当前位置:文档之家› 材料非线性与几何非线性分析

材料非线性与几何非线性分析

大跨度桥梁实用几何非线性分析.

大跨度桥梁实用几何非线性分析 一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian)法[1]。后来,引入随转坐标系后又分别得出 CR(Co-rotational)-TL法和CR-LU法[2,3],在工程中UL(或CR-UL)法应 用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0(δ)=0 (l)其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(δ)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。由于式(l)中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ (2)式中,KT= KE十KG,其中KE 为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n 步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第2步;(6)全部加载步完成之后,结束。从上述求解过程中可见,最为关键的一步是第3步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的基础,故这里先分析平面梁单元的情况。平面梁

现代钢桥考试-长安大学

1简述国内外钢桥发展的现状及特点? 答:现在钢桥采用的主要技术有:(1)高强度低合金钢、预应力钢筋、高标号混凝土、 聚合物等新材料的应用; (2)桥梁上部结构采用正交异性刚桥面板和钢与混凝土的组合结构,箱型梁、高次超静定结构(多为连续梁、斜腿钢架、斜拉桥、各种组合体系等); (3)结构设计方面可以针对不同情况,按需要进行非线性(材料非线性、集合非线性)分析、空间 分析、动力分析、可靠性分析; (4)施工工艺方面用钻孔桩机械(土层及岩层)、大直径桩、双臂钢围堰、自升式平台等修建深水基础,用焊接、高强度螺栓、预应力等方式进行连;用悬臂施工(混凝土灌注及各种预制件的拼装)及整体架设等方法减低造价并压缩工期.2?、简述钢桥设计计算的基本方法和主要计算内容??答:国内外钢桥设计主要采用 容许应力法和半概率极限状态设计法。(1)容许应力法,以弹性设计理论为基础,但该方法不能充分反映不同荷载的统计特性,较大程度的依赖经验,它将逐步被一概率统计和可靠度理论为基础的概率极限设计法所取代。(2)办概率极限设计法,根据不同荷载和材料与构 件的统计特性采用分项安全系数表示。 3、简述钢桥的主要材料的种类、表示方法和主要特点? 答:钢桥的主要材料有结构钢、高强钢丝、高强螺栓、优质钢、锻钢、铸钢、焊条和焊丝等材料;表示方法是:(1)钢板,表示方法为”PL-宽*厚*长”,(2)型钢:(a)角钢,表示方法为L肢宽*肢厚*长度和L长肢宽*短肢宽*肢厚*长度,(b)工字钢,普通工字钢为I号数(界面高度cm和腹板厚度a、b、c),轻型工字钢OI号数(界面高度cm和腹板厚度a、b、c),(c)普通槽钢,[号数(界面高度cm和腹板厚度a、b、c),轻型槽钢,Q[号数(界面高 度cm和腹板厚度a、b、c) 4、简述焊接残余应力与残余变形的主要特点和对钢桥的影响? 答:钢材焊接时,在焊件上产生局部高温的不均匀温度场,使得钢材内部产生焊接应力,焊接应力较高的部位将达到钢材屈服强度而发生塑性变形,因而钢材冷却后将有残存与焊 件内的应力,为焊接残余应力。在焊接和冷却过程中由于焊件受热和冷却都不均匀除产 生内应力外,还产生变形,这种变形成为焊接残余变形。焊接残余变形影响结构的尺寸精 度和外观,导致构件的初弯曲、初扭曲、初偏心等,。使受力时产生附加的弯矩、扭矩和变形,从而减低其强度和稳定的承载力。5?、简述减少焊接残余应力和残余变形的方法? 答:(1)、设计措施(a)尽量减少焊缝的数量和尺寸(b)避免焊缝过分集中或多方向焊缝相交与一点(c)焊缝尽可能堆成布置,连接过渡尽量平滑,避免应力突变和应力集中(d)搭接长度不小于最小值(e)合理选择施焊位置,(2)焊接工艺措施(a)采用适当的焊接顺序和方向(b)先焊收缩量较大的焊缝,后焊收缩量小的焊缝,先焊错开的短焊缝,后焊直通的 长焊缝(c)先焊使用时受力较大的焊缝,后焊受力较次要的焊缝(d)预变形(e)预热、 后热(f)高温回火(g)用头部带小圆弧的小锤轻击焊缝,是焊缝得到延展,减低焊机残余应力。 6、简述钢桥桥面的结构形式和特点? 答:结构形式为公路钢桥桥面和铁路钢桥桥面;按照承重结构的主要材料可分为钢桥面、混凝土桥面和木桥面----该答案不甚准确,自己斟酌7?、简述桥面系梁格的组成和连 接形式??答:组成由横梁和纵梁,形式(1)横梁直接支承于主梁上-上承式(2)横梁位于主梁中间(3)横梁设置于主梁下端-下承式(4)横梁有吊杆直接悬吊与主梁之下-下承式

