当前位置:文档之家› 材料物理性能(总结)

材料物理性能(总结)

材料物理性能(总结)
材料物理性能(总结)

一章

1、原子间的键合类型有几种?(P1)

金属键、离子键、共价键、分子键和氢键

2、什么是微观粒子的波粒二象性?(P1)

光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。

3、什么是色散关系?什么是声子?声子的性质?(P20、P25)

将频率和波矢的关系叫做色散关系。

声子就是晶格振动中的独立简谐振子的能量量子。

性质:(1)声子的粒子性:声子和光子相似,光子是电磁波的能量量子,电磁波可以认为是光子流,光子携带电磁波的能量和动量。

(2)声子的准粒子性:准粒子性的具体表现:声子的动量不确定,波矢改变一个周期或倍数,代表同一振动状态,所以不是真正的动量。

4、声子概念的意义?(P25)

(1)可以将格波雨物质的相互作用过程理解为,声子和物质的碰撞过程,使问题大大简化,得出的结论也正确。

(2)利用声子的性质可以确定晶格振动谱。

5、简述高聚物分子运动的特点。(P29)

(1)运动单元的多重性(2)分子运动时间的依赖性(3)分子运动的温度依赖性6、影响高聚物玻璃化温度的因素(P33)

(1)分子链结构的影响(2)分子量的影响(3)增塑剂的影响(4)外界条件的影响

7、影响高聚物流动温度的因素(P39)

(1) 分子量(2)分子间作用力(3)外力

8、线性非晶高聚物的力学状态?(P29)

二章

1、材料的热学性能的内容。(P41)

材料的热学性能包括热容、热膨胀、热传导、热稳定性、熔化和升华等。

2、什么是热容?(P42)什么是杜隆-柏替定律和奈曼-柯普定律(P43)

热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。

杜隆-珀替定律:恒压下元素的原子热容为25J/(k·mol);

奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。

3、试述线膨胀系数与体膨胀系数的关系。(P50)

4、请分析热膨胀与其他性能的关系。(P49)

5、影响材料热膨胀系数的因素。(P50)

(1)化学组成、相和结构的影响(2)化学键的影响(3)相变的影响

6、简述影响热导率的因素。(P55)

(1)温度的影响(2)显微结构的影响(3)化学组成的影响

(4)复相材料的热导率(5)气孔的影响

7、什么是热稳定性?无机材料受热损坏类型有几种?(P60)

热稳定性是指材料承受温度的急剧变化而不致破坏的能力。

从无机材料受热损坏的形式来看,可分为两种类型:一种是材料发生瞬时断裂,抵抗这种破坏的性能称为抗热冲击断裂性;另一种是在热冲击循环作用下,材料表面开裂、剥落,并不断发展,最终破裂或变质,抵抗这类破坏的性能称为抗热冲击损伤性。

8、高分子材料在受热过程中将发生的变化。(P61)

高分子材料在受热过程中将发生两类变化:一是物理变化,包括软化、熔融等;二是化学变化,包括交联、降解、环化、氧化、水解等。

9、简述高聚物的结构与耐热性的关系。(P61)

高分子的结构对高分子材料的热稳定性有着重要影响,欲提高高聚物的耐热性,从高分子结构方面考虑,主要是加强分子链之间的相互作用或强化高分子链本身,归结起来,主要有三个结构因素:增加高分子链的刚性、使高聚物结晶以及进行交联。

10、高聚物的热分解与耐热性的关系。(P62)

高分子中化学键的键能越大,材料就越稳定,耐热分解能力也就越强。及提高聚合物热稳定性的措施。

(1)在高分子链中避免弱键(2)在高分子主链中尽量避免一长串链接的亚甲基—CH2—,并尽量引入较大比例的环状结构。

(3)合成“梯形”或“片状”高分子。

11、什么是热应力?其计算公式怎样?(P63)

由于材料热膨胀或收缩引起的内应力称为热应力。

12、非平面薄板状陶瓷限制骤冷时的最大温热表达式?(P64)

13、材料所能经受的最大降温速率的计算公式(P67)

14、提高抗热冲击断裂性能的措施。(P69)

(1)提高材料的强度σ,减小弹性模量E,使σ/E提高。

(2)提高材料的热导率λ,使R' 提高。

(3)减少材料的热膨胀系数α,α小的材料,在同样的温差下,产生的热应力小。

(4)减小表面热传递系数h。

(5)减小产品的有效厚度。

15、热分析方法有几种?它们的定义?(P70)

(1)普通热分析方法:是测量材料在加热或冷却过程中热效应所产生的温度和时间的关系的一种分析方法。

(2)差热分析:是在程序控制温度下,将被测材料与参比物在相同调件下加热或冷却,测量试样与参比物之间温差随温度(T)时间(t)的变化关系。

(3)差示扫描量热法:是在程序温度控制下用差动方法测量加热或冷却过程中,在试样和标样的温度差保持为零时,所要补充的热量与温度和时间的关系的分析技术。

(4)热重法:是在程序控制温度下测量材料的质量与温度关系的一种分析技术。

16、简述热分析应用。(P71 )

(1)物质的鉴定(2)进行热力学研究(3)动力学研究(4)结构域物理性能关系的研究

三章

1、什么是折射率?(P76)

光在真空中的传播速度与在致密材料中传播速度的比值就称为材料的绝对折射率。

2、试述影响折射率的因素。(P77)

(1)离子半径(2)材料的结构(3)材料所受的应力

3、什么是透射系数?反射系数?色散全反射?(P79)

4、什么是散射定律与吸收定律?色散系数?(P81)

5、提高无机材料透光性的措施。(P87)

(1)提高原材料的纯度(2)掺加外加剂(3)工艺措施:一般,采取热压法要比普通烧结法更便于排除气孔,因而是获得透明陶瓷较为有效的工艺,热等静压法更好。

6、请列出三种常用的乳浊剂。(P89)

7、着色剂有几种?试述着色机理?(P92)

(1)分子着色剂(2)胶态着色剂

机理:显色的原因是由于着色剂对光的选择性吸收而引起选择性反射或选择性透射,从而显现颜色。

8、怎样提高着色剂的稳定度。(P92)

通常为了使高温色料的颜色稳定,一般都先将显色离子合成到人造矿物中去。最常见的是形成尖晶石形式AO·B2O3,这里A是二价离子,B是三价离子。因此只要离子的尺寸合适,则二价、三价离子均可固溶进去。由于堆积紧密,结构稳定,所制成的色料稳定度高。

9、改善釉的乳浊性能的工艺措施。(P92)

用高的反射率、厚的釉层和高的散射系数或它们的某些结合,可以得到良好的乳浊效果。

10、电光效应和磁光效应?声光效应?它们的作用?(P101)

材料在电场作用下其光学特性发生变化的现象称为电光效应。电光晶体可以应用在光学振荡器、频率倍增器、激光频振腔中的电压控制开关以及用在光学通信系统中的调制器。

材料在磁场作用下其光学特性发生变化的现象称为磁光效应。磁光材料是在可见光和红外光波段具有磁光效应的光信息功能材料,利用磁光效应可制成许多磁光器件,如:调制器、隔音器、旋转器、相移器、Q开关等快速控制激光参数的器件,也可用于激光雷达测距光通信激光放大等系统中的光路中。

