当前位置:文档之家› 分子标记的发展及分子标记辅助育种

分子标记的发展及分子标记辅助育种

分子标记的发展及分子标记辅助育种
分子标记的发展及分子标记辅助育种

分子标记的发展及分子标记辅助育种

分子标记辅助选择育种(Marker Assisted Selection (MAS)或Marker Assisted Breeding)是利用与目标基因紧密连锁的分子标记或功能标记),在杂交后代中准确地对不同个体的基因型进行鉴别,并据此进行辅助选择的育种技术。通过分子标记检测,将基因型与表现型相结合,应用于育种各个过程的选择和鉴定,可以显著提高育种选择工作的准确性,提高育种研究的效率。

分子标记辅助育种示意图

DNA分子标记相对同类技术来说具有很强的优越性:因为大部分标记为共显性,对隐性性状的选择十分有利;数量极多,应对极其丰富的基因组变异;在生物发育的不同阶段,不同组织的DNA都可用标记分析;不影响目标性状的表达,与不良性状无必然的连锁等等。随着分子生物学技术的发展,现在DNA分子标记技术也有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴定、基因库构建、基因克隆等方面。

分子标记的类型

分子标记按技术特性可分为三大类。第一类是以分子杂交为基础的DNA标记技术,主要有限制性片段长度多态性标记(Restriction fragment length polymorphisms,RFLP标记);第二类是以聚合酶链式反应(Polymerase chain reaction,PCR反应)为基础的各种DNA指

纹技术;第三类是一些新型的分子标记,如单核苷酸多态性(Single nucleotide polymorphism,SNP),由基因组核苷酸水平上的变异引起的DNA序列多态性,包括单碱基的转换、颠换以及单碱基的插入/缺失等。

分子标记是以DNA多态性为基础,因而具有以下优点:①表现稳定,多态性直接以DNA 形式表现,无组织器官、发育时期特异性,不受环境条件、基因互作影响;②数量多,理论上遍及整个基因组;③多态性高,自然界存在许多等位变异,无需专门人为创造特殊遗传材料,这为大量重要性状基因紧密连锁的标记筛选创造了条件;④对目标性状表达无不良影响,与不良性状无必然连锁;⑤部分标记遗传方式为共显性,可鉴别纯合体与杂合体;⑥成本不高,一般实验室均可进行。对于特定探针或引物可引进或根据发表的特定序列自行合成。

各种分子标记的原理和优缺点

第一代分子标记:RFLP

RFLP在20世纪70年代已被发现,是发现最早的一种分子标记。1980年,人类首先将其用于构建连锁图。

RFLP标记的原理:植物基因组DNA上的碱基替换、插入、缺失或重复等,造成某种限制性内切酶(restriction enzymes,简称RE)酶切位点的增加或丧失是产生限制性片段长度多态性的原因。对每一个DNA/RE组合而言,所产生的片段是特异性的,它可作为某一DNA 所特有的“指纹”。某一生物基因组DNA经限制性内切酶消化后,能产生数百万条DNA片段,通过琼脂糖电泳可将这些片段按大小顺序分离,然后将它们按原来的顺序和位置转移至易于操作的尼龙膜或硝酸纤维素膜上,用放射性同位素(如P32)或非放射性物质(如生物素、地高辛等)标记的DNA作为探针,与膜上的DNA进行杂交(即Southern杂交),若某一位置上的DNA酶切片段与探针序列相似,或者说同源程度较高,则标记好的探针就结合在这个位置上。放射自显影或酶学检测后,即可显示出不同材料对该探针的限制性片段多态性情况。对于线粒体和叶绿体等相对较小的DNA分子,通过合适的限制性内切酶酶切,电泳分析后有可能直接检测出DNA片段的差异,就不需Southern杂交。RFLP探针主要有三种来源,即cDNA克隆、植物基因组克隆(Random Genome克隆,简称RG克隆)和PCR克隆。

优点: RFLP标记具有共显性的特点。共显性(co-dominant)标记指的是双亲的两个以上分子量不同的多态性片段均在F1中表现。它已被广泛用于多种生物的遗传分析,特别是构建植物遗传图谱。

缺点:RFLP分析的探针,必须是单拷贝或寡拷贝的,否则,杂交结果不能显示清晰可辨的带型,表现为弥散状,不易进行观察分析。RFLP标记所需DNA量大,检测步骤繁琐,需要的仪器、设备较多,周期长,检测少数几个探针时成本较高,用作探针的DNA克隆其制备与存放较麻烦;检测中要利用放射性同位素(通常为P32),易造成污染。尽管非放射性物质标记方法可用,但价格高,杂交信号相对较弱,灵敏度也较同位素标记低。目前,RFLP 标记直接用于育种成本高,逐渐被第二代、第三代分子标记取代。

第二代分子标记:基于PCR技术的RAPD/SCAR/AFLP/SSR

RAPD标记

由Williams等(1990)以DNA聚合酶链式反应为基础而提出。

RAPD标记的原理 RAPD标记是用随机排列的寡聚脱氧核苷酸单链引物(长度为10个核苷酸)通过PCR扩增染色体组中的DNA所获得的长度不同的多态性DNA片段。RAPD标记的原理同PCR技术,但又有别于常规的PCR反应。主要表现在以下3个方面:①引物。常规的PCR反应所用的是一对引物,长度通常为20bp(碱基对)左右;RAPD所用的引物为一个,长度仅10bp。②反应条件。常规的PCR复性温度较高,一般为55—60℃,而RAPD的复性温度仅为36℃左右。③扩增产物。常规PCR产物为特异扩增,而RAPD产物为随机扩增。这样,RAPD反应在最初反应周期中,由于短的随机单引物,低的退火温度,一方面保证了核苷酸引物与模板的稳定配对,另一方面因引物中碱基的随机排列而又允许适当的错配,从而扩大引物在基因组DNA中配对的随机性,提高了基因组DNA分析的效率。RAPD标记一般表现为显性遗传,极少数表现为共显性遗传。显性标记指的是F1的多态性片段与亲本之一完全一样,这样在杂交组合后代中扩增产物的记录可记为“有/无”,即把每一随机扩增多态性片段作为分子图谱的一个位点。

优点: RAPD引物长一般为10个碱基,人工合成成本低,一套引物可用于不同作物,建立一套不同作物标准指纹图谱。RAPD可以方便用于种质资源指纹档案建立,种内遗传多样性分析和品种纯度鉴定。由于使用DNA扩增仪,操作自动化程度高,分析量大,且免去了RFLP中的探针制备、同位素标记、Southern印迹等步骤,分析速度很快。RAPD分析所需DNA 样品量少(一般5~10ng),对DNA质量要求较RFLP低。同时,RAPD标记还可转化为RFLP 探针,SCAR及STS等表现为共显性和显性的分子标记。