非线性结构分析word版

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析

非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木 架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显 示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),

应用ANSYS实现几何非线性分析方法

应用ANSYS实现几何非线性分析方法 摘要:本文简要介绍了用ANSYS对杆系结构进行非线性分析时应当注意的问题及方法。通过Williams双杆体系这个算例来介绍几何非线性全过程分析,表明ANSYS软件丰富的单元库、强大的求解器以及便捷的后处理功能,对工程结构进行非线性分析不失为一种很好的方法。 关键词:杆系结构;几何非线性ANSYS;全过程分析BEAM3 对于许多工程问题,结构的刚度是变化的,必须用非线性理论解决,而几何非线问题就是非线性理论中的一类。因几何变形引起的结构刚度变化的一类问题都属于几何非线性问题。几何非线性理论一般可以分成大位移小应变即有限位移理论和大位移大应变理论即有限应变理论。其核心是由于结构的几何形状或位置的改变引起结构刚度矩阵发生变化,也就是结构的平衡方程必须建立在变形后的位置上。ANSYS程序充分考虑了这两种理论。ANSYS所考虑的几何非线性通常分为3类:①大应变,即认为应变不再是有限的,结构本身的形状可以发生变化,结构的位移和转动可以是任意大小;②大位移,即结构发生了大的刚体转动,但其应变可以按照线性理论来计算,结构本身形状的改变可以忽略不计;③应力刚化,是指单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著影响面外的刚度。 大应变包括大位移和应力刚化,此时应变不再是“小应变”,而是有限应变或“大应变”;大位移包括了其自身和应力刚化效应,但假定为“小应变”;应力刚化被激活时,程序计算应力刚度矩阵并将其添加到结构刚度矩阵中,应力刚度矩阵仅是应力和几何的函数,因此又称为“几何刚度”。 几何非线性问题一般指的是大位移问题,只有在材料发生塑性变形时,以及类似橡皮这样的材料才会遇到的大的应变,大变形一般包含大应变、大位移和应力刚化,而不加区分。 1几何非线性分析应注意的问题 用ANSYS进行几何非线性分析时,首先要打开大位移选项,即(NLGEOM,ON),并设置求解控制选项,可根据问题类型而定。其次是模型修正问题或缺陷问题,在大多数实际问题分析中,该项可根据实际结构修正模型,或不修正模型也可直接进行计算分析。但对于理想柱、梁侧倾的非线性分析,则必须进行模型修正(可采用实际缺陷或采用ANSYS设置),否则无法进行非线性分析。 ANSYS采用工程应变和工程应力,对数应变和真实应力,Green-Lagrange 应变和第二Piola-Kirchoff应力3种应变和应力。具体采用何种应变和应力,程序根据分析类型和采用的单元自动选择。

非线性分析作业讲义

学院:材料科学与工程学院专业:材料工程 姓名:飞学号:1125 作业: 找出几个所在专业研究领域的重要而且有研究价值的非线性问题及其模型,要求写出相应的模型方程及其所涉及的变量参数涵义,并列举出研究该模型的主要研究现状。(不少于3种) 举例1:材料力学领域的非线性问题 非线性本构和非线性本构复合材料 1.1 研究非线性本构模型的意义 从力学的角度来看,C/SiC复合材料属于准脆性的各向异性材料。以碳纤维、热解碳界面和SiC基体三种典型组分构成的C/SiC复合材料为例,相对于脆性的单质陶瓷,该材料具有较好的韧性。主要原因是在机械载荷作用下,材料内部存在如前所述的基体开裂、界面脱粘和滑移、纤维断裂和拔出等多种能量耗散机制。虽然这些细观损伤模式有别于金属的屈服机理,但是材料表现出类似的弹塑性-损伤力学行为。图1-1为C/SiC复合材料在沿轴向拉伸加卸载条件下的典型应力-应变曲线,从图中可看出:材料的线弹性极限较低,通常为20MPa左右;当应力水平超过弹性极限之后,材料的弹性模量(E0)开始减小,同时产生类似于不可回复的残余应变,卸载-重加载过程中应力-应变曲线形成迟滞环,且迟滞环的宽度随卸载点应力的增大而不断增大。该材料的剪切应力-应变关系也有类似的特征。由此易知,在对C/SiC复合材料的应力-应变关系进行分析描述时,传统的线弹性本构模型已经不再胜任;而如果仅在线弹性范围内使用该材料,则不能充分发挥出材料的力学性能,安全裕度过大,与航空航天器追求减重的目标不符。因此需要充分了解该材料的非线性力学行为,特别是其内部的损伤机理与特性,并为其建立合适的非线性本构模型。