材料在声波作用下其光学特性发生变化的现象称为声光效应。声光介质材料被广泛用于声光偏转器声光调制器和声光可谐滤波器等各类声光器件。

四章

1、怎样判断离子电导和电子电导?什么是霍尔效应?电解现象?(P106)

载流子为离子或离子空穴的电导称为离子电导,载流子为电子或电子空穴的电导称为电子电导。通过不同的物理效应可以确定材料的导电性质,产生霍尔效应的是电子电导,产生电解效应的是离子电导。

沿试样x轴方向通入电流I(电流密度j x), z轴方向加一磁场H z,那么在y轴方向将产生一电场E y,这一现象称为霍尔效应。

离子的迁移伴随着一定的质量变化,离子在电极附近发生电子得失,产生新的物质,这就是电解现象。

2、载流子的迁移率的物理意义?电导率的一般表达式。(P107)

物理意义:为载流子在单位电场中的迁移速度。

3、简述影响离子电导率的因素?对图4-5进行解释。(P112)

(1)温度:随着温度的升高,电导按指数规律增加。

(2)晶体结构:电导率随活化能按指数规律变化,而活化能反应离子的固定程度,它与晶体结构有关。

(3)晶格缺陷:离子性晶格缺陷的生成及其浓度大小是决定离子电导的关键。

4、导电高聚物有哪两类?(P113)

本征型高聚物导体和复合型高聚物导体。

5、超导体的三个重要性能指数及其定义。(P116)

(1)临界转变温度Tc:超导体温度低于临界转变温度时,便出现完全导电和迈斯纳效应等基本特征。超导材料的临界转变温度越高越好,越有利于应用。

(2)临界磁场强度Hc:能破坏超导态的最小磁场强度就称为临界磁场强度。

(3)临界电流密度Jc:如果输入电流所产生的磁场与外磁场之和超过临界磁场强度Hc,则超导态被破坏,这时输入的电流为临界电流Ic,相应的电流密度称为临界电流密度Jc。

6、简述影响金属导电性的因素。(P121)

(1)温度的影响:金属电阻率随着温度升高而增大。

(2)应力的影响:

(3)冷加工变形的影响

(4)合金元素及其相结构的影响

7、简述材料导电性的测量法(P126)

(1)双臂电桥法(2)直流电位差计测量法(3)直流四探针法(4)绝缘电阻可采用冲击检流计法测量

8、试述玻璃态电导的特点及降低电导的方法?(P130)

特点:(1)在含有碱金属离子的玻璃中,基本上表现为离子电导。(2)纯净玻璃的电导一般比较小,但如含有少量的碱金属就会使电导大大增加。(3)在碱金属氧化物含量不大的情况下,电导率与碱金属离子浓度有直线关系。到一定程度时,电导率成指数增长。

利用双碱效应和压碱效应可以降低玻璃的电导率。

9、试述无机材料的次级现象(空间电荷效应,电化学现象)(P132)

(1)电化学老化现象:不仅离子电导,而且电子电导为主的瓷介材料都有可能发生电化学老化现象。电化学老化是指在电场作用下,由于化学变化引起材料电性能不可逆的恶化。一般电化学老化的主要原因是离子在电极附近发生氧化还原过程。有下面几种情况:

a、电子-阳离子电导

b、阴离子-阳离子电导

c、电子-阴离子电导

d、阳离子-

阳离子电导

(2)空间电荷效应:在测量陶瓷电阻时,经常可以发现,加上直流电压后,电阻需要经过一定的时间才能稳定。切断电源后,将电极短路,发现类似的反向放电电流,并随时间减少到零。随时间变化的这部分电流称为吸收电流,最后恒定的电流称为漏导电流,这种现象称为吸收现象。

吸收现象主要是因为在外电场作用下,瓷体内自由电荷重新分布的结果。

空间电荷形成的主要原因是因为陶瓷内部具有微观不均匀性。

10、试述半导体陶瓷的物理效应及应用。(P137)

(1)晶界效应:

a、PTC效应:

PTC陶瓷的应用:PTC陶瓷可应用于温度敏感元件、限电流元件以及恒温发热体等方面。

b、压敏效应:压敏效应是指对电压变化敏感的非线性电阻效应,即在某一临界

电压以下,电阻值非常高,几乎无电流通过:超过该临界电压(敏感电压),

电阻迅速降低,让电流通过。

压敏电阻器已广泛应用于半导体和电子仪器的稳压和过压保护以及设备的避雷器等。

(2)表面效应

11、无机材料电导的对数混合法则。

12、什么是三个基本的热电效应?(P141)

第一热电效应——塞贝克效应

第二热电效应——玻尔帖效应

第三热电效应——汤姆逊效应

13、离子晶体具有离子电导的特性必须具备的条件?

五章

1、反应电介质极化能的参数?怎样计算?(P154)

相对介电常数。

2、表征极化相关物理量有哪些?(P155)

极化强度、介电常数、电偶极矩、电场强度、电极化率、电位移、电极化强度

3、极化有几种?各有什么特点?(P156)

(1)电子位移极化:在外电场作用下,原子外围的电子轨道相对于原子核发生位移,原子中的正、负电荷中心产生相对位移。这种极化称为电子位移极化。

(2)离子位移极化:离子在电场作用下偏移平衡位置的移动,相当于形成一个感性偶极矩;也可以理解为离子晶体在电场作用下离子间的键合被拉长。

(3)弛豫(松弛)极化:这种极化机制也是由外加电场造成的,但与带电质点的热运动密切相关。例如,当材料中存在着弱联系的电子、离子和偶极子等弛豫质点,温度造成的热运动使这些质点分布混乱,而电场使它们有序分布,平衡时建立了极化状态。这种具有统计性质,称为热弛豫极化。

包括:电子弛豫极化、离子弛豫极化、偶极子弛豫极化。

(4)取向极化:沿外场方向取向的偶极子数大于与外场反向的偶极子数,因此电介质整体出现宏偶极矩,这种极化称为取向极化。

a、是极性电介质的一种极化方式。

b、取向极化过程中,产生的偶极矩的大小取决于偶极子的取向程度。c 、取向极化需要时间较长,大约为10-10—10-2s,取向极化率比电子极化率一般要高两个数量级。

(5)空间电荷极化:a、宏观不均匀性b、空间电荷极化随着温度升高而下降。

(6)自发极化

4、什么是克劳修斯—莫锁堤方程?它的物理意义怎样?(P160)

5、电工陶瓷按其极化形式可分为几类?(P161)

(1)主要是电子位移极化的电介质,包括金红石瓷、钙钛矿瓷以及某些含锆陶瓷。(2)蛀牙是离子位移极化材料,包括刚玉、斜顽辉石为基础的陶瓷以及碱性氧化物含量不多的玻璃。

(3)具有显著离子松弛极化和电子松弛极化的材料,包括绝缘子瓷、碱玻璃和高温含太陶瓷。一般折射率小、结构松散的电介质,如硅酸盐玻璃、绿宝石、董青石等矿物,主要表现为离子松弛极化;折射率大,结构紧密、内电场大、电子电导大的电介质,如含钛瓷,主要表现为电子松弛极化。

6、由两种介质组成的材料介电常数、介电常数温度系数的计算公式怎样?举例说明利用这两个公式怎样调整材料的介电常数及介电常数温度系数?(P161)

7、什么是弛豫时间?分析介电损耗影响因素?(P165)

