,静置10-12h后,纳米棒和纳米片沉降于离心管底部,球形颗粒仍留在液体中,将底部的产物取出分散后,加入复合物Au(Ⅲ)/CTAB,利用氧化刻蚀速率的形状依赖性,可使片状颗粒体积减少40%并转变为圆形的纳米盘,而纳米棒体积只减少20%。

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

相关主题
文本预览
相关文档 最新文档