图1-1 C/SiC复合材料的典型拉伸加/卸载应力-应变曲线 建立非线性本构模型的一个重要作用是辅助C/SiC复合材料的结构优化设计。如前所述,目前C/SiC复合材料已经开始逐步在航空航天器结构上使用,轻质、可重复使用等特性有助于提高飞行器的性能,并降低寿命周期内的使用和维护成本,但是这类材料仍然存在造价高的缺点。例如,德国DLR为X-38 V201飞行器提供的全C/SiC复合材料襟翼的尺寸约为1.4m×1.6m,重68公斤,造价高达2千万美元。这是由材料制备工艺的特点决定的。以较为成熟的等温CVI 工艺为例,该工艺具有能够制备出高纯度的基体、可用于一定厚度构件的近尺寸成型等诸多优点,但是为防止沉积的基体太快地封堵预制体孔隙通道,需要在相对缓慢的沉积速率下进行,因此材料的制备周期长,通常需要几周或数百小时的时间,而且化学反应过程中生成的HCl等副产物对设备有腐蚀作用,导致制备成本偏高,限制了材料的推广应用。因此,为C/SiC复合材料建立合适的本构模型,在结构设计阶段将本构模型与商业有限元软件结合,准确计算和结构在不同受载条件下的应力状态并预测其承载能力,有助于结构的优化设计,同时省去或减少大量的试件制备和测试过程,从而降低热结构的研发成本。国内已经对C/SiC 的损伤机理和本构模型开展了一些研究工作。潘文革等人对二维和三维编织C/SiC复合材料在单轴拉伸载荷下的损伤演化进行了试验研究,通过分析声发射事件数和相对能量等参数,发现两种材料的拉伸损伤过程大致分为初始损伤阶段、过渡阶段、损伤加速和快速断裂阶段;杨成鹏等人对二维编织C/SiC复合材料单轴拉伸非线性力学行为进行了试验研究,通过循环加卸载试验方法,获得了材料的残余应变和卸载模量随拉伸应力的变化关系,并建立了基于剪滞理论的细观损伤力学模型;陶永强等人将二维编织结构简化成正交铺层和纤维束波动部分的组合,采用了Curtin和Ahn提出的基体随机开裂、纤维随机断裂的统计分布理论以及体积平均方法,预测了二维编织C/SiC复合材料的应力-应变关系。此

混凝土结构非线性分析

姓 名:季敏 学 号:08 手机号: 第2章 混凝土强度准则 2.1 混凝土破坏曲面的特点及表述 2.1.1 混凝土的破坏类型及其特点 混凝土在复杂应力状态下的破坏比较复杂,如果从混凝土受力破坏机理来看,有两种最基本的破坏状态,即受拉型和受压型。受拉型破坏以直接产生横向拉断裂缝为特征,混凝土在裂缝的法向丧失强度而破坏。受压型破坏以混凝土中产生纵向劈裂裂缝、几乎在有方向都丧失强度而破坏。无论何种破坏,均是以混凝土单元达到极限承载力为标志。 判断混凝土材料是否已达破坏的准则,称为混凝土的破坏准则。从塑性理论的观点来看,混凝土的破坏准则(failure criteria of concrete )就是混凝土的屈服条件或强度理论。由于混凝土材料的特殊、复杂而多变,至今还没有一个完整的混凝土强度理论,可以概括、分析和论证混凝土在各种条件的真实强度。因此,必须考虑用较简单的准则去反映问题的主要方面。目前仍把混凝土近似看成均质、各向同性的连续介质,如何可用连续介质力学分析。如果以主应力来表示,混凝土的破坏曲面可以用式(,其破坏与静水压力关系很大,所以其破坏曲面是以 σ1 =σ2=σ 3 为轴线为锥面,如图 2.1.2 混凝土破坏曲面的特点及其表述 图 σ 1 , σ 2 ,σ3,取拉应力为正,正应力为负。空间中与各坐标轴保持等 距离的各点连线,称为静水压力轴(hydrostatic axis )。静水压力轴上任意点的应力状态满足 σ1 = σ2 =σ 3 ,且任意点至坐标原点的距离均为σ 1 3 (或 σσ3233,)。静水压力轴通过坐标原点,且与各坐标轴的夹角相等,均为) (31cos 1 -=α。 混凝土破坏曲面的三维立体图不易绘制,更不便于分析和应用,所以通常用扁平面或拉压子午面上的平面图形来表示[图,(c )]。与静水压力轴垂直的平面称为扁平面(deviatoric planes )。三个主应力轴在扁平面上的投影各成120 角,不同静水压力下的扁平面包络线构成一组封闭曲线,形状呈有规律的变化[图π,π平面上的应力状态表示纯剪状态,无静水压力分量。拉压子午,拉压子午面(meridian planes )为静水压力轴和一个主应力轴[图σ3,同时通过另两轴(σ 1 轴和 σ 2 轴)的等分线。拉压子午面与破坏曲面的交线分别称为拉、压子午线