通常把电介质完成极化所需要的时间称为弛豫时间。

影响因素:

(1)频率的影响:频率与介质损耗的关系,在德拜方程方程中有所体现,分析如下:

a、当外加电场频率很低时,即ω→0,介质的各种极化机制都能跟上电场的变换,

此时不存在极化损耗,相对介电常数最大。介电损耗主要由电介质的漏电引起,则损耗功率P w与频率无关。由tanδ=ζ/(ωε)知,当频率ω升高是,tanδ减小。

b、当外加电场频率增加至某一值时,松弛极化跟不上电场变换,则εr减小,在

这一频率范围内由于ωτ《1,则ω升高,tanδ升高且Pw也增大。

c、当频率提得很高,

8、陶瓷材料的介电损耗主要来源于哪三个部分?(P167)

a、电导损耗

b、取向损耗和弛豫极化损耗

c、电介质结构损耗。

9、玻璃的损耗有什么特点?怎样降低?(P167)

a、复杂玻璃的介质损耗主要包括三个部分:电导损耗、松弛损耗和结构损耗。哪一种占

优势,取决于外界因素——温度和外加电压的频率。在工程频率和很高的温度下。电导损耗占优势;在高频下,主要的是由联系弱的离子在有限范围内的移动造成的松弛损耗;

在高频低温下,主要是结构损耗,其损耗机理目前还不清楚,大概与结构的紧密程度有关。

b、一般简单单纯玻璃的损耗都是很小的。在纯玻璃中加入碱金属后,介质损耗大大增加,

并且损耗随着碱性氧化物浓度的增大按指数增大。

c、村子“双碱效应”和“压碱效应”

在含碱玻璃中加入二价金属氧化物,特别是重金属氧化物时,压碱效应特别明显,降低损耗

11、降低材料介质损耗的途径?(P170)

降低材料的介质损耗应从考虑降低材料的电导损耗和极化损耗入手。

(1)选择合适的主晶相。根据要求尽量选择结构紧密的晶体作为主晶相。

(2)在改善主晶相性能时,尽量避免产生缺位固溶体或填隙固溶体,最好形成连续固溶体。这样弱联系离子减少,可避免损耗显著增大。

(3)尽量减少玻璃相。为了改善工艺性能引入较多的玻璃相时,应采用“中和效应”

和“压抑效应”,以降低玻璃相的损耗。

(4)防止产生多晶转变,因为多晶转变时晶格缺陷多,电性能下降,损耗增加。

(5)注意焙烧氛围

(6)控制好最终烧结温度,使产品“正烧”,防止“生烧”和“过烧”,以减少气孔率。

(7)在工艺过程中要防止杂质的进入,胚体要致密。

12、什么是介电强度?简述影响无机材料击穿强度的因素?(P171、P175)

当陶瓷或聚合物用于工程中做绝缘材料、电容器材料和封装材料时,通常都要经受一定的电压梯度的作用,如果材料发生短路,则这些材料就失效。人们称这种失效为介电击穿。引起材料击穿的电压梯度(V/cm)称为材料的介电强度或介电击穿强度。

影响因素:a、介质结构的不均匀性b、材料中气泡的作用c、材料表面状态和边缘电场

13、什么是热释电性?热释电效应产生的条件?(P182)

一些晶体除了由于机械应力作用引起压电效应外,还可以由于温度作用而使其电极化强度变化,这就是热释电性。

产生条件:a、其晶体一定是具有自发极化(固有极化)的晶体,在结构上应具有极轴。

14、什么是铁电体?钛酸钡在各温度下的结构?(P184)

钛酸钡在温度高于120℃时具有立方结构,高于5℃、小于120℃时为四方结构,温度在-90—5℃之间为斜方结构,温度<-90℃时为菱方结构。

15、压电、铁电材料及其应用?(P188-190)

16、请简述压电应变量d33和d31的测量过程?(P192)

17、什么是铁电电滞回线?绘出电滞回线并标出Pr、Ps、Ec。(P184)

六章

1、什么是磁化?磁性的基本物理量?(P195)

任何物质处于磁场中,均会使其所占有的空间的磁场发生变化,这是由于磁场的作用使物质表现出一定的磁性,这种现象称为磁化。

基本物理量:磁化强度、单位体积磁化率、磁感应强度、磁导率等。

2、物质磁性分类及其特点?(P196)

a、抗磁体:物质的磁化率χ为很小的负数,其绝对值大约在10-6数量级,它们在磁场中受微弱斥力,使磁场减弱。

b、顺磁体:物质的磁化率χ为正值,约为10-6—10-3.它在磁场中受微弱吸力,使磁场略为增强。

c、铁磁体:物质在较弱的磁场作用下,就能产生很大的磁化强度。χ是很大的正数,且M或B与外磁场强度H呈线性关系变化。铁磁体在温度高于某临界温度后变成顺磁体。

d、亚铁磁体:这类磁体类似于铁磁体,但χ值没有铁磁体那么大。

e、反磁体:物质的磁化率χ是小的正数,在温度低于某温度时,它的磁化率随温度升高而增大,高于这个温度,其行为像顺磁体。

3、铁磁体磁化曲线与磁滞回线?(P197)

4、什么是软磁材料和硬磁材料?(P197)

人们通常把矫顽力Hc很小而磁化率χ很大的材料称为“软磁材料”;而将Hc很大而χ较小的材料称为“硬磁材料”。

5、简述影响金属抗磁性和顺磁性的因素?(P199)

(1)原子结构的影响(2)温度的影响(3)相变及组织结构的影响

(4)合金成分与组织的影响

6、铁磁性物质分为哪两种类型?什么是磁致伸缩效应?(P203)

一种是想Fe、CO、Ni等,属于本征铁磁材料,在一定的宏观尺寸范围内,原子的磁矩方向趋向一致,这种铁磁性称为完全铁磁性;另一种是大小不同的原子磁矩反平行排列,二者不能完全抵消,即有净磁矩存在,称此中铁磁性为亚铁磁性。

铁磁体在磁场中被磁化时,其尺寸和形状都会发生变化,这种现象称为磁致伸缩效应。

7、什么是磁泡?可以用于产生磁泡畴的材料有哪些?(P211)

磁泡是在磁性薄膜中形成的一种圆柱状的磁畴,这种磁畴在显微镜下观察很像气泡,所以称为磁泡。

材料有:(1)六角单轴晶体(如钡铁氧体)(2)稀土元素的正铁氧体(3)稀土元素的石榴石型铁氧体等。

8、什么是技术磁化?技术磁化是通过哪两种方式进行的?(211)

铁磁材料在外磁场作用下所产生的磁化称为技术磁化。

通过:一是磁畴壁的迁移;一是磁畴壁的旋转。

9、铁磁物质的磁化分为哪三个阶段?(212)

起始磁化阶段、急剧磁化阶段以及缓慢磁化至饱和阶段

11、影响畴壁迁移的因素有哪些?(215)

首先是铁磁材料中夹杂物、第二相、空隙的数量及其分布。其次是内应力的大小和分布,起伏越大、分布越不均匀,对畴壁迁移阻力越大。第三是磁晶各向异性能的大小,最后,磁致伸缩和磁弹性也影响壁移过程。

12、为了提高剩磁,可采取哪些措施?(216)