缺点:RAPD最大缺点是重复性较差。RAPD标记的实验条件摸索和引物的选择是十分关

键而艰巨的工作。为此研究人员要对不同物种做大量的探索工作,以确定每一物种的最佳反应程序包括模板DNA、引物、Mg2+浓度等。对实验条件标准化要求很高。

SCAR标记

在RAPD技术的基础上,1993年,Paran等提出了一种将RAPD标记转化成特异序列扩增区域标记,即SCAR标记。

原理:目标DNA经RAPD分析后,先将RAPD多态片段克隆然后对克隆片段两端测序再根据测序结果设计长为18~24bp的引物,一般引物前10个碱基应包括原来的RAPD扩增所用的引物。多态性片段克隆之前首先应从凝胶上回收该片段,由于Taq酶可使PCR产物3’末端带上A尾巴,人工设计的克隆载体5’末端有一个突出的T碱基,这样可使PCR产物高效地克隆到载体上。将连接产物经过转化大肠杆菌,涂平板,挑选重组克隆,测序分析、设计引物,PCR扩增,检测是否还能扩增出原来的多态性条带等一系列实验,检测转化成功的标记就称为SCAR标记。由于SCAR标记所用引物长,特异性扩增重复性好,可有效的用于分子育种。

优点:SCAR标记是共显性遗传,待检 DNA 间的差异可直接通过有无扩增产物来显示。结果稳定性好,重现性高。

缺点:操作步骤较多。

AFLP

AFLP是荷兰Keygene公司科学家Marc & Pieter l993年创造发明的一种DNA分子标记。该技术是对限制性酶切片段的选择性扩增,又称基于PCR的RFLP。鉴于AFLP标记的多态性强,一次可检测到100—150个扩增产物,因而非常适合绘制品种指纹图谱及遗传多样性的研究。

AFLP标记的原理:首先对基因组的DNA进行双酶切,其中一种为酶切频率较高的限制性内切酶(frequent cutter),另一种为酶切频率较低的酶(rare cutter)。用酶切频率较高的限制性内切酶消化基因组DNA是为了产生易于扩增的,且可在测序胶上能较好分离出大小合适的短DNA片段;用后者消化基因组DNA是限制用于扩增的模板DNA片段的数量。AFLP 扩增数量是由酶切频率较低的限制内切酶在基因组中的酶切位点数量决定的。将酶切片段和含有与其黏性末端相同的人工接头连接,连接后的接头序列及临近内切酶识别位点就作为以后PCR反应的引物结合位点,通过选择在末端上分别添加1~3个选择性碱基的不同引物,选择性地识别具有特异配对顺序的酶切片段与之结合,从而实现特异性扩增,最后用变性聚

丙烯酰胺凝胶电泳分离扩增产物。为了避免AFLP分析中的同位素操作,目前已发展了AFLP 荧光标记、银染等新的检测扩增产物的手段。

优点:AFLP技术结合了RFLP稳定性和PCR技术高效性的优点,不需要预先知道DNA序列的信息,因而可以用于任何动植物的基因组研究。另外,AFLP多态性远远超过其他分子标记,利用放射性同位素在变性的聚丙烯酰胺凝胶上电泳可检测到50—100条AFLP扩增产物,一次PCR反应可以同时检测多个遗传位点,被认为是指纹图谱技术中多态性最丰富的一项技术。AFLP标记多数具有共显性表达、无复等位效应等优点,并且表现稳定的遗传性。

缺点:该技术受专利保护,目前用于分析的试剂盒价格较贵,分析成本高;对DNA的纯度及内切酶质量要求也比较高,这也是它的不足之处。

SSR

1987年,Nakamura发现生物基因组内有一种短的重复次数不同的核心序列,他们在生物体内多态性水平极高,一般称为可变数目串联重复序列,简称VNTR(Variable number tandem repeat)。VNTR标记包括小卫星(minisatellites)和微卫星(microsatellites)标记两种。微卫星标记,即SSR标记,是一类由1~6个碱基组成的基序(motif)串联重复而成的DNA序列,其长度一般较短,广泛分布于基因组的不同位置这类序列的重复长度具有高度变异性。对SSR的研究最早始于动物基因组,特别是人类和哺乳动物基因组研究。目前植物SSR研究也非常活跃。

SSR标记的原理:尽管微卫星DNA分布于整个基因组的不同位置上,但其两端的序列多是相对保守的单拷贝序列。根据微卫星DNA两端的单拷贝序列设计一对特异引物,利用PCR 技术,扩增每个位点的微卫星DNA序列,通过电泳分析核心序列的长度多态性。一般地,同一类微卫星DNA可分布于整个基因组的不同位置上,通过其重复次数的不同以及重叠程度的不完全而造成每个座位的多态性。SSR标记多态性丰富,重复性好,其标记呈共显性,分散分布于基因组中。

优点:SSR的检测是依据其两侧特定的引物进行PCR扩增,因此是基于全基因组DNA扩增其微卫星区域。检测到的一般是一个单一的复等位基因位点。SSR标记为共显性标记,可鉴别出杂合子和纯合子;重复性高,稳定可靠。为了提高分辨率,通常使用聚丙烯酰胺凝胶电泳它可检测出单拷贝差异。它兼具PCR反应的优点,所需DNA样品量少,对DNA质量要求不太高。

缺点:使用SSR技术的前提是需要知道重复序列两翼的DNA序列。这可以在其他种的

DNA数据库中查询,但更多的是必须针对每个染色体座位的微卫星,从其基因组文库中发现可用的克隆,进行测序,以其两端的单拷贝序列设计引物,因此微卫星标记的开发成本高。

第三代分子标记

SNP(Single nucleotide polymorphism )是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入,形成的遗传标记,其数量很多,多态性丰富。随着人类基因组计划研究的深入,人类基因组单核苷酸多态性标记(SNP)的研究应运而生,并且得到异常迅猛的发展。单核苷酸多态性标记(SNP)被称为“第三代DNA遗传标记”,这种遗传标记的特点是单个碱基的置换。SNP广泛分布于基因组范围内,具有变异来源丰富、潜在数量巨大等优点,被认为是应用前景最好的遗传标记物。

优点:SNP数量多,分布广泛;高通量,适于快速、规模化筛查;SNP等位基因频率的容易估计;易于基因分型。

缺点:由于DNA样品的复杂性,有些SNP不能被检测到。

三代分子标记比较

纵观整个分子标记的发展史,对三种分子标记总结如下:

通过比较发现第三代分子标记更适合现代大规模的分子育种研究,而且随着测序技术的发展,SNP检测的效率得到大大的提高,成本也越来越低。通过高通量测序,大规模的SNP 标记被发掘出来并在育种中得到了广泛应用,如构建遗传图谱,挖掘功能基因,对核心种质资源进行进化选择分析等。