结构非线性分析汇总

结构非线性分析理论 1.结构设计方法 结构设计方法从传统的容许应力设计法发展到了基于概率统计的极限状态 设计法。传统的容许应力设计法是基于线弹性理论,依照经验选取一定的安全系 数,以构件危险截面某一点的计算应力不超过材料的容许应力为准则,目前在某 些领域仍在使用。安全系数,是一个单一的根据经验确定的数值,没有考虑不同 结构之间的差异,不能保证不同结构具有同等的安全水平。此外,容许应力设计 法以弹性理论计算内力,对那些发展塑性变形能提高承载力的构件或结构(如受 弯构件),比那些发展塑性变形不能提高承载力的构件或结构(如轴心受力构件) 具有较大的安全储备。 概率极限状态设计法是采用数理统计方法按照一定概率确定荷载或材料的 代表值,并给出结构的功能函数,用结构失效概率或可靠指标度量结构的可靠性。 《建筑结构可靠度设计统一标准》将极限状态分为两类:(1)承载能力极限状态, 是指结构或结构构件达到最大承载能力或不适于继续承载的变形;(2)正常使用 极限状态,是指结构或结构构件达到正常使用或耐久性能的某项规定限值。结构 按极限状态设计应符合下列要求: ()0,21≥n X X X g (1.1) 式((1.1)中g(X i )为结构功能函数,X i (i =1, 2……n)为基本变量,是指影响该 结构功能的各种作用、材料性能、几何参数等。 目前我国结构设计规范基本都是采用以概率理论为基础的极限状态设计方 法,用分项系数设计表达式进行计算。美国的钢结构设计采用了两种设计方法: ASD(Allowable Stress Design)和LRFD(Load and Resistance Factor Design),即容许 应力设计法和分项系数设计法,McCormac 指出LRFD 相比ASD ,并不一定节省材 料,虽然在很多情况下可以取得这样的效果,而在不同荷载作用下能给结构提供 等同的可靠性,对于活载和恒载,ASD 采用的安全系数是一样的,而LRFD 对恒 载则采用了一个较小的荷载系数(恒载比活载能更准确的确定),也就是说如果恒 载大于活载,LRFD 比ASD 节省材料。