(1)使材料的易磁化方向与外磁场方向一致,这样就不会有磁畴旋转过程,使Mr≈Ms。

(2)进行磁场热处理,让材料在外磁场中从高于居里温度向低温冷却,可以造成磁畴排列的有序取向,形成所谓的磁结构

13、简述影响铁磁性的因素?(217)

(1)温度的影响

(2)应力的影响

(3)形变和晶粒细化的影响

(4)磁场退火

(5)合金成分和组织的影响

14、合成有价值的磁性高分子的设计准则?(224)

a、含未成对电子的分子之间能产生铁磁相互作用,达到自旋有序化是获得铁磁性高分

子的充分和必要条件

b、分子中应有高自旋的苯基,含N、NO、O、CN、S等自由基体系或基态为三线

态的4π电子的环戊二烯基阳离子或苯基双阳离子等;

c、3d电子的Fe、Co、Ni、Mn、Cr、Ru、Os、V、Ti等含有双金属

有机高分子络合物是顺磁体,若使两个金属离子间结合一个不含未成对电子的有机

基团,则可引起磁性来自M1M2间的超交换作用而获得铁磁体;

d、按电荷转移模式设计的对称取代二茂金属(F

e、Co、Ni)及其稠环高分子化合物,

与受体TCNE(四氟基乙烯)、TCNQ(四氰基二亚甲基苯醌)、DDQ(二氯二氰基苯

醌)等作用可生成电荷转移盐铁磁体,但受体须满足以下条件:受体A必须能接受

供体D的第二个电子,形成D+A-D+A-交替排列有序结构。

15、什么是铁氧体?有几种?(226)

以氧化铁(Fe23+O3)为主要成分的强磁性氧化物叫做铁氧体。有:尖晶石型、石榴石

型、磁铅石型、钙钛矿型、钛铁矿型和钨青铜型六种。

16、动态磁滞回线的特点?(229)

a、交流磁滞回线形状除与磁场强度有关外。还与磁场变化的频率f和波形有关。

b、一定频率下,交流幅值磁场强度不断减少时,交流磁滞回线逐渐趋于椭圆形状;

c、当频率升高时,呈现椭圆回线的磁场强度的范围会扩大,且各磁场强度下回线的矩

形比Br/Bm会升高。

17、趋肤效应?(230)

涡电流的流动,在每瞬间都会产生于外磁场产生的磁通方向相反的磁通,越到材料内部,这种反向的作用越强,致使磁感应强度和磁场强度沿样品截面严重不均匀。等效来看,好像材料内部的磁感应强度被排斥道材料的表面,这种现象叫趋肤效应。

18、磁后效应?

所谓磁后效应就是磁化强度(磁感应强度)跟不上外磁场变化的延迟现象。

19、共振损耗?

对剩余损耗研究发现,当磁后效的弛豫时间τ确定后,磁损耗将随频率发生变化,在某一特定频率下损耗显著增大,这种损耗称为共振损耗。

20、什么是磁性材料的动态特性?交流磁滞回线?(228)

磁性材料在交变磁场,甚至脉冲磁场作用下的性能统称磁性材料的动态特性。

软磁材料的动态磁化过程与静态的或准静态的磁化过程不同,由于交流磁化过程中磁场强度是周期对称变化的,所以磁感应强度也跟着周期性对称地变化,变化一周构成的曲线称为交流磁滞回线。

20、磁性分析的应用有几方面?(242)

七章

1、简述高聚物高弹性的主要特点?(248)

a、弹性形变大

b、高弹模量低

c、快速拉伸时(绝热过程),高弹态高聚物通常温度会升高;

2、影响弹性模量的因素?(251)

a、温度的影响:一般来说,温度升高,模量降低

b、相变的影响

c、合金成分与组织的影响

3、测量弹性模量的方法有哪几种?

一种是静态测量法,即从应力和应变曲线确定弹性模量。

另一种是动态测量法,这种方法是在试样承受交变应力产生很小应变的条件下测量弹性模量。

4、什么是内耗?内耗的种类?(260)

由于固体内部的原因使机械能消耗的现象称为内耗。

内耗分为:滞弹性内耗、静滞后内耗和位错阻尼型内耗。

5、内耗产生的原因?其测量方法有哪几种?(270-273)

材料产生内耗的原因与材料中微观组织结构和物理性能的变化有关,溶质原子应力感生有序、钉扎位错的非弹性运动、晶界的迁移、磁性、热量的变化等,都可能因为这些微观运动要消耗能量,而引起内耗。

测量方法:(1)扭摆法——低频下内耗的测量

(3)共振棒法——中频下内耗的测量

(4)超声脉冲回波法——高频下内耗的测量

6、内耗分析的应用?(275)

内耗分析可用于研究固溶体中溶质原子浓度的变化,从而能有效研究与固溶体析出有关各种问题;分子晶界的行为,研究对晶界进行强化的途径;研究相变动力学;特别是对分析位错和溶质原子的交互作用是位移有效的方法。

(1)确定扩散激活能与低温扩散系数

(2)研究固溶体时效

(3)高阻尼合金的研究

(4)在高分子材料分析中的应用

a、未知样品的初步分析

b、评价塑料的耐热性和低温韧性

绘曲线:P30 图1-37

P57图2-15

P252图7-3

P112图4-5

P138图4-39

P139图4-41

P184图5-16

P188图5-29

P196图6-1

P197图6-2

材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。 2. 随有温度升高弹性模量不一定会下降。如低碳钢温度一直升到铁素体转变为 奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。 3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。 4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合 力。对于一定的材料它是个常数。 弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。因为建立的模型不同,没有定量关系。(☆) 5. 材料的断裂强度:a E th /γσ= 材料断裂强度的粗略估计:10/E th =σ 6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近 绝对零度时,热容按T 的三次方趋近与零的试验结果。 7. 德拜温度意义: ① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温 度θD 来划分这两个温度区域: 在低θD 的温度区间,电阻率与温度的5次方成正比。 在高于θD 的温度区间,电阻率与温度成正比。 ② 德拜温度------晶体具有的固定特征值。 ③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有 相同的关系曲线。德拜温度表征了热容对温度的依赖性。本质上, 徳拜温度反应物质内部原子间结合力的物理量。 8. 固体材料热膨胀机理: (1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升 高而增大。 (2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。随着温度升 高,热缺陷浓度呈指数增加,这方面影响较重要。 9. 导热系数与导温系数的含义: 材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。 即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆) 10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震 性。 热稳定性破坏(即抗热振性)的类型有两种:抗热冲击断裂性和抗热冲击损伤性。 11. 提高材料抗热冲击断裂性能的措施 ①提高材料强度σ,减小弹性模量E ,σ/E 增大,即提高了材料柔韧性,这样可吸收较多的应变能而不致于开裂。晶粒较细,晶界缺陷小,气孔少且分散者,强度较高,抗热冲击断裂性较好。

初中物理知识点总结(超全)

第一章声现象知识归纳 1.声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离: 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz 的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。

9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章光现象知识归纳 1.光源:自身能够发光的物体叫光源。 2.太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌。 5.光的直线传播:光在均匀介质中是沿直线传播。 6.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 7.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。

无机材料物理性能习题解答

这有答案,大家尽量出有答案的题材料物理性能 习题与解答 吴其胜 盐城工学院材料工程学院 2007,3

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) (0114.010 5.310101401000940000cm E A l F l E l l =?????=??= ?=?=?-σ ε0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100=-=?=A A l l ε名义应变) (99510 524.44500 6 MPa A F T =?= = -σ真应力