分子标记辅助选择育种

分子标记辅助选择育种 传统的育种主要依赖于植株的表现型选择 (Phenotypieal selection)。环境条件、基因间互作、基因型与环境互作等多种因素会影响表型选择效率。例如抗病性的鉴定就受发病的条件、植株生理状况、评价标准等影响;品质、产量等数量性状的选择、鉴定工作更困难。一个优良品种的培育往往需花费7~8年甚至十几年时间。如何提高选择效率,是育种工作的关键。 育种家在长期的育种实践中不断探索运用遗传标记来提高育种的选择效率与育种预见性。遗传标记包括形态学标记、细胞学标记、生化标记与分子标记。棉花的芽黄、番茄的叶型、抗TMV的矮黄标记、水稻的紫色叶鞘等形态性状标记,在育种工作中曾得到一定的应用。以非整倍体、缺失、倒位、易位等染色体数目、结构变异为基础的细胞学标记,在小麦等作物的基因定位、连锁图谱构建、染色体工程以及外缘基因鉴定中起到重要的作用,但许多作物难以获得这类标记。生化标记主要是利用基因的表达产物如同工酶与贮藏蛋白,在一定程度上反映基因型差异。它们在小麦、玉米等作物遗传育种中得到应用。但是它们多态性低,且受植株发育阶段与环境条件及温度、电泳条件等影响,难以满足遗传育种工作需要。以DNA多态性为基础的分子标记,目前已在作物遗传图谱构建、重要农艺性状基因的标记定位、种质资源的遗传多样性分析与品种指纹图谱及纯度鉴定等方面得到广泛应用,尤其是分子标记辅助选

择(molecular marker-as—sisted selection,MAS)育种更受到人们的重视。 第一节分子标记的类型和作用原理 一、分子标记的类型和特点 按技术特性,分子标记可分为三大类。第一类是以分子杂交为基础的DNA标记技术,主要有限制性片段长度多态性标记(Restriction fragment length polymorphisms,RFLP标记);第二类是以聚合酶链式反应(Polymerase chain reaction,PCR反应)为基础的各种DNA指纹技术。PCR是Mullis等(1985)首创的在模板DNA、引物和4种脱氧核糖核苷酸存在的条件下,依赖于DNA聚合酶的体外酶促反应,合成特异DNA片段的一种方法。PCR技术的特异性取决于引物与模板DNA的特异结合。PCR反应分变性(denaturation)、复性(annealling)、延伸(exten—sion)三步(图17—1)。变性指的是通过加热使DNA双螺旋的氢键断裂,双链解离形成单链DNA的过程;复性(又称退火)是指当温度降低时,单链DNA回复形成双链的过程,由于模板分子结构较引物要复杂得多,而且反应体系中引物DNA大大高于模板DNA,容易使引物和其互补的模板在局部形成杂交链;延伸是指在DNA聚合酶和4种脱氧核糖核苷三磷酸底物及Mg2+存在的条件下,在聚合酶催化下进行以引物为起始点的5'-3'的DNA链延伸。以上三步为一个循环,每一循环的产物可以作为下一个循环的模板,经25~30个循环后,介于两个引物之间的特异DNA片段得到大量的复制,数量可达2×106-7拷贝。按照PCR所需引

动物分子育种及其在鱼类育种中的应用

收稿日期:2009-02-27 基金项目:国家科技支撑计划(2006BAD01A1204);黑龙江水产研究所基金科研专项(2008HSYZX-SJ-07); 农业部鱼类生物育种实验室(2008NYBZS-07). 作者简介:池喜峰(1982-),男,硕士研究生,主要从事鱼类育种研究.通讯作者:石连玉(1961-),男,研究员,主要从事鱼类遗传育种研究. 鱼类传统育种从1865年孟德尔提出其遗传规 律至今已有143年的历史,传统育种技术在我国创造了举世瞩目的成就,然而随着科技的发展却出现了技术上的滞后,超长的育种年限已经造成育种行业的许多瓶颈问题,然而问题的出现总伴随着该行业相关技术的革新,一门新型学科———动物分子育种技术正在悄然兴起,并展现出极大的活力与应用前景。动物分子育种(Animal molecular breeding )是依据分子遗传学和分子数量遗传学理论,利用DNA 重组技术,从分子水平上来改良动物品种的新型学 科。狭义的分子育种仅指DNA 改组(DNAshuffling )[1] ;广义的分子育种则包括DNA 改组、DNA 改良和基因改组新技术等内容[2]。分子育种技术包括以分子 标记为主的基因组育种技术(Genome breeding )和基 因转移育种技术(Transgenic breeding),两者具有很强的互补性,分子标记辅助选择技术不能创造变异,也不能在不同种间进行优良基因的传递,但转基因技术却能达到这个目标。两者的结合使得分子育种技术较传统的育种方法更能按照人的意愿快速进行物种改良,最近还开发了通过计算机技术进行分子设计,以实现分子育种的最佳方法。本文就分子育种技术及其在鱼类育种中的应用作以综述。 1基因组育种 人及相关模式动物基因组研究的快速发展使 人们看到了基因组研究在基础和应用研究中的巨 动物分子育种及其在鱼类育种中的应用 池喜峰1,2,贾智英1,李池陶1,石连玉1 (1.中国水产科学研究院黑龙江水产研究所,黑龙江哈尔滨150070; 2.上海海洋大学水产与生命学院,上海,201306) 摘 要:随着生物技术的迅速发展,动物的育种技术也在更新换代,新型的分子育种正在越来越广泛地被应用 于各种动植物育种中,但在鱼类中起步较晚,然而发展却迅速,如目前已在遗传图谱构建、QTL 定位、分子标记辅助育种等方面广泛应用。本文综述了分子育种的研究内容并结合当前科研动态介绍了其在鱼类育种中的应用现状。 关键词:分子育种;基因组育种;转基因育种;鱼类中图分类号:S963 文献标识吗:A Animal molecular breeding and its application in fish breeding CHI Xi-feng 1,2,JIA Zhi-ying 1,LI Chi-tao 1,SHI Lian-yu 1 (1.Heilongjiang River Fishery Research Institute,Chinese Academy of Fishery Sciences,Harbin 150070,China; 2.College of Fisheries and Life Science,Shanghai Ocean University,Shanghai,201306,China) Abstract:With the rapid development of biotechnology ,animal breeding technology has also been renewed.New types of molecular breeding technology are increasingly used in animal and plant breeding programs.But it's late in the fish,however,showed a rapid development speed.For example,in genetic map construction,QTL localization and molecular marker assisted breeding.This review showed the research contents of molecular breeding and introduced its application based on the current situation in fish.Key words:molecular breeding;genome breeding;transgenic breeding;fish 文章编号:1005-3832(2009)02-0056-06 第22卷第2期2009年6月 Vol.22,No.2Jun.2009 水产学杂志 CHINESE JOURNAL FISHERIES