现代钢桥考试-长安大学学习资料

1简述国内外钢桥发展的现状及特点? 答:现在钢桥采用的主要技术有:(1)高强度低合金钢、预应力钢筋、高标号混凝土、聚合物等新材料的应用; (2)桥梁上部结构采用正交异性刚桥面板和钢与混凝土的组合结构,箱型梁、高次超静定结构(多为连续梁、斜腿钢架、斜拉桥、各种组合体系等);(3) 结构设计方面可以针对不同情况,按需要进行非线性(材料非线性、集合非线性)分析、 空间分析、动力分析、可靠性分析;(4)施工工艺方面用钻孔桩机械(土层及岩层)、 大直径桩、双臂钢围堰、自升式平台等修建深水基础,用焊接、高强度螺栓、预应力等方 式进行连;用悬臂施工(混凝土灌注及各种预制件的拼装)及整体架设等方法减低造价并 压缩工期. 2、简述钢桥设计计算的基本方法和主要计算内容? 答:国内外钢桥设计主要采用容许应力法和半概率极限状态设计法。(1)容许应力法,以弹性设计理论为基础,但该方法不能充分反映不同荷载的统计特性,较大程度的依赖经验,它将逐步被一概率统计和可靠度理论为基础的概率极限设计法所取代。(2)办概率极限设计法,根据不同荷载和材料与构件的统计特性采用分项安全系数表示。 3、简述钢桥的主要材料的种类、表示方法和主要特点? 答:钢桥的主要材料有结构钢、高强钢丝、高强螺栓、优质钢、锻钢、铸钢、焊条和焊 丝等材料;表示方法是:(1)钢板,表示方法为”PL-宽*厚*长”,(2)型钢:(a)角钢,表 示方法为L肢宽*肢厚*长度和L长肢宽*短肢宽*肢厚*长度,(b)工字钢,普通工字钢为I 号数(界面高度cm和腹板厚度a、b、c),轻型工字钢OI号数(界面高度cm和腹板厚 度a、b、c),(c)普通槽钢,[号数(界面高度cm和腹板厚度a、b、c),轻型槽钢,Q[号数(界面高度cm和腹板厚度a、b、c) 4、简述焊接残余应力与残余变形的主要特点和对钢桥的影响? 答:钢材焊接时,在焊件上产生局部高温的不均匀温度场,使得钢材内部产生焊接应力,焊接应力较高的部位将达到钢材屈服强度而发生塑性变形,因而钢材冷却后将有残存与焊 件内的应力,为焊接残余应力。在焊接和冷却过程中由于焊件受热和冷却都不均匀除产 生内应力外,还产生变形,这种变形成为焊接残余变形。焊接残余变形影响结构的尺寸精 度和外观,导致构件的初弯曲、初扭曲、初偏心等,。使受力时产生附加的弯矩、扭矩和 变形,从而减低其强度和稳定的承载力。 5、简述减少焊接残余应力和残余变形的方法? 答:(1)、设计措施(a)尽量减少焊缝的数量和尺寸(b)避免焊缝过分集中或多方向 焊缝相交与一点(c)焊缝尽可能堆成布置,连接过渡尽量平滑,避免应力突变和应力集中(d)搭接长度不小于最小值(e)合理选择施焊位置,(2)焊接工艺措施(a)采用适当的焊接顺序和方向(b)先焊收缩量较大的焊缝,后焊收缩量小的焊缝,先焊错开的短焊缝,后焊直通的长焊缝(c)先焊使用时受力较大的焊缝,后焊受力较次要的焊缝(d)预变形(e)预热、后热(f)高温回火(g)用头部带小圆弧的小锤轻击焊缝,是焊缝得到延展,减低焊 机残余应力。 6、简述钢桥桥面的结构形式和特点? 答:结构形式为公路钢桥桥面和铁路钢桥桥面;按照承重结构的主要材料可分为钢桥面、

CAE线性分析与非线性分析的区别

日常设计实践中的非线性分析

术语“刚度”定义了线性分析与非线性分析间的根本区别。刚度是零件或装配体的特性,用于表征其对所施加载荷的反应。影响刚度的三个主要因素为:形状、材料和零件的支撑方式。 COSMOS ? 了解非线性分析第 1页 近十年以来,人们已不再将有限元分析(FEA) 视为仅供分析师使用的工具,它已进入到实际的设计工作中。如今,CAD 软件中都内置了FEA 功能,设计工程师可使用FEA 作为日常设计工具,协助完成产品设计过程。 但是,直到最近,设计工程师所采用的大多数FEA 应用程序还仅仅局限于线性分析。对于设计工程师所遇到的大多数问题,此类线性分析所得到的结果均与其实际特征大体接近。但是,有时也会出现需要采用非线性方法解决的更具挑战性的问题。 过去,工程师们不愿意使用非线性分析,因为使用这种方法对问题进行公式表示非常复杂并且需要很长的求解时间。现在,随着非线性FEA 软件与CAD 结合,情况有所改观,软件的使用也更加简便。此外,改进的求解算法辅之以强大的台式计算机性能,使求解时间大大缩短。十年前,工程师将FEA 视为极具价值的设计工具。现在,他们开始认识到非线性FEA 的优点并更深刻地理解了它对设计过程所产生的影响。 线性分析与非线性分析的区别 术语“刚度”定义了线性分析与非线性分析间的根本区别。刚度是零件或装配体的特性,用于表征其对所施加载荷的反应。影响刚度的因素有很多:1. 形状:I 型横梁与槽形横梁具有不同的刚度。 2. 材料:与相同尺寸的钢制横梁相比,铁制横梁的刚度较低。 简介

图1 悬臂横梁(上图)比具有两端支撑的相同横梁 (下图)的刚度要低。

线性分析与非线性分析的区别

也就是线性分析在结构方面就是指应力应变曲线刚开始的弹性部分,没有达到应力屈服点的结构分析非线性分析包括状态非线性,几何非线性,以及材料非线性,状态非线性比如就是钓鱼竿,几何比如就是物体的大变形,材料比如就是塑性材料属性。 2.非线性行为的原因