1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(210 5.3) 1(28 8 MPa Pa E G ≈?=+?= += μ剪切模量) (390)(109.3) 7.01(310 5.3) 21(38 8 MPa Pa E B ≈?=-?= -=μ体积模量. ,. ,112 1 2 1 2 1 2 1 2 1 2 1 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝=== = ∝= = = =??? ? ? ?亦即做功或者:亦即面积εε εε εε εσεσεσ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(11 2211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-= e e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为

材料物理性能复习总结

1、 ?拉伸曲线: ?拉伸力F-绝对伸长△L的关系曲线。 ?在拉伸力的作用下,退火低碳钢的变形过程四个阶段: ?1)弹性变形:O~e ?2)不均匀屈服塑性变形:A~C ?3)均匀塑性变形:C~B ?4)不均匀集中塑性变形:B~k ?5)最后发生断裂。k~ 2、弹性变形定义: ?当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。 ?弹性变形的可逆性特点: ?金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性 关系,且弹性变形量都较小。 ?橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。 ?无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。 3、弹性比功:(弹性比能、应变比能),用a e 表示, ?表示材料在弹性变形过程中吸收弹性变形功的能力。 ?一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?物理意义:吸收弹性变形功的能力。 ?几何意义:应力σ-应变ε曲线上弹性阶段下的面积。 4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即: ?①应变对于应力的响应是线性的; ?②应力和应变同相位; ?③应变是应力的单值函数。

?材料的非理想弹性行为: ?可分为滞弹性、伪弹性及包申格效应等几种类型 5、滞弹性(弹性后效) ?滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹 性应变的现象。 6、实际金属材料具有滞弹性。 ?1)单向加载弹性滞后环 ?在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步), 形成一封闭回线,称为弹性滞后环。 ?2)交变加载弹性滞后环 ?交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图 b)。 ?3)交变加载塑性滞后环 ?交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。 7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。 ?这部分在变形过程中被吸收的功,称为材料的内耗。 ?内耗的大小:可用滞后环面积度量。 8、金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的“内耗”。 ?严格说,循环韧性与内耗是有区别的,但有时常混用。 ?循环韧性: ?指材料在塑性区内加载时吸收不可逆变形功的能力。 ?内耗: ?指材料在弹性区内加载时吸收不可逆变形功的能力 9、循环韧性:也是金属材料的力学性能,因它表示在交变载荷(振动)下吸收不可逆变形功的能力,故又称为消振性。 ?材料循环韧性越高,则自身的消振能力就越好。 ?高的循环韧性可减振:如汽轮机叶片(1Cr13),机床材料、发动机缸体、底座等选 用灰铸铁制造。 ?低循环韧性可提高其灵敏度:如仪表和精密机械、重要的传感元件。 ?乐器所用材料的循环韧性越低,则音质越好。 10、伪弹性有些合金如(Au金-Cd镉,In铟-Tl铊等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复 11、当材料所受应力超过弹性极限后,开始发生不可逆的永久变形,又称塑性变形。 12、单晶体受力后,外力在任何晶面上都可分解为正应力和切应力。 ?正应力:只能引起弹性变形及解理断裂。 ?只有在切应力的作用下,金属晶体才能产生塑性变形。 13、金属材料常见的塑性变形方式:滑移和孪生两种。 14、滑移现象: ?表面经抛光的金属单晶体在拉伸时,当应力超过屈服强度时,在表面会出现一些与 应力轴成一定角度的平行细线。 ?在显微镜下,此平行细线是一些较大的台阶(滑移带)。 ?滑移带:又是由许多小台阶组成,此小台阶称为滑移线

中考物理必考的知识点总结

2019年中考物理必考的知识点总结物体在振动,我们“不一定”能听得到声音 解析: 1、声音的传播需要介质,在真空中声音是不能传播的,登上月球的宇航员们即使相距很近也要靠无线电话交谈。 2、人的听觉是有一定的频率范围的,即:20~20190Hz,频率低于20Hz的声波叫次声波,如发生海啸、地震时产生的声波是次声波;而频率高于20190Hz的声波是超声波,如医院里的B超。对于超声波和次声波人耳是无法听到的。 3、人耳听到声音的条件除了与频率有关外,还更距离发声体的远近有关,如果距离发声体太远,通过空气传入人耳后不能引起鼓膜的振动,还是听不到声音。 密度大于水的物体放在水中“不一定”下沉 解析: 密度大于水的物体放在水中有三种情况,下沉、悬浮、漂浮,到底处于哪种状态,与物体全部浸入水中受到的重力和浮力的大小有关: 1、下沉。根据F浮=Vρ水g和G=Vρ物g,因为ρ水ρ物,F浮,物体下沉,此时,该物体是实心的。例如:铁块放在水中下沉。 2、悬浮,当该物体内部的空心所造成该物体的重力与它浸没在水中所排开水的重力相等时该物体悬浮。(在挖空的过

程中,浮力不变,重力逐渐减小) 3、漂浮,当物体内部空心且空心较大时,该物体漂浮。(挖空的部分较大,使得浮力大于重力,物体上浮,直至浮出水面,浮力再次等于重力)例如:钢铁制成的轮船。 物体温度升高了,“不一定”是吸收了热量 解析: 物体吸收热量,最直接的变化就是物体内能增加,但我们知道内能是物体内部所有分子动能和是势能的总和。 1、如果吸收热量后物体的状态不发生变化,即分子势能不变,只改变了分子的动能,则物体的温度就会升高,如给铁块加热,铁块的温度升高; 2、如果吸收热量后,物体的状态发生变化,如晶体熔化,液体沸腾,虽然都在不断的吸收热量,但温度并不升高,温度始终保持不变。非晶体吸热时,分子的动能和势能都在发生变化,所以状态变化的同时,温度也升高。 物体收到力的作用,运动状态“不一定”发生改变 解析: 第一,力有两个作用效果,1、改变物体的形状;2、改变物体的运动状态。所以物体受到力的作用,不一定运动状态发生改变。 第二,即使力的效果是改变物体的运动状态,运动状态的改变是由物体受到力的共同效果决定的。1、物体受到非平衡

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

材料物理性能心得

学材料物理性能心得 本学期我们学了材料物理性能,对材料的微观结构有了更充分的了解,全书一共有六章.第一章为材料的热学性能,包括热容、热膨胀、热传导、热稳定性等;第二章为材料的电学性能,包括材料的导电性、超导电性、介电性、磁电性、热电性、接触电性、热释电性和压电性、光学性等;第三章为材料的磁学性能,介绍有关的磁学理论、磁性的测量和磁性分析法在材料研究中的主要应用;第四章为材料的光学性质,介绍光传播电磁理论、光的折射与反射、光的吸收与色散、晶体的双折射和二向色性、介质的光散射、发光材料等;第五章为材料的弹性及内耗、内耗产生的物理本质、影响弹性模量的因素、弹性模量的测量及应用、滞弹性与内耗、内耗产生的机制、内耗的测量方法和度量、内耗分析的应用等;第六章为核物理检测方法及应用,主要介绍穆斯堡尔、核磁共振、正电子湮没和中子散射等现代物理方法。 在学习过程中对材料的磁学性能印象最深刻,物质的磁学性能在研究中非常重要,这是因为磁性是一切物质的基本属性之一,它存在的范围很广,小至微观粒子大到宇宙天体几乎丢存在着磁现象。磁性不只是一个宏观的物理量,而且与物质的微观结构密切相关;它不仅取决于物质的原子结构,还取决于原子间的相互作用,即键合情况和晶体结构等。因此,研究磁性是研究物质内部微观结构的重要方法之一。 随着现代科学技术和工业的发展,磁性材料的应用越来越广泛,特别是电子技术的发展,对磁性材料又提出了心得要求。因此,研究