分子育种及其在牦牛育种中的应用

分子育种及其在牦牛育种中的应用 赵素君*钟金城 (西南民族大学生命科学与技术学院,成都610041) 摘要:随着分子遗传学、计算机科学、信息科学和现代生物技术的迅速发展,由分子遗传学与数量遗传学结合产生的新兴交叉学科—分子数量遗传学也得到了一定的发展,并为动物分子育种奠定了理论基础。与传统的动物育种方法相比,动物分子育种是直接在DNA水平上对性状的基因型或基因进行选择,因而其选种的准确性大大提高。同时,转基因技术的成功应用不仅可提高畜牧业的生产效率,还可拓展家畜的新用途。本文综合论述了分子育种及其在牦牛育种中的应用情况。 关键词:分子育种;基因组育种;分子标记辅助选择;转基因育种;牦牛 自20世纪80年代以来,随着现代分子生物技术和信息技术的迅速发展,动物基因组计划和动物分子遗传学研究取得了大量的突破性成果,国际上的动物育种已逐渐进入分子水平,从传统的育种方法朝着快速改变动物基因型甚至是单倍体型的方向发展。动物分子育种的理论和技术得到了不断完善,可以预见分子育种在动物中的广泛应用,必将迎来了新的畜牧科技革命,对21世纪世界畜牧业产生巨大的影响。 1.分子育种的理论基础 遗传学从产生起经历了经典遗传学、群体遗传学、数量遗传学、分子遗传学,发展到现在的分子数量遗传学。孟德尔遗传学与数学相结合形成了群体遗传学,通过它来研究孟德尔群体的遗传结构及其变化,即群体基因频率和基因型频率的组成和变化。群体遗传学使孟德尔遗传学由家庭水平发展到了群体水平,而数量遗传学则是群体遗传学和统计学应用于数量性状的产物,是研究群体数量性状遗传与变异规律的科学。分子数量遗传学是分子遗传学与数量遗传学相结合诞生的一门新的交叉学科。分子育种就是以分子数量遗传学的理论和技术为基础发展起来的动物育种方法。 动物育种技术随着遗传学理论与技术的发展而不断进步,经历了从表型和表型值选种,基因型值或育种值选种,发展到目前以DNA分子遗传标记为基础的标记辅助选种、转基因技术和基因诊断试剂盒等的分子育种。 2.动物分子育种 动物分子育种(animal molecular breeding)是利用分子数量遗传学理论和技术来改良畜禽品种的一门新型学科,是传统的动物育种理论和方法的新发展。从目前发展现状来看,它应包括两方面内容:基因组育种(genomic breeding)和转基因育种(transgenic breeding)。其中,基因组育种是在基因组分析的基础上,通过DNA标记技术来对畜禽数量性状座位进行直接选择,或通过标记辅助导入有利基因,通过标记辅助淘汰(marker assisted culling,MAC)清除不利基因等,以达到更有效的改良畜禽的目的。转基因育种则是通过基因转移技术将外源基因导入某种动物的基因组上,育成转基因畜禽新品种(系),从而达到改良重要生产性状(如生长率、遗传抗性等)或非常规性育种性状(如生产人类药用蛋白、工业用酶等)的目 *作者简介:赵素君(1977~),女,满族,西南民族大学生命科学与技术学院硕士研究生。

野生稻高产基因及其分子标记辅助育种研究(精)

野生稻高产基因及其分子标记辅助育种研究邓启云1, 袁隆平1, 梁凤山2, 李继明1, 李新奇1, 王乐光2, 王斌2 ( 1国家杂交水稻工程技术研究中心,湖南长沙410125;2 中国科学院遗传与发育生物学研 究所, 北京100101) 摘要:传统遗传育种方法在挖掘和利用水稻栽培品种的遗传资源方面日趋饱和,进一步提高杂交水稻产量潜力必须考虑利用水稻野生近缘种的有利基因库。随着分子生物学技术的发展,分子标记辅助选择在定向导入远缘有利基因方面的研究日益成为活跃的研究领域。介绍了马来西亚普通野生稻的2个高产QTLs的发现,及其分子标记辅助育种的初步进展,并展望了这一领域的研究前景。 关键词:野生稻高产基因(QTL);杂交水稻;分子标记辅助选择(MAS) 中图分类号: 文献标识码: A. 文章编号: Studies on Yield-enhancing Genes from Wild Rice and Its Marker-assisted Selection in Hybrid Rice DENG Qi-yun1, YUAN Long-ping1, LIANG Feng-shan2, LI Ji-ming1, LI Xin-qi1, WANG Yue-guang2, WANG Bin2 ( 1 China National Hybrid Rice Research and Development Center (CNHRRDC), Changsha, Hunan 410125, People’s Republic of China; 2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China ) Abstract: Facts have proved that genetic improvements are the most practicable way to increase rice productivity. But it is now quite limited to further raise the rice ceiling through traditional breeding methods based on the exploitation of genetic diversities within Oryza sativa. As the biotechnology fast developing recently, it becomes more and more important research field that breeders try to introduce distantly related favorable genes into rice cultivars from wild relatives of rice. It is described here that the discovery of the two yield-enhancing QTLs from wild rice and preliminary studies on marker assisted selection (MAS) in hybrid rice breeding program. And the prospects in the realm of MAS breeding were also discussed in the paper. Keywords: Yield-enhancing genes (QTLs) from wild rice; Hybrid rice; Marker-assisted selection (MAS) 我国现有人口超过13亿,人均耕地面积不足867 m2, 预计本世纪30年代,我国人口将增加到16亿,人均耕地将减少到667 m2左右,粮食自给仍然是摆在我们面前的紧迫问题。从全球范围看,由于人口增长以及环境恶化和城市化发展所带来的耕地面积减少的趋势在相当长一段时间内还无法逆转,因此继续提高主要粮食作物单位面积产量始终是各国政府和科学家关注的热点课题。水稻是最重要的粮食作物之一,实践证明,通过遗传改良来提高水稻单位面积产量是最行之有效的途径。

分子标记辅助育种技术

分子标记辅助育种技术 第一节 分子标记的类型和作用原理 遗传标记是指可以明确反映遗传多态性的生物特征。 在经典遗传学中,遗传多态性是指等位基因的变异。 在现代遗传学中,遗传多态性是指基因组中任何座位上的相对差异。 在遗传学研究中,遗传标记主要应用于连锁分析、基因定位、遗传作图及基因转移等。 在作物育种中,通常将与育种目标性状紧密连锁的遗传标记用来对目标性状进行追踪选择。 在现代分子育种研究中,遗传标记主要用来进行基因定位和辅助选择。 1、形态标记 形态标记是指那些能够明确显示遗传多态性的外观性状。如、株高、穗型、粒色等的相对差异。 形态标记数量少,可鉴别标记基因有限,难以建立饱和的遗传图谱。 有些形态标记受环境的影响,使之在育种的应用中受到限制。 2、细胞学标记 细胞学标记是指能够明确显示遗传多态性的细胞学特征。如染色体的结构特征和数量特征。 核型:染色体的长度、着丝粒位置、随体有无。 可以反映染色体的缺失、重复、倒位、易位。 染色体结构特征 带型:染色体经特殊染色显带后,带的颜色深浅、宽窄 和位置顺序,可以反映染色体上常染色质和异染 色质的分布差异。 染色体数量特征—是指细胞中染色体数目的多少。染色体数量上的