种类型。3引起结构非线性的原因很多,主要可分为以下)状态变化(包括接触)1(许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松弛的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而突然变化。状态改变或许和载荷直接有关(如在电缆情况中),也可能是由某种外部原因引起的(如在冻土中的紊乱热力学条件)。接触是一种很普遍的非线 性行为,接触是状态变化非线性类型中一个特殊而重要的子集。)几何非线性2(结构如果经 受大变形,其变化的几何形状可能会引起结构的非线性响应。如图5.2所示的钓鱼杆,在轻微的载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断弯曲导致动力臂明显减少,致使杆在较高载荷下刚度不断增加。 )材料非线性3(. 非线性的应力-应变关系是结构非线性的常见原因。许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响 应状况下)等。 3.非线性结构分析中应注意的问题 拉普森方法-1)牛顿(ANSYS程序的方程求解器可以通过计算一系列的联立线性方程来预测工 程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程来表示,需要一系列的带校正的线性近似来求解非线性问题。一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前,程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免所示。地随着每一个载荷增量积累误差,最终导种结果失去平衡,如图5.3aANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,在某个容限范围内,它使每一个载荷增量的末端解都达到平衡收敛。图5.3b描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应 力的载荷)和所加载荷的差值。之后,程序使用非平衡载荷进行线性求解,并且核查收敛性。如果不满足收敛准则,则重新估算非平衡载荷,修改刚度矩阵,获得新解,持续这种迭代过程 直到问题收敛。

ANSYS几何非线性概述

ANSYS几何非线性概述 一、什么是非线性 什么是非线性(non-linear)?按照百度百科的解释,非线性是指变量之间的数学关系不是直线而是曲线、曲面或不确定的属性。而对于工程结构而言,非线性或者说非线性行为,是指外部荷载引起工程结构刚度显著改变的一种行为。如果绘制一个非线性结构的荷载-位移曲线,则力与位移的曲线为非线性函数。 ANSYS非线性主要分为以下三大类: 1、几何非线性 大应变、大位移、大旋转 2、材料非线性 塑性、超弹性、粘弹性、蠕变 3、状态改变非线性 接触、单元生死 其中几何非线性和材料非线性是土木工程结构计算中最为常见的两种类型。 二、结构几何非线性概念理解 如果一个结构在受荷的过程经历了大变形,则变化后的几何形状能引起非线性行为。

例如,上述例子, 杆梢在轻微横向作用下是柔软的, 当外部横向荷载加大时,杆的几何形状发生改变 ,力矩臂减小,引起杆的刚化响应。 几何非线性主要分为如下三种现象: 1.单元的形状改变(面积、厚度),其单独的单元刚度也将改变 2.单元的取向发生转动,其局部刚度在转化为全局分量时将会发生变化。 3.单元应变产生较大的平面内应力状态引起平面法向刚度的改变。 随着垂直挠度UY 的增加,较大的膜应力SX 将会导致刚化效应。上述三种情况的关系如下: 应力刚化

三、ANSYS 几何非线性注意事项 1、建模注意事项 (a )单元选择注意事项 在定义单元类型时,应明白如果分析的过程中有几何非线性,应确保所选单元类型支持相应的几何非线性效应。例如shell63单元支持应力刚化和大挠度,但不支持大应变;而shell181则支持所有的三类几何非线性,可在单元描述的特殊特征列表中找到类似信息。特别是在选择接触单元的时候应慎重,有的接触单元是没有任何非线性能力,例如CONTAC52. 同时应注意剪切锁定以及体积锁定等不可压缩性所带来的收敛困难。 (b )预见网格扭曲 ANSYS 在第一迭代之前,会检查网格的质量;在大应变分析中,迭代计算过后的网格或许会变得严重扭曲,为防止出现不良形状,可以预见网格扭曲从而修改原始网格。 (c )足够的网格密度 为防止网格离散化错误,必须有足够的网格密度,否则就很容易造成等值线图不连续,同时如果要捕捉弯曲响应,壳和梁单元的网格密度应足够多,计算中不应有角度超过30度的单元。 一分为二,作为 三角形,形状保 持较好。