有关磁性的理论、发现新型的磁性材料是材料科学的一个重要方向。下面主要介绍磁性材料的内容。 磁性材料是一种新兴的基础功能材料。虽然我们人类早在几千年前就发现了磁石相吸和磁石吸铁的现象,但我们对于磁性材料的开发研究还不足100年。经过不断的发现研究,磁性材料已经成为一个庞大的家族。早在公元前四世纪、人们就发现了天然的磁石,我国古代人民最早用磁石和钢针制成了指南针、并将它用于军事和航海。对物质磁性的研究具有悠久的历史、是在十七世纪末期和十九世纪开始发展起来的。近代物理学大发展,电流的磁效应、电磁感应等相继被发现和研究,同时磁性材料的理论出现,涌现了像法拉第等大批电磁学大师。20世纪,法国的外斯提出了著名的磁性物质的分子场假说,奠定了现代磁学的基础。 磁性材料具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反应磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

中考物理知识点总结

光学 声波 波的存在 电磁波 光波 波的作用:传播信息 特点:(1)光的传播不需依赖于一定的物质,在真空中也能传播。 (2)在同一种物质中沿直线传播,在两种不同物质界面上会发生 在传播过程中光的路线是可逆的。 速度:在不同物质中传播速度不同。 在真空中光速最大,数值为3×108米/秒。 反射定律: 镜面反射—平面镜成像 漫反射 折射现象特点: 凸透镜 凹透镜 5、眼睛——视力的矫正 类型 特点 矫正方法 近视眼 来自于远方物体的光成像在视网膜前 戴凹透镜 远视眼 来自于远方物体的光成像在视网膜后 戴凸透镜 凸透镜成像规律 物距 像的性质、特点 像的位置 应用举例 与物体在 像距 u →∞ 缩成一点(实像) 异侧 v=f 测量焦距 u >2f 倒、缩小、实像 异侧 f <u <2f 照相机 u=2f 倒、等大、实像 异侧 v=2f / f <u <2f 倒、放大、实像 异侧 v >2f 投影仪 u=f 不成像,光经过凸透镜后平行于主光轴的光线 平行光源 u <f 正立、放大、虚像 同侧 / 放大镜 1、波 2、光的传播 种类 3、光的反射 项目 不同点 相同点 镜面 反射 反射面 光线特点 都遵守光的反射定律 平整光面 如果入射光线平行,则反射光线仍平行。 漫反射 粗糙不平 反射光线杂乱散漫。 透镜 4 、光的折射 名称 形状 性质 特点 凸透镜 中间厚边缘薄 对光起会聚作用,有实焦点 能成实像和虚像 凹透镜 中间薄边缘厚 对光线起发散作用,有虚焦点 只能成虚 像 空气斜射入水中,折射光线向法线靠 水或玻璃射向空气中,折射光线远离法线

力学 1、运动的描述 (1)参照物:研究物体是否运动和怎样运动时,事先假定不动的物体。参照物可任意选择, 所选参照物不同,描述的结果可能不同,通常选地面或地面上的建筑物为参照物。 (2)运动和静止的判断方法:(a )选择合适的参照物。(b )看被判断物体与参照物之间位 置是否改变,若不变则静止;若变则运动。 (3)运动的分类 匀速直线运动:物体在一条直线上运动,且在相等的时间内 直线运动 通过的路程相等。 机械运动 变速直线运动:在相等时间内通过的路程不相等的直线运动。 曲线运动 2、速度与平均速度 意义:描述物体运动的快慢。 公式:v = s / t 单位:米/秒(主单位),千米/小时(常用单位) (2)平均速度:作变速直线运动的物体,物体通过的距离与通过这段距离所经历的时间之比。 3、力 )。 大小 方向 作用点

材料物理性能复习思考题汇总

材料物理性能复习思考题汇总 第一章绪论及材料力学性能 一.名词解释与比较 名义应力:材料受力前面积为A,则δ。=F/A,称为名义应力 工程应力:材料受力后面积为A。,则δT =F/A。,称为工程应力 拉伸应变:材料受到垂直于截面积方向大小相等,方向相反并作用在同一条直线上的两个拉伸应力时发生的形变。 剪切应变:材料受到平行于截面积大小相等,方向相反的两个剪切应力时发生的形变。 结构材料:以力学性能为基础,以制造受力构件所用材料 功能材料:具有除力学性能以外的其他物理性能的材料。 晶须:无缺陷的单晶材料 弹性模量:材料发生单位应变时的应力 刚性模量:反映材料抵抗切应变的能力 泊松比:反映材料横向正应变与受力方向线应变的比值。(横向收缩率与轴向收缩率的比值) 形状因子:塑性变形过程中与变形体尺寸,工模具尺寸及变形量相关参数。 平面应变断裂韧性:一个考虑了裂纹尺寸并表征材料特征的常数 弹性蠕变:对于金属这样的实际弹性体,当对它施加一定的应力时,它除了产生一个瞬时应变以外,还会产生一个随时间而变化的附加应变(或称为弛豫应变),这一现象称为弹性蠕变。 蠕变:在恒定的应力δ作用下材料的应变随时间增加而逐渐增大的现象 材料的疲劳:裂纹在使用应力下,随着时间的推移而缓慢扩展。 应力腐蚀理论:在一定环境温度和应力场强度因子作用下,材料中关键裂纹尖端处,裂纹扩展动力与裂纹扩展阻力的比较,构成裂纹开裂和止裂的条件。 滑移系统:滑移面族和滑移方向为滑移系统 相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称相变增韧 弥散强化:在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧效果,这称为弥散增韧 屈服强度:屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力 法向应力:导致材料伸长或缩短的应力 切向应力:引起材料切向畸变的应力 应力集中:受力构件由于外界因素或自身因素导致几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。

中考物理复习资料:知识点总结

热学: 1.温度t:表示物体的冷热程度.【是一个状态量.】 常用温度计原理:根据液体热胀冷缩性质. 温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法. ⒉热传递条件:有温度差.热量:在热传递过程中,物体吸收或放出热的多少.【是过程量】 热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种. ⒊汽化:物质从液态变成气态的现象.方式:蒸发和沸腾,汽化要吸热. 影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动.蒸发有致冷作用. ⒋比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容. 比热容是物质的特性之一,单位:焦/(千克℃)常见物质中水的比热容最大. C水=4.2×103焦/(千克℃)读法:4.2×103焦耳每千克摄氏度. 物理含义:表示质量为1千克水温度升高1℃吸收热量为4.2×103焦. ⒌热量计算:Q放=cm⊿t降Q吸=cm⊿t升 Q与c、m、⊿t成正比,c、m、⊿t之间成反比.⊿t=Q/cm 6.内能:物体内所有分子的动能和分子势能的总和.一切物体都有内能.内能单位:焦耳 物体的内能与物体的温度有关.物体温度升高,内能增大;温度降低内能减小. 改变物体内能的方法:做功和热传递(对改变物体内能是等效的) 7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变. 压强: 1.压强P:物体单位面积上受到的压力叫做压强. 压力F:垂直作用在物体表面上的力,单位:牛(N). 压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关. 压强单位:牛/米2;专门名称:帕斯卡(Pa) 公式:F=PS【S:受力面积,两物体接触的公共部分;单位:米2.】 改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强. ⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计).】 产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强. 规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大.[深度h,液面到液体某点的竖直高度.] 公式:P=ρghh:单位:米;ρ:千克/米3;g=9.8牛/千克. ⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值