遗传多态性包括整倍体和非整倍体变异。 细胞学标记 优点:克服了形态标记易受环境影响的缺点。 缺点: (1)培养这种标记材料需花费大量的人力物力; (2)有些物种对对染色体结构和数目变异的耐受性差,难以获得相应的标记材料; (3)这种标记常常伴有对生物有害的表型效应; (4)观察鉴定比较困难。 3、蛋白质标记 用作遗传标记的蛋白质分为酶蛋白质和非酶蛋白质两种。 非酶蛋白质:用种子储藏蛋白质经一维或二维聚丙烯酰胺凝胶电泳,根据显示的蛋白质谱带或点,确定其分子结构和组成的差异。 酶蛋白质:利用非变性淀粉凝胶或聚丙烯酰胺凝胶电泳及特异性染色检测,根据电泳谱带的不同来显示酶蛋白在遗传上的多态性。 蛋白质标记的不足之处: (1)每一种同工酶标记都需特殊的显色方法和技术; (2)某些酶的活性具有发育和组织特异性; (3)标记的数量有限。 4 、 DNA标记 DNA分子标记是DNA水平上遗传多态性的直接反映。 DNA水平的遗传多态性表现为核苷酸系列的任何差异,包括单个核苷酸的变异。 二、分子标记的类型及作用原理

分子标记的发展及分子标记辅助育种

分子标记的发展及分子标记辅助育种 分子标记辅助选择育种(Marker Assisted Selection (MAS)或Marker Assisted Breeding)是利用与目标基因紧密连锁的分子标记或功能标记),在杂交后代中准确地对不同个体的基因型进行鉴别,并据此进行辅助选择的育种技术。通过分子标记检测,将基因型与表现型相结合,应用于育种各个过程的选择和鉴定,可以显著提高育种选择工作的准确性,提高育种研究的效率。 分子标记辅助育种示意图 DNA分子标记相对同类技术来说具有很强的优越性:因为大部分标记为共显性,对隐性性状的选择十分有利;数量极多,应对极其丰富的基因组变异;在生物发育的不同阶段,不同组织的DNA都可用标记分析;不影响目标性状的表达,与不良性状无必然的连锁等等。随着分子生物学技术的发展,现在DNA分子标记技术也有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴定、基因库构建、基因克隆等方面。 分子标记的类型 分子标记按技术特性可分为三大类。第一类是以分子杂交为基础的DNA标记技术,主要有限制性片段长度多态性标记(Restriction fragment length polymorphisms,RFLP标记);第二类是以聚合酶链式反应(Polymerase chain reaction,PCR反应)为基础的各种DNA指

纹技术;第三类是一些新型的分子标记,如单核苷酸多态性(Single nucleotide polymorphism,SNP),由基因组核苷酸水平上的变异引起的DNA序列多态性,包括单碱基的转换、颠换以及单碱基的插入/缺失等。 分子标记是以DNA多态性为基础,因而具有以下优点:①表现稳定,多态性直接以DNA 形式表现,无组织器官、发育时期特异性,不受环境条件、基因互作影响;②数量多,理论上遍及整个基因组;③多态性高,自然界存在许多等位变异,无需专门人为创造特殊遗传材料,这为大量重要性状基因紧密连锁的标记筛选创造了条件;④对目标性状表达无不良影响,与不良性状无必然连锁;⑤部分标记遗传方式为共显性,可鉴别纯合体与杂合体;⑥成本不高,一般实验室均可进行。对于特定探针或引物可引进或根据发表的特定序列自行合成。 各种分子标记的原理和优缺点 第一代分子标记:RFLP RFLP在20世纪70年代已被发现,是发现最早的一种分子标记。1980年,人类首先将其用于构建连锁图。 RFLP标记的原理:植物基因组DNA上的碱基替换、插入、缺失或重复等,造成某种限制性内切酶(restriction enzymes,简称RE)酶切位点的增加或丧失是产生限制性片段长度多态性的原因。对每一个DNA/RE组合而言,所产生的片段是特异性的,它可作为某一DNA 所特有的“指纹”。某一生物基因组DNA经限制性内切酶消化后,能产生数百万条DNA片段,通过琼脂糖电泳可将这些片段按大小顺序分离,然后将它们按原来的顺序和位置转移至易于操作的尼龙膜或硝酸纤维素膜上,用放射性同位素(如P32)或非放射性物质(如生物素、地高辛等)标记的DNA作为探针,与膜上的DNA进行杂交(即Southern杂交),若某一位置上的DNA酶切片段与探针序列相似,或者说同源程度较高,则标记好的探针就结合在这个位置上。放射自显影或酶学检测后,即可显示出不同材料对该探针的限制性片段多态性情况。对于线粒体和叶绿体等相对较小的DNA分子,通过合适的限制性内切酶酶切,电泳分析后有可能直接检测出DNA片段的差异,就不需Southern杂交。RFLP探针主要有三种来源,即cDNA克隆、植物基因组克隆(Random Genome克隆,简称RG克隆)和PCR克隆。 优点: RFLP标记具有共显性的特点。共显性(co-dominant)标记指的是双亲的两个以上分子量不同的多态性片段均在F1中表现。它已被广泛用于多种生物的遗传分析,特别是构建植物遗传图谱。

动物遗传育种与繁殖

动物遗传育种与繁殖 一、培养目标 培养为社会主义建设服务,德、智、体全面发展的动物遗传育种高级专门人才。具体要求如下: 1、进一步学习马列主义、毛泽东思想和邓小平理论,逐步树立无产阶级世界观;坚持四项基本原则,具有坚定正确的政治方向;热爱祖国,献身农业;遵纪守法,品德优良,具有严谨的治学态度、求学创新精神、艰苦奋斗的作风;服从国家需要,积极为社会主义现代化建设服务。 2、掌握动物遗传育种繁殖科学坚实的基础理论、系统的专业知识和实践技能,了解所从事研究方向的国内外发展动态;能用一门外国语较熟练地阅读专业书刊和撰写论文摘要;具有从事本专业科学研究、教学工作和独立担负本专业技术工作的能力。 3、身体健康。 二、研究方向 本专业的研究方向目前有: 1、畜禽良种选育与杂优利用 2、动物胚胎生物技术 3、动物营养与饲料资源开发 4、动物生产与环境控制 5、生化与分子遗传 三、学习年限 学习年限一般为3年,根据实际情况,经本人申请,导师同意,研究生处审核,校长批准,可适当缩短,(但不得少于两年半)或延长,在职硕土生延长一年。 四、培养方式 1、思想政治工作:硕士生除了学习必修的马克思主义理论课外,还必须参加政治学习,形势与任务教育,公益劳动等活动。要健全研究生管理制度,做好研究生的思想政治教育工作,同时充分发挥导师的作用,做到既教书又育人。 2、课程学习:为了使硕士生掌握动物遗传育种繁殖学坚实的基础理论和系统的专门知识以及较好的实验技能,硕士生必须学好必修课,积极参加研究班活动。此外,根据研究方向的需要以及硕士生的基础,选修几门课程。硕士生课程的学习可以随班听课,也可在教师的指导下通过自学完成。无论哪种方式。都必须通过考试并成绩合格者方能获得学分。 3、执行中期考核制度:硕士生在论文工作正式开始以前应进行中期考核。考核内容包括:(1)思想政治表现、品德与科学作风。(2)学位课和其他必修课、补修课的学习成绩以及完成学分情况。(3)对选题的认识,对试验设计和技术路线的理解,对研究方法和测试手段的掌握程度。考核合格者可继续学习,进入论文工作。对不能达到要求的应停止其硕士学习,按其已有的学历资格分配工作。 4、社会实践和公益劳动:参加社会实践是贯彻党的教育方针,使研究生了解社会,了解国情、农情,坚定正确的政治方向,走与工农相结合的道路,锻炼工作能力的一个重要途径。在研究生学习期间至少要参加三周社会实践。研究生要写出社会实践报告,系或导师要进行考核,对没有参加社会实践或考核不合格的不能毕业。为加强研究生的劳动观点、群众观点和社会责任感,研究生在学习期间要参加一定数量的劳动,其中有考核的公益劳动三周,其余可结合科研工作进行。对没有参加公益劳动或考核不合格的不能毕业。 5、坚持体育锻炼,积极参加文娱活动。