钢桥

1、简述国内外钢桥发展的现状及特点? 答:现在钢桥采用的主要技术有:(1)高强度低合金钢、预应力钢筋、高标号混凝土、聚合物等新材料的应用; (2)桥梁上部结构采用正交异性刚桥面板和钢与混凝土的组合结构,箱型梁、高次超静定结构(多为连续梁、斜腿钢架、斜拉桥、各种组合体系等);(3)结构设计方面可以针对不同情况,按需要进行非线性(材料非线性、集合非线性)分析、空间分析、动力分析、可靠性分析;(4)施工工艺方面用钻孔桩机械(土层及岩层)、大直径桩、双臂钢围堰、自升式平台等修建深水基础,用焊接、高强度螺栓、预应力等方式进行连;用悬臂施工(混凝土灌注及各种预制件的拼装)及整体架设等方法减低造价并压缩工期. 2、简述钢桥设计计算的基本方法和主要计算内容? 答:国内外钢桥设计主要采用容许应力法和半概率极限状态设计法。(1)容许应力法,以弹性设计理论为基础,但该方法不能充分反映不同荷载的统计特性,较大程度的依赖经验,它将逐步被一概率统计和可靠度理论为基础的概率极限设计法所取代。(2)办概率极限设计法,根据不同荷载和材料与构件的统计特性采用分项安全系数表示。 3、简述钢桥的主要材料的种类、表示方法和主要特点? 答:钢桥的主要材料有结构钢、高强钢丝、高强螺栓、优质钢、锻钢、铸钢、焊条和焊丝等材料;表示方法是:(1)钢板,表示方法为”PL-宽*厚*长”,(2)型钢:(a)角钢,表示方法为L肢宽*肢厚*长度和L长肢宽*短肢宽*肢厚*长度,(b)工字钢,普通工字钢为I号数(界面高度cm和腹板厚度a、b、c),轻型工字钢OI号数(界面高度cm和腹板厚度a、b、c),(c)普通槽钢,[号数(界面高度cm和腹板厚度a、b、c),轻型槽钢,Q[号数(界面高度cm 和腹板厚度a、b、c) 4、简述焊接残余应力与残余变形的主要特点和对钢桥的影响? 答:钢材焊接时,在焊件上产生局部高温的不均匀温度场,使得钢材内部产生焊接应力,焊接应力较高的部位将达到钢材屈服强度而发生塑性变形,因而钢材冷却后将有残存与焊件内的应力,为焊接残余应力。在焊接和冷却过程中由于焊件受热和冷却都不均匀除产生内应力外,还产生变形,这种变形成为焊接残余变形。焊接残余变形影响结构的尺寸精度和外观,导致构件的初弯曲、初扭曲、初偏心等,。使受力时产生附加的弯矩、扭矩和变形,从而减低其强度和稳定的承载力。 5、简述减少焊接残余应力和残余变形的方法? 答:(1)、设计措施(a)尽量减少焊缝的数量和尺寸(b)避免焊缝过分集中或多方向焊缝相交与一点(c)焊缝尽可能堆成布置,连接过渡尽量平滑,避免应力突变和应力集中(d)搭接长度不小于最小值(e)合理选择施焊位置,(2)焊接工艺措施(a)采用适当的焊接顺序和方向(b)先焊收缩量较大的焊缝,后焊收缩量小的焊缝,先焊错开的短焊缝,后焊直通的长焊缝(c)先焊使用时受力较大的焊缝,后焊受力较次要的焊缝(d)预变形(e)预热、后热(f)高温回火(g)用头部带小圆弧的小锤轻击焊缝,是焊缝得到延展,减低焊机残余应力。 6、简述钢桥桥面的结构形式和特点? 答:结构形式为公路钢桥桥面和铁路钢桥桥面;按照承重结构的主要材料可分为钢桥面、混凝土桥面和木桥面----该答案不甚准确,自己斟酌 7、简述桥面系梁格的组成和连接形式? 答:组成由横梁和纵梁,形式(1)横梁直接支承于主梁上-上承式(2)横梁位于主梁中间(3)横梁设置于主梁下端-下承式(4)横梁有吊杆直接悬吊与主梁之下-下承式拱桥(5)由立柱吧横梁支承于主梁之上。 8、钢桥面板设计计算和构造细节处理中应该特别注意哪些问题? 答:(1)冲击荷载的影响(2)桥面板温差的影响(3)钢桥面板的疲劳(4)钢桥面板的刚

(完整版)线性分析与非线性分析的区别

线性分析在结构方面就是指应力应变曲线刚开始的弹性部分,也就是没有达到应力屈服点的结构分析 非线性分析包括状态非线性,几何非线性,以及材料非线性,状态非线性比如就是钓鱼竿,几何比如就是物体的大变形,材料比如就是塑性材料属性。

2.非线性行为的原因 引起结构非线性的原因很多,主要可分为以下3种类型。 (1)状态变化(包括接触) 许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松弛的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而突然变化。状态改变或许和载荷直接有关(如在电缆情况中),也可能是由某种外部原因引起的(如在冻土中的紊乱热力学条件)。接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。(2)几何非线性 结构如果经受大变形,其变化的几何形状可能会引起结构的非线性响应。如图5.2所示的钓鱼杆,在轻微的载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断弯曲导致动力臂明显减少,致使杆在较高载荷下刚度不断增加。 (3)材料非线性