无机材料物理性能重点

一·辨析 1. 铁电体与铁磁体的定义和异同 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。铁磁体是指具有铁磁性的物质。 2. 本征(固有离子)电导与杂质离子电导 答:本征电导是源于晶体点阵的基本离子的运动。这种离子自身随着热振动离开晶体形成热缺陷。这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。 相同点:二者的离子迁移率 和电导率 表达形式相同 不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量 B.由于杂质载流子的生成不需要提供额外的活化能,即他的活化能比在正常晶格上的活化能要低得多,因此其系数B 比本征电导低一些 C.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高 3. 离子电导和电子电导 答:携带电荷进行定向输送形成电流的带点质点称为载流子。载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导 不同点:a.离子电导是载流子接力式移动,电子电导是载流子直达式移动 B.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏 C.离子电导产生很困难,但若有热缺陷则会容易很多;一般材料不会产生电子电导,一般通过掺杂形式形成能量上的自由电子 D.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加 4.铁电体与反铁电体 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料 不同点:1.在反铁电体的晶格中,离子有自发极化,以偶极子形式存在,偶极子成对的按反平行方向排列,这两部分偶极子的偶极矩大小相等,方向相反;而在铁电体的晶格中,偶极子的极性是相同的,为平行排列 2.反铁电体具有双电滞回线,铁电体具有电滞回线 3.当外电场降至零时,反铁电体无剩余极化,铁电体存在剩余计 铁电体 铁磁体 自发极化 自发磁化 不含铁 含铁 电畴 磁畴 电滞回线 磁滞回线

EC系列板材成形试验平台技术资料

拉伸冲杯试验模具与产品 高强度板材杯凸 EC系列板材成型实验平台创新性地引入双级液 压、动态载荷平衡、模具总成机构等独特设计, 达到板材成形实验平台的测试精度高、可扩展的 测试功能多、拉伸推力大、压边力与拉伸力分别 单独可控的优点,可以做各种超过10mm厚度的高 强度板材的成形测试。测试平台对现有的汽车轻 量化技术、板材成形工艺研究、材料物理性能测 试、焊接工艺评估、润滑油品分级方面起到至关 重要的作用,经我们的平台实验后,可得出最优 设计参数,减少工业领域的材料浪费,达到节能 环保的效果 目前国内市场上的板材成形试验机主要受限于结 构,采取多立柱液压压紧,丝杠提供拉伸力的方 式,这种结构复杂、体积庞大、提供的拉伸力范 围小,只能测试国标GB15825里面规定的2mm厚 以内的板材测试;EC系列的产品的拉伸力范围、 测试精度和重复性完全满足ISO、GB、DIN、ASTM 等试验标准

⑤弯曲试验⑥扩孔试验⑦滚边试验 注:此试验的深拉冲杯完成后,需要 G1型滚边机完成滚弯过程 EC系列板材成形试验平台可做测试内容

EC系列板材成形试验平台应用领域: - 板材成形性能研究 - 冲压工艺模拟和成型工艺参数研究和评估(常温和高温) - 焊道检测、焊接工艺指标评定 - 润滑油的评估和分级 - 涂料性能检测 - 包装材料质量评定(易拉罐板材、清漆性能) EC系列板材成形试验平台技术特性: 1.双级液压拉伸压边系统,每级可单独控制位移、速度、方向、推力 2.压边力分边:带压边力自动分边装置,保证压边载荷均匀分布于圆周,结构保证由于压边力不均匀引起的物料不对称滑动,提高 拉伸试验结果的准确性 3.业内首创深拉冲杯一次成形技术,板材一次性自动冲裁圆片、自动适应均匀压边、自动拉伸、自动退料 4.创新性的模具总成成套更换方式,让模具更换更加简单方便,防止模具错误装配;更高的模具对中性 5.液压拉伸机构:冲头自动匀速推进、速度无极可调,系统推力大,整个试验过程平滑流畅 6.实验冲模对中性:0.05mm以内 7.机器停机方式:①传感器感应到冲头拉伸力急速下降,板材屈服极限到达,自动停机②手动停机:观察到裂纹出现,立即停机 8.系统内采用防尘设计,适应严酷工况;满足长期高负荷试验运行 9.拉伸力获取方式:盘辐式压力传感器、油压换算 10.全数字数据处理平台,高速动态数据采样频率超过1MSPS高速动态数据采集模块、高速嵌入式带DSP算法微处理器,数据采集密度大 11.输出:GOM-FLC系统信号接口、USB连接PC接口 12.主机自带人机界面,可独立监控实验过程,也可通过USB接口监控 13.可调滚动脚轮,移动方便 14.系统带缓冲刹车保护装置,启动、停机平稳,环保节能设计,能效比高

材料物理性能复习重点

经典自由电子理论推导 推导各向同(异)性材料的体膨胀系数和线膨胀系数的关系 二、计算题 在500单晶硅中掺有的硼,设杂质全部电离球该材料的电阻率,(设u= ,硅密度2.33g/cm^3,硼原子量为10.8) 假设X射线用铝材屏蔽,如果要是95%的X射线能量不能透过,则铝材的厚度至少要多少?铝的吸收系数为0.42cm-1 三、名词解释 马基申定则:总的电阻包括金属的基本电阻和溶质浓度引起的电阻(与温度无关)。 本征半导体:纯净的无结构缺陷的半导体单晶 介质损耗:电介质在电场作用下,单位时间内因发热而消耗的能量成为电介质的介质损耗磁化:任何物质处于磁场中,均会使其所占有的空间的磁场发生变化,这是由于磁场的作用使物质表现出一定的磁性,该现象称为磁化(单位体积的磁矩称为磁化强度)本征磁矩:原子中电子的轨道磁矩和自旋磁矩构成的原子固有磁矩称为本征磁矩 自发磁化:在铁磁物质内部存在着很强的与外磁场无关的“分子场”,在这种分子场作用下,原子磁矩趋于同向平行排列,即自发的磁化至饱和, 磁畴:居里点下,铁磁体自发磁化成若干个小区域,称为磁畴 磁晶各向异性:在单晶体的不同晶向上,磁性能是不同的,称为~ 形状各向异性:不同形状的试样磁化行为是不同的,该现象称为~ 磁致伸缩:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化这种现象称为~ 技术磁化:在外磁场作用下铁磁体从完全退磁状态磁化至饱和状态的内部变化过程 双光束干涉:两束光相遇后,在光叠加区,光强重新分布,出现明暗相间,稳定的干涉条纹(条件:频率相同振动方向一致,并且有固定的相位关系) 衍射:光波遇到障碍物时,在一定程度上能绕过障碍物进入几何阴影区。 色散:材料的折射率随入射光的波长而变化 折射率的色散:材料的折射率随入射光的频率减小而减小的性质 双折射:由一束入射光折射后分成两束光的现象。符合折射率的是寻常光,不然是非常光二向色性:晶体结构的各向异性不仅能产生折射率的各向异性(双折射),而且能产生吸收率的各向异性 四、问答题 1.经典自由电子理论与量子自由电子理论异同 同:金属晶体中,正离子形成的电场是均匀的,价电子是自由的, 异:经典理论认为没有施加外电场时,自由电子沿各个方向运动的几率相同,不产生电流? 量子理论认为每个原子的内层电子基本保持着单个原子时的能量状态,所有价电子有不同的能级。 2.评价电介质的主要电学性能指标有哪些? 介电常数、耐电常数、损耗因数、体电阻率和表面电阻率、前三个属于介电性,后者导电性3.电介质的极化基本形式 电子式极化、离子式极化、偶极子极化、空间电荷极化