第十七章 分子标记辅助选择育种

目录 第一节分子标记的类型和作用原理 第二节重要农艺性状基因连锁标记的筛选技术 第三节作物分子标记辅助育种 第一节 分子标记的类型和作用原理 遗传标记是指可以明确反映遗传多态性的生物特征。 在经典遗传学中,遗传多态性是指等位基因的变异。 在现代遗传学中,遗传多态性是指基因组中任何座位上的相对差异。 在遗传学研究中,遗传标记主要应用于连锁分析、基因定位、遗传作图及基因转移等。 在作物育种中,通常将与育种目标性状紧密连锁的遗传标记用来对目标性状进行追踪选择。 在现代分子育种研究中,遗传标记主要用来进行基因定位和辅助选择。 1、形态标记 形态标记是指那些能够明确显示遗传多态性的外观性状。如、株高、穗型、粒色等的相对差异。 形态标记数量少,可鉴别标记基因有限,难以建立饱和的遗传图谱。 有些形态标记受环境的影响,使之在育种的应用中受到限制。 2、细胞学标记 细胞学标记是指能够明确显示遗传多态性的细胞学特征。如染色体的结构特征和数量特征。 核型:染色体的长度、着丝粒位置、随体有无。 可以反映染色体的缺失、重复、倒位、易位。 染色体结构特征 带型:染色体经特殊染色显带后,带的颜色深浅、宽窄

和位置顺序,可以反映染色体上常染色质和异染 色质的分布差异。 染色体数量特征—是指细胞中染色体数目的多少。染色体数量上的 遗传多态性包括整倍体和非整倍体变异。 细胞学标记 优点:克服了形态标记易受环境影响的缺点。 缺点: (1)培养这种标记材料需花费大量的人力物力; (2)有些物种对对染色体结构和数目变异的耐受性差,难以获得相应的标记材料; (3)这种标记常常伴有对生物有害的表型效应; (4)观察鉴定比较困难。 3、蛋白质标记 用作遗传标记的蛋白质分为酶蛋白质和非酶蛋白质两种。 非酶蛋白质:用种子储藏蛋白质经一维或二维聚丙烯酰胺凝胶电泳,根据显示的蛋白质谱带或点,确定其分子结构和组成的差异。 酶蛋白质:利用非变性淀粉凝胶或聚丙烯酰胺凝胶电泳及特异性染色检测,根据电泳谱带的不同来显示酶蛋白在遗传上的多态性。 蛋白质标记的不足之处: (1)每一种同工酶标记都需特殊的显色方法和技术; (2)某些酶的活性具有发育和组织特异性; (3)标记的数量有限。 4 、 DNA标记

动物分子育种_一门发展中的新型学科

V o l.5 N o.2 JO U RN AL O F AG RICU L T U R AL BIO T ECHN O LO G Y June.1997 动物分子育种* ——一门发展中的新型学科 李 宁 吴常信 (中国农业大学农业生物技术国家重点实验室,北京100094) 摘要:动物分子育种的理论基础是分子遗传学和分子数量遗传学,操作方法依赖于DN A 重组技术,同时也将结合一些经典的育种技术。分子育种的目标不仅仅是改良畜禽的重要生产 性状,也将创造一些非常规性经济性状。本文简要地介绍了动物分子育种的主要研究内容及其 发展现状,也提出了在育种实践中应用分子育种的策略与方法,这将有助于我国在动物分子育 种领域内积极地进行探索。 关键词:分子育种;转基因;基因定位;DN A标记辅助选择 动物分子育种(Animal Mo lecular Breeding)是依据分子遗传学和分子数量遗传学理论,利用DN A重组技术来改良畜禽品种的新型学科。这门学科目前可以分为两个大的研究内容:一是转基因育种(Transgenic Breeding),即通过基因转移技术将外源性基因导入到某种动物基因组上,从而达到改良重要生产性状(如生长率、遗传抗性等)或非常规性育种性状(如生产人类药用蛋白、工业用酶等)的目标。二是基因组育种(Genomic Breeding),即通过DN A标记技术来对某些重要生产性状座位直接进行选择改良,由于可以同时考虑到多个生产性状座位,甚至是动物个体的整个基因组,所以有时也称为基因组扫描选择(Genome Scannig)。现在,畜禽中已经定位的重要生产性状座位(通常是数量性状座位,Q TL)极为有限,并且短期内也无法了解基因组控制性状表型的机理,显然在绝大多数情况下,只能结合常规育种程序,通过与重要生产性状座位连锁的DN A标记来进行评估动物个体的生产潜力。因此,这种育种模式称着为标记辅助选择(Marker Assistant Selection,简称M AS)。本文将对动物分子育种涉及的研究内容作简要的介绍和评论。 1 转基因育种 1982年,Palmiter等人应用微注射方法将大鼠生长激素基因(rGH)导入了小鼠基因组并获得了世界上第一只体重为正常小鼠2倍以上的“超级鼠”。这项研究的巨大成功,鼓舞了科学家利用转基因技术探索改良畜禽品种的热情。由于转基因技术突破了只能在种间进行基因传递的天障,因此可以利用转基因畜禽来生产一些非常规性畜牧产品,例如在转基因牛羊乳腺中表达生产昂贵的人类药用蛋白,这些产品的经济价值可能远远超出畜牧产品的本身价值。转基因育种研究已经走过了十几个春秋,转基因兔、转基因猪、转基因羊、转基因牛和转基因鸡都相继诞生,但至今并没有形成新的畜牧产业,带给人们更多的是希望。 收稿日期:1997-01-06