非线性的应力-应变关系是结构非线性的常见原因。许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应状况下)等。 3.非线性结构分析中应注意的问题 (1)牛顿-拉普森方法 ANSYS程序的方程求解器可以通过计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程来表示,需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前,程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,最终导种结果失去平衡,如图5.3a所示。 ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,在某个容限范围内,它使每一个载荷增量的末端解都达到平衡收敛。图5.3b描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。之后,程序使用非平衡载荷进行线性求解,并且核查收敛性。如果不满足收敛准则,则重新估算非平衡载荷,修改刚度矩阵,获得新解,持续这种迭代过程直到问题收敛。 几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它组成单元的方向和刚度。当一个单元的节点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变,如图5.9a所示;其次,如果这个单元的取向改变,它的单元刚度也将改变,如图5.9b所示。小变形和小应变分析假定位移小到足够使所得到的刚度改变无足轻重。这

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

介绍四种典型的非线性材料

介绍四种典型的非线性材料 本文从材料的特性入手着重分析了物体的应力和应变。弹塑性分析是工程上常见问通,工程上常用ANSYS软件解决这方面的问题,工程材料的塑性变形引起的非线性问题通常是弹塑性分析。 塑性变性引起的非线性问题—弹塑性分析,工程上常用ANSYS软件来完成这方面的工作。塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力—应变关系是线性的,另外,大多数材料在其应力低于屈服点时表现为弹性行为也就是说当移走载荷时其应变也完全消失。 1、塑性材料的特性 由于屈服点和比例极限相差很小,因此在ANSYS程序中假定它们相同在应力—应变的曲线中低于屈服点的叫做弹性部分,超过屈服点的叫做塑性部分也叫做应变强化部分,塑性分析中考虑了塑性区域的材料特性。 1.1 路径相关性塑性是不可恢复的,那么这种问题就与加载历史有关,这类非线性问题叫做与路径相关的或非保守的非线性,路径相关性是指对一种给定的边界条件可能有多个正确的解,内部的应力应变分布存在为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 1.2 率相关性塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关这种塑性叫做率无关性塑性,相反与应变率有关的塑性叫做率相关的塑性。大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变范围两者的应力应变曲线差别不大,所以在一般的分析中我们变为是与率无关的。 1.3 工程应力应变与真实的应力应变塑性材料的数据一般以拉伸的应力应变曲线形式给出材料数据,可能是工程应力与工程应变也可能是真实应力与真实应变。大应变的塑性分析一般采用真实的应力应变数据,而小应变分析一般采用工程的应力应变数据。 1.4 塑性在什么时候激活当材料中的应力超过屈服点时塑性被激活也就是说有塑性应变发生而屈服应力本身可能是下列某个参数的函数:①温度;②应变率;③以前的应变历史;④侧限压力;⑤其它参数。 2、塑性理论简介 塑性理论的三个主要方面:屈服准则;流动准则;强化准则。 2.1 屈服准则 屈服准则对单向受拉试件我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而对于一般的应力状态是否到达屈服点并不是明显的,屈服准则是一个可以用来与单轴侧试的屈服应力相比较的应力状态的标t表示,因此知道了应力状态和屈服准则程序就能确定是否有塑性应变产生,屈服准则的值有时候也叫做等效应力,一个通用的屈服准则是Von Miles屈服准则当等效应力超过材料的屈服应力时将会发生塑性变形。 2.2.流动准则 流动准则描述了发生屈服时塑性应变的方向,也就是说流动准则定义了单个塑性应变分量等随着屈服是怎样发展的。 2.3.强化准则 强化准则描述了初始屈服准则随着塑性应变的增加是怎样发展的,等向强化是指屈服面以材料中所作塑性功的大小为基础在尺寸上扩张对Mises屈服准则来说屈服面在所有方向均匀扩张,由于等向强化在受压方向的屈服应力等于受拉过程中所达到的最高应力,随动强化假定屈服面的大小保持不变而仅在屈服的方向上移动当某个方向的屈服应力升高时其相反方向的屈服应力,应该降低在随动强化中由于拉伸方向屈服应力的增加导致压缩方向屈服应力的降低所以在对应的两个屈服应力之间总存一个的差值2yQ初始各向同性的材料在屈服后将不再是向同性的。 1.经典双线性随动强化 BKIN 2.双线性等向强化 BISO

相关主题
文本预览
相关文档 最新文档