最新中考物理必考知识点复习提纲完整版

最新中考物理必考知识点复习提纲完整版 1、乐音三要素及决定因素:①音调是指声音的高低,频率越大,音调越高 ②响度是指声音的大小,振幅越大,距发声体越近,响度越大。 ③音色指不同发声体声音特色,不同发声体在音调和响度相同时,音色是不同的。 2、声音在空气中的传播速度为:340m/s 3、光的直线传播的现象:影子、小孔成像、日食和月食。 4、光的反射定律:反射光线、入射光线和法线都在同一个平面内,反射光线和入射光线分居法线的两侧,反射角等于入射角。【总结为“三线共面、法线居中、两角相等”。】 ①像与物等大 ②平面镜成像为虚像 ③像到镜面的距离等于物到镜面的距离 ④像与物的对应点的连线到镜面的距离垂直 6、光的折射规律:①在折射现象中,折射光线、入射光线和法线都在同一个平面内;②光从空气斜射入水中或其他介质中时,折射光线向法线方向偏折(折射角<入射角);③光从水或其他介质中斜射入空气中时,折射光线向界面方向偏折(折射角>入射角)。 7、光在空气中传播的速度为:c = 3×108 m/s 8、光的三基色:红、绿、蓝 9、凸透镜对光有会聚作用,凹透镜对光有发散作用。 10、近视眼矫正应佩带凹透镜,远视眼矫正应佩带凸透镜 12、熔化:物质从固态变成液态的过程叫做熔化;凝固:物质从液态变成固态的过程叫做凝固。 13、熔化吸热,凝固放热 14、晶体熔化特点:固液共存,吸热,温度不变 非晶体熔化特点:吸热,先变软变稀,最后变为液态 非晶体熔点: 温度不断上升。 15、熔化的条件:⑴ 达到熔点。⑵ 继续吸热。 16、汽化:物质从液态变为气态的过程叫汽化。②汽化的两种方式:沸腾和蒸发③沸腾是在一定温度

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

中南大学出版的 材料物理性能名词解释总结

晶格热振动:固体材料由晶体或非晶体组成,点阵中的质点并不是静止不动的,而是围绕其平衡位置做微小振动。声频支振动:振动着的质点中频率甚低的格波,质点质点之间的相位差不大。光频支振动与之相反。热容:在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。金属材料热容的影响因素:自由电子的影响,一般可忽略,低温热容缓慢下降,高温热容超过3R继续上升,合金成分对热容的影响。组织转变对热容的影响:一级相变和二级相变一级相变在相变点发生突变,二级,也剧烈变化但有限值,亚稳态组织转变,从亚稳态转变为稳态时要放出热量。热容的测量方法:量热计法,撒克司法,史密斯法和脉冲法。热分析法:差热分析,差示扫描量热法,热重法。热分析的应用:建立合金相图,热弹性马氏体相变研究,合金的有序无须转变研究,液相转变的研究。影响热膨胀性能的因素:键强,晶体结构,非等轴晶系的晶体,相变,化学成分。热膨胀系数的测量:机械杠杆式膨胀仪,光杠杆膨胀仪,电感式膨胀仪。热膨胀分析的应用:确定钢的组织转变点(切线法、极值法)研究加热转变。热导率:单位时间内通过单位截面面积的热量。热导率的测量:稳态法,非稳态法。材料的热冲击损坏类型:抗热冲击断裂性,抗热冲击损伤性。热应力:材料的热胀冷缩引起的内应力。提高抗热冲击断裂性能的措施:提高材料的强度减小弹性模量,提高材料的热导率,减小材料的热膨胀系数,减小表面散热系数,减小产品的有效厚度。载流子:材料中参与传导电流的带电粒子。费米球:在0K下自由电子在速度空间中分布形成一个中心对成球。掺杂半导体(n、p型)n型,所有结合键被价电子填满后仍有富裕的价电子,p型,价电子都成键后仍有些结合键上缺少价电子出现空穴。掺杂能级:掺入的异价原子使得局部结合键情况发生变化,导致半导体中出现附加能及。光致电导:半导体材料受到适当波长的电磁波辐射时,导电性会大幅度升高的现象。陶瓷材料的导电性:按用途分电子导电、离子导电,半导体、绝缘体。超导体:零电阻、完全抗磁,条件,温度条件、磁场条件、电流条件。磁化强度M:单位体积磁性材料内原子磁矩m的矢量总和。磁极化强度J:单位体积中磁偶极子矢量总和。材料按磁性分为:抗磁性、顺磁性、铁磁性、亚铁磁性和反铁磁性。磁致伸缩:铁磁体的长度或体积发生变化的现象。退磁场:在铁磁性材料内部,附加磁场方向和外加磁场方向相反。磁畴(三角畴、片状畴)矫顽力:畴壁越过最大的阻力峰所需要的磁场就相当于材料的矫顽力。剩余磁化强度:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的Mr(剩余磁化强度)或Br(剩余磁感应强度)称为剩磁(用获得晶体结构或磁结构的办法来提高剩磁)磁滞损耗:铁磁性材料反复磁化一周,由于磁滞现象所造成的损耗(减小摩擦生热、或形成磁有序)。涡流损耗:感应电流所引起的损耗(做成薄片,提高电阻率)。剩余损耗:总损耗减去所剩下的损耗(控制杂质的量)。磁后效(约旦后效、李希特后效)交流(动态)磁性测量:伏安法、电桥法。OMR-正常磁电阻:传导电子受到磁场的洛伦兹力作用做回旋运动,使其有效的平均自由程减小所致。AMR-各向异性磁电阻效应:铁磁性的过渡金属、合金中,外加磁场方向平行于电流方向时的电阻率和外加磁场方向垂直电流方向时的电阻率不同。GMR-巨磁电阻效应:磁性材料的电阻率在有外磁场作用时较无外磁场作用时纯在显著变化的现象。光的本(横波、具有偏振性)质:波粒二象性。光和固相作用的本质:电子极化、电子能态转变。影响折射率的因素:元素离子半径,电子结构,材料的结构、晶型、晶态。同质异构体,外界因素。半导体材料中的光吸收:激子吸收(能产生激子的光的吸收)、本征吸收(电子在带与带之间的跃迁所形成的吸收)发光寿命:发光体在激发停止之后

相关主题
文本预览
相关文档 最新文档