分子育种技术在动物性状改造方面的应用

龙源期刊网 https://www.doczj.com/doc/708524290.html, 分子育种技术在动物性状改造方面的应用 作者:薛梅 来源:《农业与技术》2015年第19期 摘要:动物分子育种的内容包括转基因育种和基因组育种等方面,是利用DNA重组技术,根据分子遗传学和数量遗传学理论,改良畜禽品种的新方法。本文通过分析畜禽分子育种技术的内涵,探讨了分子育种技术在动物性状改造方面的应用,并提出了一些对策措施和政策建议,以期能够促进分子育种技术在动物性状改造方面的发展。 关键词:分子育种技术;动物性状;改造;应用 中图分类号:S813 文献标识码:A DOI:10.11974/nyyjs.20151032055 近些年来,随着生物技术的迅速发展,架起了种质基因资源信息与高通量、大数据的桥梁,利用高通量测序、分子标记等先进生物技术和信息技术手段,建立起了常规育种与分子育种相结合的平台,使育种工作实现了由经验象科学的根本性转变,大幅度的提高了育种效率。 1 畜禽分子育种技术的内涵 1.1 畜禽分析育种技术的发展历程 在动物育种中,为了提高畜禽生产性能,人们对畜禽的表型进行了选择,如:孟德尔开创了动物育种学的新时代,发现了遗传规律。20世纪20年代,美国遗传学家赖特、英国遗传学家费希尔以及霍尔丹等奠定了数量遗传学的理论基础。1937年,美国学者拉什初步奠定了现 代动物育种的理论基础,出版了《动物育种方案》。从1950以来,畜禽育种工作取得了巨大的进展,数量遗传理论逐步成了主要育种手段,被应用到了动物育种实践中,畜牧生产水平也得到了极大的提高。进入20世纪80年代以来,畜禽遗传改良的速度呈现了变慢的趋势,虽然经历了相对长期的选择,但是急需寻求一种剧透突破性的育种方法。在这一时期中,以分子数量遗传学为理论基础的分析育种随着分子生物学等发展,逐渐产生了DNA分析标记,使畜禽数量性状图谱越来越系统化和完善,即:分子遗传标记技术的成熟。一些数量性状位点被确定,为畜禽改良提供了新的有效手段,发现和鉴定了一批经济性状关联的DNA分子标记和功能基因,其中最重要的是如何利用分子遗传标记对数量性状基因型进行辅助选择。从基因型水平上,分子标记辅助育种通过寻找与重要性状紧密连锁的DNA分子标记,加快了育种进程,实现了对目标性状的直接选择,提高了育种效率。 1.2 畜禽分析育种技术的现状 畜禽遗传改良的多数目标性状都是数量性状,标记信息所能带来的准确性主要取决于他能够解释遗传变异,但是标记辅助选择可以提高畜禽育种效率。受多个基因控制,畜禽遗传改良的每个基因智能结束很小比例的遗传变异。因此,发现的基因或标记也只能解释较小比例的遗

分子标记辅助选择

第十七章分子标记辅助选择育种 分子标记:以DNA多态性为基础的遗传标记 分子标记的特点:1、遗传多态性高;2、在基因组中大量存在且均匀分布;3、稳定性、重现性好;4、信息量大,分析效率高 第一节分子标记的类型及原理 一、分子标记的类型 1、以DNA-DNA杂交为基础的DNA标记技术:限制性片段长度多态性标记,简称RFLP标记;可变数目串联重复序列标记,简称VNTR标记;原位杂交,简称ISH 2、基于PCR的DNA标记:1)单引物PCR标记;2)双引物选择性扩增的PCR标记;3)通过克隆、测序来构建特殊双引物的PCR标记。 3、基于PCR与限制性内切酶技术相结合的DNA标记。分为两类:限制性酶切片段的选择性扩增,如AFLP;PCR扩增片段的限制性酶切,如CAPs 4、基于单核苷多态性的DNA标记:单核苷酸多态性,简称SNP 二、主要分子标记 1、RFLP(Restriction Fragment Length po1ymorpams)限制性片段长度多态性 1980,Bostein用限制性内切酶酶切不同个体的基因组DNA后,含有与探针序列同源的酶切片段在长度上的差异。(1)RFLP标记的原理 基因组DNA序列上的变化:碱基替换、插入、缺失或重复造成某种限制性内切酶(restriction enzymes )酶切位点的增加或丧失以及内切酶酶切位点间DNA片段变化 (1)RFLP标记的分析步骤 (2)RFLP分析探针 单拷贝或寡拷贝 探针来源:cDNA克隆;基因组克隆(Random Genome);PCR克隆 (3)RFLP标记的特点 优点:①数目几乎无限;②共显性;③可以利用现有探针,具有种族特异性;④RFLP标记遍及全基因组;⑥重复性好缺点:成本较高;一个探针只能产生一个多态位点;需要许多克隆探针;所需DNA量大(5~15μg);易造成环境污染 2、RAPD(Random Amplification Polymorphism DNA)随机扩增多态性DNA 1990,Williams通过PCR扩增染色体组DNA所获得的长度不同的多态性DNA片段。 如随机排列的寡聚脱氧核苷酸单链引物(10个核苷酸)。 PCR,聚合酶链式反应(polymerase chain reaction) Mullis等(1985)PCR反应:变性、复性、延伸。特异性取决于引物与模板DNA结合的特异性。 RAPD与经典的PCR反应的区别:①引物;②反应条件;③扩增产物 AP-PCR(Arbitrarily primed polymerase chain reaction):任意引物PCR;引物长度与一般PCR反应中的引物相当;开始阶段退火温度较低 DAF(DNA amplification fingerprinting):DNA扩增指纹;引物长度比RAPD更短,为5~8个核苷酸;DAF复性和延伸常用同一种温度 (2)RAPD标记的特点 优点:1)可检测未知序列的基因组DNA;2)引物无种族特异性;3)RAPD技术简单;4)单个引物可产生几个多态位点;5)通过克隆测序可转化成SCAR(特异序列扩增区域标记); 缺点:1)再现性差;2)显性遗传;3)存在共迁移问题 3、AFLP(Amplified Fragment Length Polymorphisms)扩增片段长度多态性 1993,Zabeau marc和V os pieter是对限制性酶切片段的选择性扩增。 (1)AFLP标记的原理:基因组的DNA进行双酶切;人工接头连接;PCR反应的引物;凝胶电泳 限制性酶:酶切频率较高的限制性酶(frequent cutter),产生易于扩增基因组DNA。酶切频率较低的限制性酶(rare cutter),限制扩增模板DNA片段的数量。 AFLP扩增数量由酶切频率较低的限制酶在基因组中的酶切位点数量决定。 AFLP分析的基本步骤:1)限制性核酸酶双酶切基因组DNA;2)DNA片段两端连接上特定的接头;3)选择扩增;4)聚丙烯酰胺凝胶电泳;5)凝胶转移,干胶处理;6)自显影;(荧光标记、银染)

分子标记辅助选择 (MAS) 的发展策略

分子标记辅助选择(MAS) 的发展策略 Molecular-assisted-selection 作者: jdt5155873(站内联系TA)收录: 2006-02-25 发布: 2006-02-25 分子标记辅助选择(MAS) 的发展策略 在表型选择有效的情况下,MAS 更适用于隐性,限性,测定困难或费用昂贵以及未成熟期鉴定性状。在实际运用过程中应用一定策略,降低应用成本,MAS 的作用将可得到更大发挥。 1.1 定位作图与育种同步进行 育种群体与定位群体之间的重组频率是有变化的,不一定相同,在不同群体中QTL 检测一致性低,而在同一群体不同世代中较高(Bohn et al.,2001)。研究者对目标基因进行定位是为了利用这些基因,一个重要途径就是进行MAS 提高种育种效率,为大规模培育优良品系或品种创造条件,而MAS 希望使用在育种群体中与目的基因重组率仍旧较低的标记。方宣钧等(2001)建议选择杂交亲本时尽量使用与育种直接有关的材料,所构建群体应尽可能做到既是遗传研究群体,又是育种群体,这样定位与MAS 同步进行可缩短基因(QTL) 定位研究与育种应用的距离,提高育种效率和MAS 效益。 1.2 选择合适标记类型 适合于MAS 的分子标记必须符合如下几个条件:检测手段简单快捷,易于实现自动化;DNA 质量要求不高,用量少,可以同时分析大量样品;信息量大,分析效率高;多态性好,在基因组中大量存在而且分布均匀;开发成本和使用成本低。目前已经发展出十几种标记技术,比较常用有RFLP、RAPD、SSR、AFLP (amplified fragment length polymorphism)、SCAR、STS 和CAPS 等。 理想分子标记应该是建立在PCR 技术基础上,重复性高,在广泛基因背景下都能表达,在不同研究者中能相互交换使用,并能有效跟踪目标基因的标记,如水稻抗白叶枯病基因Xa21 标记pTA248。而选用何种分子标记来进行MAS 选择,直接关系到选择效果。对于前景(目标基因)选择,所有标记技术都可以采用,但PCR 标记最佳,共显性SSR、CAPS 和STS 是首选标记,其次是SCAR。至于背景选择,应根据情况灵活选用,目前在低世代最合适的是RAPD、AFLP 和SSR 等,但在高世代AFLP 由于可检测到更多多态位点而优于其他标记。 夏军红等(2000)比较AFLP 和SSR 两种标记背景选择的相关性,发现达显著水平,结果具有同一性。因此,在实际应用过程中,选用一种标记类型进行背景选择即可。

分子标记辅助选择复习资料(GAU)

分子标记辅助选择复习资料(GAU) 第一章 1.DNA变性:在高温或某些化学试剂作用下双链DNA分子的两条互补的单链会相互分开的过程。 2.DNA复性:当变性的外界条件消除后,互补的单链DNA又可恢复双螺旋结构的过程。 3.基因组:是指一种生物或个体细胞所具有的一套完整的基因及其调控序列。 4.显性标记:是指F1的多态性片段与其亲本之一完全相同。如RAPD, AFLP等。 5.共显性标记:是指双亲的两个以上分子量不同的多态性片段均在F1中表现,如RFLP, SSR,SCAR, ISSR, CAPs。 6.琼脂糖凝胶电泳:分离,纯化和鉴定长度为0.2—50Kb的DNA片段。应用于RAPD,RFLP,ISSR,SCAR等。 7.聚丙烯酰胺凝胶电泳(PAGE):分离,纯化和鉴定长度为5—500bp的DNA 长度。 非变性PAGE:应用于SSR等 变性PAGE:应用于AFLP等 8.纯化后DNA浓度的确定: OD260∕OD280=1.8 纯DNA OD260∕OD280<1.8 有蛋白污染 OD260∕OD280>1.8 有RNA污染 OD260∕OD280=2.0 纯RNA OD260∕OD280<2.0 有盐,多糖等污染 9.理想分子标记需达到的要求: ①具有高的多态性 ②共显性遗传,即利用分子标记可鉴别二倍体中杂合和純合基因性 ③能明确辨别等位基因 ④除特殊位点的标记外,要求分子标记均匀分布于整个基因组 ⑤选择中性(即无基因多态性) ⑥检测手段简单,快速 ⑦开发成本和使用成本尽量低廉 ⑧在实验室内和实验室间重复性好 10.分子标记优越性 ①直接以DNA的形式表现 ②数量多,遍及整个基因组,检测位点近于无限 ③多态性高,不需要专门创造特殊的遗传材料 ④不影响目标性状的表达,与不良性状无必然的连锁 ⑤有许多分子标记表现为共显性 11.分子标记类型 1)以分子杂交为基础的DNA标记技术 ①限制性片段长度多态性(RFLP) ②可变数目串联重复序序列(VNTR) ③染色体原位杂交(In situ Hybridization)

分子标记辅助选择实验方法

分子标记筛选实验 DNA提取的实验仪器与耗材准备:水浴锅,高速冷冻离心机,小型离心机,预冷的异丙醇,1.5ml的灭菌eppondorf管,50 ml的灭菌离心管,70%的酒精,5M的KAc混合液,研钵,液氮,SDS抽取液,1M Tri-HCl (pH 8.0),0.5M EDTA (pH 8.0),TE (pH 8.0)( 相关试剂配法见《分子克隆》,金冬雁等,1996) 1.DNA小量提取法(SDS小量提取法) F2群体DNA采用SDS小量提取法,步骤如下: 1. 取新鲜水稻样本叶片2cm左右于1.5 eppondorf管中,加入液氮,用电钻磨碎。 2. 每管磨碎的水稻叶片中加入700ul已预热至650C 的SDS抽取液,迅速搅匀后置于650C水浴30min。 3. 加入200ul 预冷的5MKAc混合液,颠倒充分混匀,冰浴30min后,于40C 10000转离心4min,吸取上层液到另一准备好的1.5ml eppondorf管中。 4. 加入等体积预冷的异丙醇,置于-200C 30min后,40C 10000转离心4min。 5. 弃上清,加入70% 乙醇清洗,上下颠倒混匀,小型离心机快速离心弃上清,倒扣晾干(注:晾干不宜太久,反止DNA难溶)。 6. 将晾干的DNA溶于100ul TE溶液中, 40C保存备用。 2.DNA大量提取法(SDS大量提取法) 亲本DNA和突变体DNA池、正常株DNA池采取SDS大量提取法,步骤如下: 1.取每个水稻新鲜样本叶片1g,放入10ml离心管,加入液氮,用电钻磨碎。 2.加入5ml已预热至650C 的SDS抽取液,迅速搅匀后置于650C水浴20min。 3.水浴20min后加入1 ml 5MKAc混合液,上下颠倒充分混匀,冰浴20min, 冰浴期间要将离心管上下颠倒数次。 4.加入等体积的氯仿,室温下以3000(10000 rmp)的速度离心 3min,吸取 上清于另一准备好的50 ml离心管中。 5.加入等体积的异丙醇,轻轻摇晃,可以看见DNA絮状沉淀。 6.用玻棒挑出DNA絮状物,用75%乙醇清洗两次,将乙醇到掉,晾干。 7.将晾干的DNA溶于500ul TE溶液中, 40C保存备用。

相关主题
文本预览
相关文档 最新文档